The present invention is directed to the field of carbonyl detection and quantitation, and in particular the detection and quantitation of the concentration of carbonyl containing moieties in biological samples.
The detection of carbonyl containing moieties is known but the precise detection of specific low concentrations of specific carbonyl containing moieties in biological samples is not known. The use of carbonyl's to induce the polymerization of o-phenylene diamine and p-phenylene diamine at high temperature is known to produce solid polymers for subsequent use in manufacturing products, but the use of phenylene diamine derivatives is not known to be used in methods to detect carbonyl containing moieties in a number of biological samples. In addition, measuring the fluorescence of a fluorogenic species in a solution to determine the presence of molecules corresponding to the species is known, as well as the quantitation of the concentration of such molecules in a given sample. Further analyzing carbonyls in biological samples is known, see, e.g., Publication No. US 2003/0208133 published Nov. 6, 2003 and Publication No. US 2011/0003395 published Jan. 6, 2011, both of which are incorporated herein in their entirety.
One embodiment of the present invention is directed to a method of detecting carbonyl containing moieties in a biological sample, the method comprising adding a phenylene diamine derivative to an aqueous salt solution to thereby form a phenylene diamine solution; adding a carbonyl containing moiety from the biological sample to the phenylene diamine solution to thereby form a fluorescing solution; and detecting fluorescence from the fluorescing solution.
Another embodiment of the present invention is directed to a solution containing an alcohol, a salt, a surfactant, a phenylene diamine derivative and a carbonyl containing moiety.
Yet another embodiment of the present invention is directed to a substantially precipitate free solution containing the product of a meta-phenylene diamine derivative and a carbonyl containing moiety.
Another embodiment of the present invention is directed to a method of detecting and measuring the concentration of a carbonyl containing moiety in a biological sample, the method comprising
a) isolating the carbonyl containing moiety from the biological sample;
b) adding the carbonyl containing moiety to an aqueous solution containing a phenylene diamine derivative to form a fluorescing solution; and
c) measuring the fluorescence emitted from the fluorescing solution at a pre-determined wave length.
Another embodiment of the present invention is directed to a method of detecting and measuring the concentration of aldehydes in a human breath sample, the method comprising:
a. capturing the aldehydes from the human breath sample on silica;
b. forming a solution comprising a salt, a buffer, a surfactant in an alcohol in mildly acidic conditions;
c. adding a phenylene diamine derivative to the solution of step b;
d. eluting the captured aldehydes into the solution of step c;
e. determining the fluorescence signal of the solution of step c;
f. determining the fluorescence signal of the solution of step d;
g. subtracting the fluorescence signal from step e from the fluorescence signal from step f; and
h. comparing the net resulting fluorescence signal from step g with standard fluorescence of known aldehydes to determine the concentration of aldehydes in the fluorescing solution.
Another embodiment of the present invention is directed to a device comprising:
a) a breath chamber having a substrate, the substrate supporting a carbonyl containing moiety from an animal's breath; and
b) a fluid chamber having an aqueous solution comprising an alcohol, a salt, a surfactant, and a buffer.
Yet another embodiment of the present invention is directed to a device for detecting and quantitating the concentration of a carbonyl containing moiety in a biological sample, the device comprising a substrate having an active reactive capture agent incorporated therein.
Another embodiment of the present invention is directed to a method for detecting carbonyl containing moieties in a biological sample, the method comprising the steps of providing a substrate having an active reactive capture agent incorporated therein, capturing on said substrate carbonyl containing moieties from the biological sample, and forming a solution comprising painted carbonyl containing moieties.
Yet another embodiment of the present invention is directed to a method for detecting carbonyl containing moieties in a biological sample, the method comprising the steps of:
a. providing a substrate;
b. incorporating an active reactive capture agent into the substrate;
c. capturing carbonyl containing moieties on the substrate; and
d. eluting the active reactive capture agent and carbonyl containing moieties from the substrate into a solution whereby painted carbonyl containing moieties are formed.
