Method and device for closing holes in tissue

Abstract
A device for closing holes in tissue is delivered via a catheter to the inside of a body lumen such as a heart. An elastic barbed clip is expanded, pulled into the tissue and released, pulling the tissue with it. The operation is fully reversible.
Description
FIELD OF THE INVENTION

The present invention relates to surgery and in particular to closing holes in tissue during minimally invasive surgery. The invention is particularly useful for closing holes left by catheters during percutaneous surgical procedures such as minimally invasive cardiac surgery and other surgeries requiring access to body lumens.


BACKGROUND OF THE INVENTION

More and more surgical procedures are performed percutaneously by the use of catheter-delivered devices. The main advantages are fast patient recovery and lower costs to the medical system. Some tissues, such as muscular tissue or arterial walls, do not seal well and are sometimes subject to blood pressure; therefore they require an immediate hemostatic seal after the surgery. Prior art solutions mainly rely on some form of a plug, such as an expanding foam plug, expanding metal plug or a barbed plug to seal the hole. The main disadvantage of plugs is that in order to form a good seal they are forcing the hole to become larger, rather than the more natural way which is to shrink the hole in order to promote healing. A prior art device operating by shrinking the hole is the Star Closure device sold by Abbott Vascular (www.abbottvasculardevices.com) however this device is only suitable to thin walled body lumens as it relies on folding the tissue. When sealing larger holes in thicker tissue the gripping points for pulling the tissue inwards have to be spread over an area significantly larger than the hole size, similar to what is done in traditional suturing. Attaching the closure device too close to the hole does not allow sufficient forces to be applied, therefore creating a marginal closure.


Another major shortcoming of the Star Closure and other devices is that the operation is not reversible. It is sometimes required to remove the closure, as in the case of bleeding or an additional procedure.


It is therefore desired to provide a hole closure method that provides an immediate liquid and gas tight closure and it can be delivered by a catheter to the inside wall of a body lumen.


It is also desired to provide a closure method suitable for a large range of tissue thicknesses and hole sizes.


It is also desired to be able to test, and if required to remove, the closure.


It further would be desired for the closing device to have permanent elastic properties to accommodate any movement or future changes in the tissue. Furthermore, the gripping area of the closure device has to be significantly larger than the original hole.


SUMMARY OF THE INVENTION

In view of the foregoing, the invention provides a method and device for closing holes in body lumens, and in particular in the heart and blood vessels, achieving an immediate hemostatic seal. The device can be applied via a wide range of catheters sizes to close a wide range of round and elongated holes with performance and reliability of traditional sutures but without requiring access to the tissue, except via the catheter. Furthermore, the device can be removed via the same catheter, and by using the same tools used to install it and can be re-used immediately if so desired. The device has a high degree of elastic compliance allowing a wide accommodation range to changes in the tissue. These and other objects of the present invention are achieved by providing a flexible clip that is temporarily attaches to an insertion tool. The clip has three different positions: a storage position, in which it is folded inside a delivery tube; an expanded position, in which it opens up to reach an area significantly larger than the hole, and a closed position in which elastic forces try to close the clip, pulling the tissue with it to close the hole. The clip has multiple sharp barbs for gripping the tissue and a stem for attaching to the insertion tool, as well as for re-attaching in case removal is required.


Methods for implanting and removal of the device are also provided.


The invention will become apparent by studying the drawings and the detailed description.





BRIEF DESCRIPTION OF THE DRAWING


FIG. 1 is a perspective view of the invention and the installation tool.


FIG. 2-a to FIG. 2-f are sectional views showing the steps in installing the device using the installation tool.



FIG. 3 is a perspective “exploded” view of the device.



FIG. 4 is a perspective “exploded” view of an alternate embodiment.



FIG. 5 is an “exploded” view of another alternate embodiment.


FIG. 6-a is a perspective view of an alternate embodiment in the relaxed state.


FIG. 6-b is a perspective view of the same alternate embodiment in the expanded state.


FIG. 7-a is a sectional view of the tool used to install the device embodiment of FIG. 6-a in the relaxed state.


FIG. 7-b is a sectional view of the tool used to install the device embodiment of FIG. 6-a in the expanded state.


FIG. 8-a to FIG. 8-f are sectional views showing the steps in removing the device,


FIG. 9-a and FIG. 9-b are perspective views of a device installed on the outside of a catheter.