Another embodiment of the present invention is directed to a method of detecting carbonyl containing moieties in a biological sample, the method comprising adding a fluorescence chromophore to an aqueous salt solution to thereby form a fluorescence chromophore solution; adding a carbonyl containing moiety from the biological sample to the fluorescence chromophore solution to thereby form a fluorescing solution; and detecting fluorescence from the fluorescing solution.
The following description and figures are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in certain instances, well-known or conventional details are not described in order to avoid obscuring the description. Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. References to one or another embodiment in the present disclosure can be, but not necessarily are, references to the same embodiment; and, such references mean at least one of the embodiments, nor are separate or alternative embodiments mutually exclusive of other embodiments.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the specification, to provide additional guidance to the practitioner regarding the description of the disclosure. For convenience, certain terms may be highlighted, for example using italics and/or quotation marks. The use of highlighting has no influence on the scope and meaning of a term; the scope and meaning of a term is the same, in the same context, whether or not it is highlighted.
Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein. Nor is any special significance to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms discussed herein is illustrative only, and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term.
The present invention is directed to a method and device useful for the detection, quantitation and assay of carbonyl containing moieties (“CCM”) including aldehydes, preferably in biological samples, and preferably at low concentrations in the biological sample. In this regard, CCM is defined to include one or more different carbonyl containing moieties.
As used herein, a “biological sample” is referred to in its broadest sense, and includes solid and liquid or any biological sample obtained from nature, including an individual, body fluid, cell line, tissue culture, or any other source. As indicated, biological samples include body fluids or gases, such as breath, blood, semen, lymph, sera, plasma, urine, synovial fluid, spinal fluid, sputum, pus, sweat, as well as liquid samples from the environment such as plant extracts, pond water and so on. Solid samples may include animal or plant body parts, including but not limited to hair, fingernail, leaves and so on. The preferred biological sample for one embodiment of the present invention is the breath of a human.
A CCM is a compound having at least one carbonyl group. A carbonyl group is the divalent group >C=0, which occurs in a wide range of chemical compounds. The group consists of a carbon atom double bonded to an oxygen atom. The carbonyl functionality is seen most frequently in three major classes of organic compounds: aldehydes, ketones, and carboxylic acids. As used herein, “aldehyde” has its ordinary chemical meaning and the method of the present invention is useful in detecting the concentration of aldehydes in biological samples. In particular, the present invention is useful in detecting various forms of aldehydes include without limitation 1-hexanal, malondialdehyde, 4-hydroxynonenal, acetaldehyde, 1-propanal, 2-methylpropanal, 2,2-dimethylpropanal, 1-butanal, and 1-pentanal.
The amount of the CCM captured by the substrate may vary, but typically for a substrate consisting of 200 mg of 50-270 mesh (300-50 μm) particle with a bed diameter of 12.5 mm, generally, it will be equivalent to the amount in a human's breath after breathing into a tube like a breathalyzer. Preferably it will be from 75 to 0.1 ppb (400 to 4 pmoles) and more preferably from 20 ppb to 0.01 ppb (80 to 0.4 pmoles).
The invention is amenable to “mix & read” and “real-time” assay formats for the detection of CCM. The invention can be applied to the detection of CCM in solution. The invention can be applied to the detection of trace CCM in the gas phase by the addition of a primary capture (on a substrate as discussed below) and release (elution from the loaded substrate as discussed below) process. Preferably in one step of the process, gas phase CCM, for example, aldehydes from the breath of a human, are captured on a substrate.
The substrate of the present invention is desirably formed from a solid, but not necessarily rigid, material. The solid substrate may be formed from any of a variety material, such as a film, paper, nonwoven web, knitted fabric, woven fabric, foam, glass, etc. For example, the materials used to form the solid substrate may include, but are not limited to, natural, synthetic, or naturally occurring materials that are synthetically modified, such as polysaccharides (e.g., cellulose materials such as paper and cellulose derivatives, such as cellulose acetate and nitrocellulose); polyether sulfone; polyethylene; nylon; polyvinylidene fluoride (PVDF); polyester; polypropylene; silica; inorganic materials, such as deactivated alumina, diatomaceous earth, MgSO4, or other inorganic finely divided material uniformly dispersed in a porous matrix, with polymers such as vinyl chloride, vinyl chloridepropylene copolymer, and vinyl chloride-vinyl acetate copolymer; cloth, both naturally occurring (e.g., cotton) and synthetic (e.g., nylon or rayon); porous gels, such as silica gel, agarose, dextran, and gelatin; polymeric films, such as polyacrylamide; and so forth. Preferably the substrate is a solid phase matrix of silica optionally spaced between frits. The size of the substrate is chosen so that a measurable amount of CCM is captured by the substrate. The size can vary but generally it is about 2 mL, preferably about 1 mL and more preferably about 0.25 mL.
The substrate typically consists of a bed of particles with 50-60 angstrom pores, with a 50-270 mesh (300-50 μm), and a mass of 75 to 300 mg, preferably 60-120 mesh (250-125 μm) with a mass of 100 to 200 mg and more preferably 50-120 mesh (210-125 μm) with a mass of 125 to 175 mg.
In another step of the process, a fluorescence chromophore such as a phenylene diamine derivative is added to an elution solution to form a phenylene diamine solution. Phenylene diamine derivatives useful in connection with the present invention include but are not limited to many phenylene diamine derivatives including without limitation meta-phenylene diamine (“mPDA”) and its derivatives, and those shown in
Other phenylene diamine derivatives include the following or mixtures thereof:
Where R1, R2, R3, R4 are each independently selected from the group consisting of H, alkyl, substituted alkyl, alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, substituted amino, aminocarbonyl, aminothiocarbonyl, aminocarbonylamine, aminothiocarbonylamino, aminocarbonyloxy, aminosulfonyl, aminosulfonyloxy, aminosulfonylamino, amidino, carboxyl, carboxyl ester, (carboxylester) amino, (carboxyl ester) oxy, cyano, halo, hydroxy, SO3-, sulfonyl, substituted sulfonyl, sulfonyloxy, thioacyl, thiol, alkylthio, substituted alkylthio, acyl, substituted aryl, heteroaryl, substituted heteroaryl, cycloalkyl, substituted cycloalkyl, heterocycles, and substituted heterocycles.
With reference to
mPDA-orange exhibits a quantum yield increase as the molecule is incorporated into the aldehyde induced mPDA polymer. In addition, the excitation and emission properties of the styrylpyridinium moiety affords a FRET (Forster Energy Transfer) generated signal from the mPDA polymer. The styrylpyridinium moiety exhibits a broad excitation with a maximum at 470 nm and an emission maximum at 570 nm. The excitation profile provides sufficient overlap with the emission profile of the mPDA polymer to afford FRET based signal generation. A FRET based signal generation would be manifest by an excitation at the mPDA polymer (405 nm) and emission at the styrylpyridinium moiety emission at 570 nm. An illustration of a FRET response of mPDA-orange to aldehyde induced polymerization of mPDA is displayed in
A direct aldehyde induced polymerization of mPDA-orange alone does not generate a response signal due to quenching of the styrylpyridinium at the high concentrations required for induction of the polymer. A response would only be expected when the mPDA-orange is contained within a mixture of mPDA and mPDA-orange. Indeed, an aldehyde response is only observed when mPDA-orange is doped into mPDA at significantly dilute molar ratios mPDA/mPDA-orange 1,000:1 to 10,000:1. The response to aldehyde is illustrated in
In general, the concentration of the phenylene diamine derivative in the phenylene diamine solution ranges from 0.5 mM to 25 mM. For mPDA, the mPDA concentration in the phenylene diamine solution generally ranges from 0.5 to 21 mM, preferably from 2 to 10 mM, and optimally 5 mM for aldehydes such as 1-hexanal. Notwithstanding the foregoing, for mPDA-orange, it must be diluted into mPDA at a low molar ratio, preferably 1000-10,000.