FIG. 10 is an “exploded” view of the preferred embodiment.



FIG. 11 is a “phantom” view of the actuation mechanism.


FIG. 12-a is a perspective view of the preferred embodiment in the fully open position.


FIG. 12-b is a perspective view of the preferred embodiment in the retracted position.


FIG. 13-a to FIG. 13-f are sectional view of the preferred embodiment showing the steps in installing the device.





DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG. 1, a hole closure clip 3 is inserted into a body lumen such a cavity in the heart via catheter 1. Catheter 1 has a seal allowing insertion and removal of tools without much blood loss. This is well known in the art of minimally invasive surgery. When the surgical procedure is completed and hole needs to be closed, tube 5 carrying clip 3 mounted on rod 4 is inserted via catheter 1 through the tissue 2. Both rod 4 and tube 5 have flanges 7 and 8 allowing a pulling tool 6 to exert a significant pulling force on rod 4 relative to tube 5. Pulling tool 6 may be made of plastic or metal, plastic being preferred if tool is to be disposable. Rod 4 and tube 5 are preferable made of stainless steel and closure device 3 is made of Nitinol, a highly flexible Nickel.Ti˜anium alloy well known in the art of medical devices. Tool 6 is similar in construction t the well known clothe-pin. Since the elastic range of Nitinol is about ten times larger than steel, the clip 3 can be made to fold into a small diameter tube and expand to grip the tissue over an area significantly larger than the area of the hole, in order to establish reliable closure. When clip 3 is released it tries to return to its natural (relaxed) shape, which covers a significantly smaller area, pulling the tissue with it and forming an instant hemostatic seal. These steps are shown in FIG. 2-a to FIG. 2-f.


In FIG. 2-a the tube 5 containing the folded clip 3 mounted on rod 4 is inserted via catheter 1 through the wall of the tissue 2. Rod 4 is pushed forward by finger pressure till it is felt that clip 3 is released from tube 5 (or moved till it reaches a pre-determined distance), as shown in FIG. 2-b. At this pint it is pulled back and pulling tool 6 is installed by sliding it on rod 4. Pulling tool 6 can be permanently mounted on rod 4 or slide in and out via two slots as shown in Figi. The slots rest against flanges 7 and 8. Flange 7 is rigidly connected to rod 4 while flange 8 is rigidly connected to tube 5. Using pulling tool 6, rod 4 is pulled out a pre-determined amount which forces clip 3 to open as shown in FIG. 2-c, as it rests against end of tube 5. At this point the whole assembly, including catheter 1, is pulled back to engage the sharp barbs of tool 3 in tissue 2. This is shown in FIG. 2-d. An enlarged view of clip 3 is shown in FIG. 3. In FIG. 3, clip 3 comprises of multiple sharp barbs 11 held by a threaded stem 8. Clip 3, including barbs 11 are made of Nitinol wire typically 0.3-0.8 mm in diameter, Stem 8 can be made of type 316 stainless steel and held to wires by crimping. It contains a threaded portion 10 for attaching to rod 4. The end of rod 4 has a mating thread 12. When clip 3 rests on edge of tube 5 it can be opened widely by pulling rod 4 and barbs 11 can reach over an area having a diameter from 1.5 to over 3 times the diameter of the hole. This is important to achieve proper hemostatic closure. When rod 4 is detached from clip 3, the natural elasticity pulls barb 11 in the direction shown by arrows 13 and the tissue is pulled with them. Centering ferrule 19 on rod 4 keeps the location of clip 3 centered to tube 5, therefore centered to hole in tissue. Returning now to FIG. 2-e, pulling tool 6 is released and removed allowing clip 3 to compress the tissue. Rod 4 is removed by turning flange 7 to unthread rod. After rod is removed the closure can be tested for leaks by leaving tube 5 in place. When used in the heart, any imperfection in closure will cause blood to come out of tube 5. In such a case the clip 3 can be removed and re-installed as shown later on in this disclosure. One verified, both tube 5 and catheter 1 are removed.



FIG. 4 shows an alternate design for clip 3. The main differences are that the Nitinol wire is bent into a loop 15 to add elasticity and a string 14 is used as a method of holding clip 3 to tube 5. The string can be removed by releasing one end.



FIG. 5 shows another alternate design, preferred when hole is an elongated cut rather than a round hole. Clip 3 is bent to have barbs 11 move in parallel rather than radially, as shown by arrows 13. Clip 3 is placed with the direction of motion 11 perpendicular to long dimension of hole in tissue. Loops 15 are used to add elasticity, as in FIG. 4.



FIG. 6 shows yet another alternate design. The clip 3 can be fabricated from Nitinol sheet, tubing or wire. The preferred way would be laser-cut tubing. FIG. 6-a shows the clip in the relaxed state, FIG. 6-b shows it in the expanded state. This design is suitable when a large number of barbs 111 are desired or for thin˜walled lumens.


The tool used to expand the clip is shown in FIG. 7-a (relaxed state) and FIG. 7-b (expanded state). Rod 4 is equipped with a tapered end 17 used to expand four pivoting arms 16. The sequence of operations is identical to the sequence shown in FIG. 2-a to FIG. 2-f.


It is desirable to be able to reverse the clip installation and, if needed, remove the clip completely via the same catheter used to install it. The current inventions˜, in all its forms, allows this to be done. Referring now to FIG. 8-a to FIG. 8-f: the sequence of partial and full removal is shown.


In FIG. 8-a a dilator 18 is used to expand the opening in the tissue 2 as well as the surrounding tissue, in order to feed tube 5 back into its original position. In FIG. 8-b Rod 4 is inserted in tube 5 and is attached to clip 3 by threading it onto stem 8 of clip 3. Centering ferrule 19 keeps rod 4 aligned with stem 8. Tool 6 in mounted on rod 4 and used to expand slip 3 as shown in FIG. 8-c. Once expanded, the whole assembly of catheter 1 and tube 5 is pushed forward to remove clip 3 from tissue 2, as shown in FIG. 8-d. At this point clip 3 can be re-installed following the steps in FIG. 2-c to FIG. 2-f or removed completely by pulling clip into tube 5 as shown in FIG. 8-e and FIG. 8-f. Once clip 3 is fully inside tube 5, it can be easily pulled out by hand using rod 4. If desired, clip 3 can be re-used immediately by pushing it back into tube 5 to assume the position shown in FIG. 2-a. When the clip style shown in FIG. 4 is used, the retrieval tool is equipped with a small hook to engage with loop 15.


The large elastic range of Nitinol allows full removal without permanently deforming clip 3. Because of this large elasticity, clip 3 can not be manufactured by cold forming. It has to be held in the relaxed position (shown in FIG. 2-b) and heated to about 510 degrees C. for a few minutes. The exact heat treatment details given by the manufacturer of the Nitinol wire have to be carefully followed.


While the invention will work for any dimension of catheter, the preferred range is for catheters with internal diameters of 4 mm to 15 mm. The Nitinol wire diameter is about 0.4 mm for the 4 mm catheter and about 1 mm for the 15 mm catheter. The thread 10 on stem 8 is from M1 for the 4 mm catheter to M4 on the 15 mm catheter, M2 being a typical value. Tube 5 is made from standard stainless hypodermic tubing. All materials to construct the invention are available from Small Parts Inc (www.smallparts.com). While the detailed description showed a specific embodiment of a clip with four barbs, it is obvious that the inventions covers many other configurations of barbs, made from many materials including materials used to make absorbable sutures and other non-metallic clips. It is also obvious that the invention can be configured to be used on the outside rather than the inside wall of the body lumen by sliding a clip shown in FIG. 6-b on the outside of tube 5 and expanding it with the method shown in FIG. 7-b.


This is shown in FIG. 9-a (closed position) and 9-b (open position). Tubes 4 and 5 slide over catheter 1 (but can be inside a larger catheter, not shown). Catheter 1 penetrates the wall of tissue 2 but tube 5 only reaches to the outside of tissue 2. Clip 3 is expanded by arms 16 actuated by taper 17 connected to tube 4. Many alternate expansion mechanisms are well known. After clip 3 is embedded in tissue 2, arms 16 are retracted and tubes 4 and 5 are withdrawn.


The preferred embodiment is shown in FIG. 10 as an “exploded” view. This embodiment used similar clips as the previous embodiments and a slightly more complex installation tool. The main additional advantages of this embodiment are:

    • ability to locate the tool within a lumen without use of monitoring such as x-ray or ultrasound.
    • ability to move the tool within the lumen without damage to the surrounding tissue.