In general, the elution solution includes a salt, a buffer, a surfactant, and an organic solvent. The concentration of the salt ranges can from 5 mM to 200 mM and preferably from 20 mM to 80 mM; the concentration of the buffer can range from 25 mM to 200 mM and preferably from 40 mM to 60 mM; and the concentration of the surfactant can range from 0.05% (1.7 mM) to 0.4% (13.9 mM), and preferably from 0.15% (5.2 mM) to _0.25% (8.7 mM). Optimally 0.2% or 6.96 mM is used. The salt can be any salt that does not negatively impact the fluorescing solution and controls salting effects in the elution solution, and may include NaCl, LiCl, KCl, sulfates and phosphates, and mixtures thereof, with NaCl preferred.
The buffer is employed to maintain the elution solution mildly acidic and preferably at a pH of between 2 and 4.5, more preferably 2.5. The buffer can be a borate buffer, a phosphate buffer, a citrate buffer, an organic buffer such as HEPES (1-piperazineethane sulphonic acid) or also a TRIS (tris(hydroxymethyl)aminoethane) buffer, preferably a citrate buffer for use in detecting aldehydes.
The surfactant can include sodium decyl sulfate, sodium dodecyl sulfate (“SDS”), sodium tetradecyl sulfate and Standapol ES-1, with SDS including the C10, C12 and C14 version of SDS is preferable. Trition X-100, Ninate 11, Georpon 71, Tetraonic 1357, Cremapor-el, Chemal la-9, Silwet L7900, Surfynly468, Surfactant 10G, and Tween 80 might also be used but they did not provide good results with the preferred elution solution, the CCM 1-hexanal and mPDA.
In the absence of SDS the polymerization and aldehyde response as discussed below is severely inhibited. mPDA is highly water soluble and the presence of SDS may provide a scaffold for organizing and orientating mPDA into a matrix to facilitate the polymerization reaction.
The solvent can include an aqueous solution of EtOH, MeOH, propanol, and isopropanol, with 15% EtOH preferred.
The molar ratio of salt concentration to phenylene diamine concentration is important. Generally the ratio should range from 0.03 to 0.5. For the CCM 1-hexanal, a molar ratio of mPDA to NaCl of 0.165 was found to provide optimal response.
The temperature for practicing the method of the present invention preferably ranges from 15 to 35° C., with 25 to 30° C. more preferred.
For the aldehydes such as 1-hexanal, one preferred embodiment of the elution solution comprises 33 mM NaCl, 50 mM Citrate, pH 2.5, 15% EtOH, and 0.2% SDS. Other preferred elution solutions include 50 mM Citrate, pH2.5, 15% propanol and 0.4% sodium decyl sulfate.
Using the elution solution containing a phenylene diamine derivative, the CCM is eluted into the phenylene diamine solution to form a fluorescing solution. The CCM and the mPDA react to form a fluorogenic species, the presence of which in the fluorescing solution is detected by measuring the fluorescence emitted by the fluorogenic species in the fluorescing solution.
The aldehyde content is quantitated by monitoring the signal rise (end-point) and/or rate of signal change (kinetic) which varies as a function of aldehyde concentration for a given mPDA concentration, and comparing such data with a carbonyl population sample of the breath. In practice the impact of carbonyls other than the selected carbonyl must be filtered out. There are two general assay format or detection modes. They are generally described as end-point and kinetic. In an end-point assay the system is incubated for a set time and the signal read. The signal at that point reflects the amount of analyte in the system. For a positive assay, the greater the concentration of the analyte, the greater the signal increase. In a kinetic assay the rate of change is monitored for a set duration. The rate of change is correlated to the amount of analyte. Preferably the end-point assay is employed with the present invention.