To achieve these and further objectives, the sharp barbs of the clip are covered till ready to be embedded, and the tool provides a positive stop to locate the inside wall of the tissue. In FIG. 10 clip 3 is threaded onto the end of rod 4 via thread 12. A tube 5, made from extruded plastic or metal, has five holes running through it. Four of the holes are used for actuators 20 ending in arms 20′. The fifth hole is for rod 4. Actuators 20 can rotate inside tube 5 approximately 180 degrees, opening and closing clip 3. Actuators 20 engage in corresponding slots 22 in sleeve 21, which is free to rotate over shaft 23 which is clamped to extension 5′ of tube 5. Rod 4 terminates in a section 4′ resting on disc 27. By rotating disc 27 relative to shaft 23, disc 27 is moved axially away from shaft 23. This is achieved via inclined planes 25 and 26 but can be achieved by any one of the well known mechanisms converting rotary to linear motion such as threads, cams etc. When disc 27 is moved axially, it pulls rod 4 with it, causing clip 3 to slide over arms 20′ and expand further. In operation, the tool is held by sleeve 21 and ring 24 is rotated to cause tune 5 to rotate. Since ends of actuators 20 are in slots 22, rotating tube 5 will cause actuators 20 to rotate and expand clip 3. After tool is in position, disc 27 is rotated to pull clip over arms 20′ and embed barbs in tissue, followed by releasing the tool by turning end 4′ of rod 4 to release tool from clip.



FIG. 11 is an enlarged view of both ends of actuators 20. At the end of each arm 20′ there is a recess 28 into which barbed tip 11 of clip 3 fits. This provides a smooth outside surface till the barbs are exposed, and allows the tool to be moved inside a body lumen without damage. For example, when the device is used inside the heart, it is imperative to avoid snagging or damaging any one of the many cords attached to the valves. Clip 3 is attached to rod 4 via a thread 8 at center of clip.


FIG. 12-a is a close-up of the mounted clip in the expanded position while FIG. 12-b shows the retracted position. Each one of arms 20′ is semi-circular, with an outside diameter approximately equal that of tube 5. The holes in tube 5 act as the pivot points for arms. At. the outside edge of each arm 20′ there is a recess 28 to hold tip 11 of clip 3. In the retracted position the arms 20′ fold into a circle, overlapping each other. Clip 3 is still resting in recesses 28 of arms 20′. Clearly the semi-circles 20′ are also bent towards thread 8, in order to allow them to fold partially over each other, in a manner resembling a four-start thread. The amount of axial forward bending is approximately equal to twice the diameter of the wire used to make actuator 20.


By the way of example, tube 4 is extruded plastic with a diameter of 4 to 8 mm. Actuators 20 are made of stainless steel wire having a diameter of 1.2-1.6 mm. Clip 3 is made of 0.3-0.5 mm thick Nitinol sheet or 0.6-0.9 Nitinol wire, as shown in FIG. 3.



FIG. 13 shows the steps in using the device. It is inserted via catheter 1 as shown in FIG. 13-a. Clip 3 is expanded by rotating ring 24. The expanded arms 20′ provide a reference surface to locate the inner wall of tissue 2 without radiological means. Catheter 1 is pulled backwards till arms 20′ stop at tissue 2, as shown in FIG. 13-c. Barbs of clip 3 are exposed by rotating disc 27 as shown in FIG. 13-d, and are embedded into tissue 2. In FIG. 13-e, ring 24 is further turned to fold the arms 20′ into the retracted position while embedding clip 3 deeper in tissue 2, since rotating disc 24 both folds the arms and pulls on rod 4. After clip 3 is fully embedded in tissue rod 4 is turned to release clip 3 from tool 5. As with the other versions of the invention, the operation is reversible by re-attaching tool to clip. Note that ring 24 is turned to activate tool rather than bushing 21, since clip 3 needs to remain stationary relative to tissue 2 once it is embedded.


While the examples used an elastic clip, it is obvious that the invention can be practiced with a non-elastic deformable clip. By the way of example, the clip shown in FIG. 6 can be made of annealed stainless steel. The installation tools have to be slightly modified to be able to apply both tension and compression to the clip. Such a modification is shown in FIG. 7, wherein arm 16 has a bent tip 16′ holding clip 3 from both sides. The clip can be deformed plastically from the shape shown in FIG. 6-a to the shape in FIG. 6-b, embedded in tissue 2 and deformed plastically back to the shape of FIG. 6-a. After that tool 5 is pushed forward to disengage from clip, arms 16 retracted and tool pulled out of catheter 1. The words “clip” and “barb” should be interpreted in a broad sense. Any part left behind in the tissue is considered a clip, regardless of actual shape or material. Any part of the clip used for attachment to the tissue is considered a “barb”, regardless of shape, sharpness, material etc. By the way of example, in the context of this invention, an adhesive patch that can be placed over the hole from the inside and pull the hole to close is considered a clip and the adhesive is considered a barb.

Claims
  • 1. A medical device, comprising: an elongated tool having at least one actuator, at least a portion of the at least one actuator proximate a distal end of the elongated tool and receivable through an opening in tissue from a first side of the tissue to a second side of the tissue, the at least one actuator operable from a proximate end of the elongated tool to embed a plurality of tissue piercing tips of a clip from the second side of the tissue to seal the opening in the tissue, each of the plurality of tissue piercing tips of the clip protected after the plurality of tissue piercing tips have been expanded to encompass the opening in the tissue, and the tissue piercing tips unprotected as part of embedding the tissue piercing tips in the tissue.
  • 2. The medical device of claim 1 wherein the elongated tool further comprises: an elongated tube having at least one longitudinal passageway extending therethrough; anda rod received through the passageway of the elongated flexible tube for rotational and translational movement with respect thereto, the rod having a distal end including an engagement member operable to selectively physically engage and disengage at least a portion of the clip.
  • 3. The medical device of claim 1 wherein the elongated tube has a plurality of longitudinal passageways extending therethrough that each receive a respective one of the plurality of actuators for rotation therein, in addition to the longitudinal passageway that received the rod.
  • 4. The medical device of claim 2 wherein the elongated tool further comprises: a sleeve received about the rod to allow rotation and translation of the rod through the sleeve, the sleeve having a plurality of slots, each of the slots of the sleeve sized and dimensioned to engage a respective one of the at least one actuator to selectively rotate the at least one actuator.
  • 5. The medical device of claim 4 wherein rotation of the actuators rotates the piercing tips of the clip into an overlapping relation with adjacent ones of the piercing tips in a retracted configuration.
  • 6. The medical device of claim 5 wherein the elongated tool further comprises: a tube extension physically coupled to the tube to move therewith;a shaft physically coupled to the tube extension to move therewith;a ring physically coupled to the shaft to move therewith; anda disc physically coupled to the rod to move therewith, the disc further coupled to transform a rotational motion of the disc into a translational motion of the shaft.
  • 7. The medical device of claim 6 wherein at least one of the disc and the ring includes an inclined surface that transforms the rotational motion of the disc into the translational motion of the shaft.
  • 8. The medical device of claim 6 wherein the proximate end of the rod includes a knob portion to the rod to be grasped and rotated.
  • 9. The medical device of claim 2, further comprising: the clip having the plurality of resilient tissue piercing tips, the clip further including a stem from which the resilient tissue piercing tips extend, the stem including an engagement member that is complementary to the engagement member of the rod.
  • 10. The medical device of claim 9 wherein the engagement member of the stem is a threaded portion and the engagement member of the rod is a threaded portion.
  • 11. The medical device of claim 9 wherein the stem and the tissue piercing comprise a single unitary structure.
  • 12. The medical device of claim 9 wherein the plurality of tissue piercing tips of the clip are comprised of Nitinol.
  • 13. The medical device of claim 1 wherein each of the at least one actuator has at least one recess to protectively receive a respective one of the tissue piercing tips of the clip prior to embedding of the clip in the tissue.
  • 14. The medical device of claim 2 wherein the tissue piercing tips of the clip embed in the tissue from the second side in response to the rod being pulled.
  • 15. The medical device of claim 9 wherein the engagement member of the rod is configured to selectively detached the clip therefrom after the clip has been embedded in the tissue from the second side and to reattach to the clip thereto after the clip has been detached therefrom.
  • 16. The medical device of claim 15 wherein the tissue piercing tips of the clip are removed from the second side of the tissue in response to the rod being pushed.
  • 17. The medical device of claim 15 wherein the at least one actuator protectively receives the tissue piercing tips of the clip after the clip has been reattached to the engagement member of the rod.
  • 18. The medical device of claim 1 wherein the at least one actuator includes at least three actuators that are configured to provide a tactile feedback through the elongated tool in response to physically contacting the second side of the tissue when the at least three actuators are positioned to embed the tissue piercing tips of the clip in the tissue from the second side.
  • 19. A medical device, comprising: an elongated tool having a proximate end and a distal end, at least the distal end receivable internally in a body; andat least one actuator having at least one arm located at least proximate the distal end of the elongated tool, which at least one arm protectively retains a respective one of each of a plurality of tissue piercing tips of a clip, used to close a hole in the tissue, until the tissue piercing tips start to pierce the tissue at locations encompassing the hole in the tissue.
  • 20. The medical device of claim 19 wherein at least a portion of the at least one actuator is receivable through the hole to be closed in tissue from a first side of the tissue to a second side of the tissue, the at least one arm of the actuator configured to hold the clip such that the tissue piercing tips face the tissue from the second side when the at least a portion of the at least one actuator is received through the opening from the first side.
  • 21. The medical device of claim 19 wherein the elongated tool comprises an elongated tube having at least one longitudinal passageway extending therethrough and the at least one actuator includes a plurality of actuators each having a respective one of the at least one arm.
Parent Case Info