Assay measurements can be made on a typical fluorescence spectrometer including conventional scanning spectrometer, plate-reader or LED/diode based spectrometer following standard assay practices. To illustrate, the data displayed in
In one preferred embodiment, the phenylene diamine derivative reacts with the CCM in solution to produce a fluorescence emitting or fluorogenic species. It is believed that the phenylene diamine derivative oxidatively couples to the CCM and the phenylene diamine derivative polymerizes to dimers, trimers, oligomers and/or polymers. It is not clear if the CCM actually becomes part of the growing polymer, although the polymerization is modulated by the presence of CCM and there is a dose response.
The process of using a CCM to polymerize the phenylene diamine derivative may be described as dispersion polymerization. Poly-phenylene diamines have been used to construct nanostructures and colloidal dispersions of different shapes, tubes, spheres and the like. However, if the polymerization results in large high molecular weight structures then precipitation occurs in the solution, which, in the present invention, may handicap optical detection. Thus the ingredients used in the method of the present invention must be chosen to avoid having elements in the fluorescing solution that inhibit detection and quantitation of the CCM.
The present invention utilizes the ability of CCM to modulate (initiate, catalyze and accelerate) the oxidative coupling and polymerization of phenylene diamine derivatives to detect and quantitate trace aldehydes, ketones and carbonyl containing analytes in a biological sample. Oxidative coupling and polymerization of phenylene diamine generates chromophoric and fluorogenic species. In the case of mPDA and aldehydes, the formation of polymers or multimers gives rise to a broad optical absorbance band at 405 nm and an associated emission band at 505 nm. The monomer absorbance is found in the UV region <350 nm. As a result the production of the polymer can be conveniently followed by either conventional absorbance or fluorescence spectroscopy. In this regard, it should be appreciated that the absorbance and emission bands may vary depending upon the CCM and phenylene diamine derivative chosen, but all such bands useful in practicing this invention are part of the invention.
For example, with reference to
With reference to
With reference to
With reference to
With reference to
With reference to the chart in
The nature of the aromatic diamine is also important to consider in employing the method of the present invention. O-PDA is highly reactive and undergoes rapid general oxidation. The high reactivity of o-PDA precludes its use as an aldehyde sensor in the preferred embodiment of the present invention. With reference to
The present invention also includes a device for employing the method of the present invention. The device comprises a breath chamber preferably made of plastic and having a substrate in the breath chamber. The substrate is made from the materials discussed above and preferably silica. The substrate supports a carbonyl containing moiety from an animal's breath, e.g. aldehydes. The device also includes a fluid chamber. The fluid chamber includes an aqueous solution comprising an alcohol (e.g., 15% EtOH), a salt (e.g., NaCl), a surfactant (e.g., SDS), and a buffer (e.g. citrate). The solution can also comprise a phenylene diamine derivative such as mPDA.
The following example demonstrates one way to use the present invention to determine whether the sample breath of a human contains measurable aldehyde concentration and the concentration of the aldehyde in the breath. Employing the methodology discussed above, a series of fluorescence measurements are preformed to provide standards for various specific aldehydes and mixtures thereof that are known to be contained in a human breath sample (a population), and standards for concentrations of such various standards and mixtures thereof. Using these standards, the presence in a sample of human breath of a particular aldehyde or mixture of aldehydes and the concentration of such particular aldehyde or mixture of aldehydes can be determined. In general in one embodiment, the steps are as follows:
In another embodiment of the present invention, the substrate can be pre-loaded with an active reactive capture agent which covalently attaches to the CCM (the “Agent”) including without limitation a fluorescent hydrazine or aminooxy compound. Some examples of aminooxy compounds are as follows: aminooxy 5(6) tetramethylrhodamine (aminooxy 5(6) TAMRA), with a single isomer of either 5 or 6 preferred; and aminooxy 5(6) carboxyfluorescein (aminooxy 5(6) FAM), with a single isomer of either 5 or 6 preferred, for example aminooxy-C5-5-FAM. Others include aminooxy 7-amino-3-acetyl-4 methylcourmarin-6-sulfonic acid; 5-aminoxy acetic acid rhodamine B; and dinitrophenylhydrazin. In the foregoing examples, the reactive group is specified without the linkage group, which would be well known to those of skill in the art. In addition to the foregoing, the hydrazine or hydrazide versions are included within the present invention. Preferably the Agent is somewhat polar.