This application is a CIP of Ser. No. 11/357,011 filed on Feb. 21, 2006 and ABN.

US Referenced Citations (223)
Number Name Date Kind
4114202 Roy et al. Sep 1978 A
4164046 Cooley Aug 1979 A
4240441 Khalil Dec 1980 A
4263680 Reul et al. Apr 1981 A
4490859 Black et al. Jan 1985 A
4543090 McCoy Sep 1985 A
4794912 Lia Jan 1989 A
4850957 Summers Jul 1989 A
4890602 Hake Jan 1990 A
4890612 Kensey Jan 1990 A
4893613 Hake Jan 1990 A
4921499 Hoffman et al. May 1990 A
5021059 Kensey et al. Jun 1991 A
5047047 Yoon Sep 1991 A
5100418 Yoon et al. Mar 1992 A
5104399 Lazarus Apr 1992 A
5122137 Lennox Jun 1992 A
5156609 Nakao et al. Oct 1992 A
5192314 Daskalakis Mar 1993 A
5258000 Gianturco Nov 1993 A
5312435 Nash May 1994 A
5320632 Heidmueller Jun 1994 A
5364408 Gordon Nov 1994 A
5366443 Eggers et al. Nov 1994 A
5366459 Yoon Nov 1994 A
5368601 Sauer et al. Nov 1994 A
5374275 Bradley et al. Dec 1994 A
5450860 O'Connor Sep 1995 A
5478353 Yoon Dec 1995 A
5531760 Alwafaie Jul 1996 A
5593424 Northrup, III Jan 1997 A
5713896 Nardella Feb 1998 A
5716397 Myers Feb 1998 A
5720726 Marcadis et al. Feb 1998 A
5728114 Evans et al. Mar 1998 A
5782861 Cragg et al. Jul 1998 A
5800495 Machek et al. Sep 1998 A
5824066 Gross Oct 1998 A
5836990 Li Nov 1998 A
5865791 Whayne et al. Feb 1999 A
5919207 Taheri Jul 1999 A
5961440 Schweich, Jr. et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5984950 Cragg et al. Nov 1999 A
6001069 Tachibana et al. Dec 1999 A
6024096 Buckberg Feb 2000 A
6104944 Martinelli Aug 2000 A
6113610 Poncet Sep 2000 A
6132438 Fleischman et al. Oct 2000 A
6203554 Roberts Mar 2001 B1
6210432 Solem et al. Apr 2001 B1
6221103 Melvin Apr 2001 B1
6221104 Buckberg et al. Apr 2001 B1
6241747 Ruff Jun 2001 B1
6248124 Pedros et al. Jun 2001 B1
6258258 Sartori et al. Jul 2001 B1
6287321 Jang Sep 2001 B1
6304769 Arenson et al. Oct 2001 B1
6306135 Ellman et al. Oct 2001 B1
6332864 Schweich, Jr. et al. Dec 2001 B1
6346105 Tu et al. Feb 2002 B1
6358258 Arcia et al. Mar 2002 B1
6360749 Jayaraman Mar 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6391048 Ginn et al. May 2002 B1
6391054 Carpentier et al. May 2002 B2
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6409760 Melvin Jun 2002 B1
6416459 Haindl Jul 2002 B1
6436052 Nikolic et al. Aug 2002 B1
6450171 Buckberg et al. Sep 2002 B1
6475223 Werp et al. Nov 2002 B1
6485489 Teirstein et al. Nov 2002 B2
6506210 Kanner Jan 2003 B1
6537198 Vidlund et al. Mar 2003 B1
6537314 Langberg et al. Mar 2003 B2
6540670 Hirata et al. Apr 2003 B1
6551312 Zhang et al. Apr 2003 B2
6569160 Goldin et al. May 2003 B1
6569198 Wilson et al. May 2003 B1
6575971 Hauck et al. Jun 2003 B2
6589208 Ewers et al. Jul 2003 B2