For example, for a substrate consisting of 200 mg of 50-270 mesh (300-50 μm) particle with a bed diameter of 12.5 mm, the amount of the Agent can be from 5.5 mg to 0.1 mg, and preferably from 2.5 mg to 0.4 mg.
In yet another embodiment of the present invention, a two-solution methodology is used. After the substrate is loaded with the CCM, the CCM is eluted into a “rinse” solution comprising generally 30% ethanol and preferably 50 mM citrate, 30% ethanol at ph 2.5. The Agent is added to the rinse solution thereby resulting in painted CCM. This solution is then passed through another substrate, preferably a silica frit stack, to capture the painted CCM. The painted CCM is then eluted from the substrate with the painted CCM captured therein using a second “rinse” solution comprising greater than 50% acetonitrile and preferably 90% ethanol. One of the benefits of this second embodiment is that a baseline reading is not necessary to remove noise.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to.” Additionally, the words “herein, “above,” “below,” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the above Detailed Description of the Preferred Embodiments using the singular or plural number may also include the plural or singular number respectively. The word “or” in reference to a list of two or more items, covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
The above-detailed description of embodiments of the disclosure is not intended to be exhaustive or to limit the teachings to the precise form disclosed above. While specific embodiments of and examples for the disclosure are described above for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize. For example, while methods are presented in a given order, alternative embodiments may perform the method, in a different order, and some method steps may be deleted, moved, added, subdivided, combined, and/or modified to provide alternative or subcombinations. Further any specific numbers noted herein are only examples: alternative implementations may employ differing values or ranges.
These and other changes can be made to the disclosure in light of the above Detailed Description of the Preferred Embodiments. While the above description describes certain embodiments of the disclosure, and describes the best mode contemplated, no matter how detailed the above appears in text, the teachings can be practiced in many ways. Details of the system may vary considerably in its implementation details, while still being encompassed by the subject matter disclosed herein. As noted above, particular terminology used when describing certain features or aspects of the disclosure should not be taken to imply that the terminology is being redefined herein to be restricted to any specific characteristics, features or aspects of the disclosure with which that terminology is associated. In general, the terms used in the following claims should not be construed to limit the disclosures to the specific embodiments disclosed in the specification unless the above Detailed Description of the Preferred Embodiments section explicitly defines such terms. Accordingly, the actual scope of the disclosure encompasses not only the disclosed embodiments, but also all equivalent ways of practicing or implementing the disclosure under the claims.
Accordingly, although exemplary embodiments of the invention have been shown and described, it is to be understood that all the terms used herein are descriptive rather than limiting, and that many changes, modifications, and substitutions may be made by one having ordinary skill in the art without departing from the spirit and scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/156,441, filed May 4, 2015, U.S. Provisional Application No. 62/149,988, filed Apr. 20, 2015, and U.S. Provisional Application No. 62/018,448, filed Jun. 27, 2014, which are all incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3094511 | Hill, Jr. et al. | Jun 1963 | A |
3446773 | Schwarz | May 1969 | A |
4080170 | Borkenstein | Mar 1978 | A |
4184850 | Habenstein | Jan 1980 | A |
4438206 | Nakajima et al. | Mar 1984 | A |
4548904 | Kent et al. | Oct 1985 | A |
4552849 | Nakajima | Nov 1985 | A |
5081871 | Glaser | Jan 1992 | A |
5174959 | Kundu et al. | Dec 1992 | A |
5254261 | Tomaschke et al. | Oct 1993 | A |
5284054 | Loebach | Feb 1994 | A |
5310682 | Novotny et al. | May 1994 | A |
5465728 | Phillips | Nov 1995 | A |
5585469 | Kojima et al. | Dec 1996 | A |
5739535 | Koch et al. | Apr 1998 | A |
5801059 | Smith et al. | Sep 1998 | A |
5924994 | Harbrecht et al. | Jul 1999 | A |
6019731 | Harbrecht et al. | Feb 2000 | A |
6023982 | Basch et al. | Feb 2000 | A |
6136608 | Kawachi | Oct 2000 | A |
6138521 | Basch et al. | Oct 2000 | A |
6242267 | Herron et al. | Jun 2001 | B1 |
6315688 | McLaughlin et al. | Nov 2001 | B1 |
6462128 | Barashkov et al. | Oct 2002 | B1 |
6582376 | Baghdassarian | Jun 2003 | B2 |
6632402 | Blazewicz et al. | Oct 2003 | B2 |
6835431 | Alperovich et al. | Dec 2004 | B1 |
7032431 | Baum et al. | Apr 2006 | B2 |
7087434 | Chen et al. | Aug 2006 | B2 |
7101716 | Nakano et al. | Sep 2006 | B2 |
7153272 | Talton | Dec 2006 | B2 |
7220387 | Flaherty et al. | May 2007 | B2 |
7312071 | Lu et al. | Dec 2007 | B2 |
7347825 | Vaughan et al. | Mar 2008 | B2 |
7352465 | Fay et al. | Apr 2008 | B2 |
7384793 | McCash et al. | Jun 2008 | B2 |
7432298 | Lam et al. | Oct 2008 | B2 |
7514265 | Yoon et al. | Apr 2009 | B2 |
7533558 | Flaherty et al. | May 2009 | B2 |
7547285 | Kline | Jun 2009 | B2 |
7560574 | Habi et al. | Jul 2009 | B2 |
7790467 | Massick | Sep 2010 | B1 |
7833480 | Blazewicz et al. | Nov 2010 | B2 |
7992422 | Leddy et al. | Aug 2011 | B2 |
8002712 | Meka et al. | Aug 2011 | B2 |
8012761 | Boga et al. | Sep 2011 | B2 |
8026103 | Van Herpen et al. | Sep 2011 | B2 |
8181503 | Flaherty et al. | May 2012 | B2 |
8198097 | Pera | Jun 2012 | B1 |
8383672 | Habi et al. | Feb 2013 | B2 |
8394030 | Varga et al. | Mar 2013 | B2 |
8618161 | Lam et al. | Dec 2013 | B2 |
8628975 | Lam et al. | Jan 2014 | B2 |
8642966 | Weckstrom et al. | Feb 2014 | B2 |
8772487 | Chen et al. | Jul 2014 | B2 |
8778693 | Boudenne et al. | Jul 2014 | B2 |
8809531 | Bremberg et al. | Aug 2014 | B2 |
8821409 | Ku et al. | Sep 2014 | B2 |
8950240 | Yeh et al. | Feb 2015 | B2 |
20030208133 | Mault | Nov 2003 | A1 |
20040017570 | Parikh et al. | Jan 2004 | A1 |
20040162500 | Kline | Aug 2004 | A1 |
20050084921 | Cranley et al. | Apr 2005 | A1 |
20060073604 | Yoon et al. | Apr 2006 | A1 |
20060266353 | Yamada et al. | Nov 2006 | A1 |
20070062255 | Talton | Mar 2007 | A1 |
20070093725 | Shaw | Apr 2007 | A1 |
20080204705 | Liu | Aug 2008 | A1 |
20080234553 | Urman et al. | Sep 2008 | A1 |
20090159803 | Berthold et al. | Jun 2009 | A1 |
20090162891 | Lu et al. | Jun 2009 | A1 |
20100178662 | Urman et al. | Jul 2010 | A1 |
20100256514 | Chazan et al. | Oct 2010 | A1 |
20110003395 | Dey et al. | Jan 2011 | A1 |
20110098590 | Garbutt | Apr 2011 | A1 |
20120004571 | Ku et al. | Jan 2012 | A1 |
20120011918 | Bacal et al. | Jan 2012 | A1 |
20120071342 | Lochhead et al. | Mar 2012 | A1 |
20120105949 | Cummings et al. | May 2012 | A1 |
20120165694 | Meka et al. | Jun 2012 | A1 |
20120276651 | Kim et al. | Nov 2012 | A1 |
20120302907 | Palmskog et al. | Nov 2012 | A1 |
20130006068 | Gemer et al. | Jan 2013 | A1 |
20130253336 | Haveri et al. | Sep 2013 | A1 |
20130276509 | Rathke et al. | Oct 2013 | A1 |
20130281873 | Evans et al. | Oct 2013 | A1 |
20130288911 | Chen et al. | Oct 2013 | A1 |
20130305808 | Yoo | Nov 2013 | A1 |
20140171635 | Schwartz et al. | Jun 2014 | A1 |
20140202234 | Burgon et al. | Jul 2014 | A1 |
20140220696 | Schwartz et al. | Aug 2014 | A1 |
20140373649 | Harrell et al. | Dec 2014 | A1 |
20150073290 | Star et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
2606820 | Jun 2013 | EP |
2641537 | Sep 2013 | EP |
9406057 | Mar 1994 | WO |
9638724 | Dec 1996 | WO |
2009094536 | Jul 2009 | WO |
2010009406 | Jan 2010 | WO |
2012120140 | Sep 2012 | WO |
2013115933 | Aug 2013 | WO |
2013172873 | Nov 2013 | WO |
2014116604 | Jul 2014 | WO |
2014165184 | Oct 2014 | WO |
Entry |
---|
Xu, et al. “Fluorescence Ratiometric Sensor for Trace Vapor Detection of Hydrogen Peroxide,” Applied Materials and Interfaces, 2014, 6, 8708-8714; May 7, 2014. |
International Search Report & Written Opinion dated Sep. 30, 2015; PCT/US2015/038389. |
International Search Report & Written Opinion dated Sep. 30, 2015; PCT/US2015/038391. |
International Search Report & Written Opinion dated Sep. 29, 2015; PCT/US2015/038392. |
Mallya et al., “Organic Molecule Based Sensor for Aldehyde Detection,” Abstract, Sensing Technology: Current Status and Trends III, Smart Sensors, Measurement and Instrumentation vol. 11, 2015, pp. 299-325. http://link.springer.com/chapter/10.1007%2F978-3-319-10948-0—15. |
Fink, Johannes , Petroleum Engineer's Guide to Oil Field Chemicals and Fluids, First Edition, Gulf Professional Publishing, p. 188, May 2011. |
Marinho et al., “The reaction of α-phenylenediamine with ethoxymethylene compounds and aromatic aldehydes,” ARKIVOC 2009 (xiv) pp. 346-361. |
Dunn, Connie Dee, Automated Determination of Carbonyl Compounds in Organic Solvents, a Thesis in Chemistry, Aug. 1992. |
Stejskal, Jaroslav, “Polymers of phylendiamines,” Progress in Polymer Science, 41(2015) pp. 1-31. |
International Search Report and Written Opinion dated Sep. 25, 2015; PCT/US2015/038394. |
Number | Date | Country | |
---|---|---|---|
20150377858 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
62156441 | May 2015 | US | |
62149988 | Apr 2015 | US | |
62018448 | Jun 2014 | US |