6626930 Allen et al. Sep 2003 B1
6632238 Ginn et al. Oct 2003 B2
6662034 Segner et al. Dec 2003 B2
6676685 Pedros et al. Jan 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726704 Loshakove et al. Apr 2004 B1
6726716 Marquez Apr 2004 B2
6743241 Kerr Jun 2004 B2
6749622 McGuckin et al. Jun 2004 B2
6760616 Hoey et al. Jul 2004 B2
6780197 Roe et al. Aug 2004 B2
6797001 Mathis et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6852076 Nikolic et al. Feb 2005 B2
6855143 Davison et al. Feb 2005 B2
6890353 Cohn et al. May 2005 B2
6899674 Viebach et al. May 2005 B2
6908478 Alferness et al. Jun 2005 B2
6949122 Adams et al. Sep 2005 B2
6960229 Mathis et al. Nov 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6994093 Murphy et al. Feb 2006 B2
6997951 Solem et al. Feb 2006 B2
7025776 Houser et al. Apr 2006 B1
7050848 Hoey et al. May 2006 B2
7052487 Cohn et al. May 2006 B2
7144363 Pai et al. Dec 2006 B2
7177677 Kaula et al. Feb 2007 B2
7186210 Feld et al. Mar 2007 B2
7189202 Lau et al. Mar 2007 B2
7279007 Nikolic et al. Oct 2007 B2
7300435 Wham et al. Nov 2007 B2
7303526 Sharkey et al. Dec 2007 B2
7507252 Lashinski et al. Mar 2009 B2
20010003158 Kensey et al. Jun 2001 A1
20010005787 Oz et al. Jun 2001 A1
20010018611 Solem et al. Aug 2001 A1
20010020126 Swanson et al. Sep 2001 A1
20010044568 Langberg et al. Nov 2001 A1
20020016628 Langberg et al. Feb 2002 A1
20020026092 Buckberg et al. Feb 2002 A1
20020055775 Carpentier et al. May 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020087173 Alferness et al. Jul 2002 A1
20020115944 Mendes et al. Aug 2002 A1
20020161394 Macoviak et al. Oct 2002 A1
20020169359 McCarthy et al. Nov 2002 A1
20020169360 Taylor et al. Nov 2002 A1
20020169504 Alferness et al. Nov 2002 A1
20020183836 Liddicoat et al. Dec 2002 A1
20020183841 Cohn et al. Dec 2002 A1
20020188170 Santamore et al. Dec 2002 A1
20020198603 Buckberg et al. Dec 2002 A1
20030045896 Murphy et al. Mar 2003 A1
20030050682 Sharkey et al. Mar 2003 A1
20030050685 Nikolic et al. Mar 2003 A1
20030069570 Witzel et al. Apr 2003 A1
20030069636 Solem et al. Apr 2003 A1
20030078465 Pai et al. Apr 2003 A1
20030078671 Lesniak et al. Apr 2003 A1
20030105384 Sharkey et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030109770 Sharkey et al. Jun 2003 A1
20030149333 Alferness Aug 2003 A1
20030163191 Nikolic et al. Aug 2003 A1
20030220667 van der Burg et al. Nov 2003 A1
20030229395 Cox Dec 2003 A1
20040002626 Feld et al. Jan 2004 A1
20040054279 Hanley Mar 2004 A1
20040133273 Cox Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138744 Lashinski et al. Jul 2004 A1
20040153146 Lashinski et al. Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040215232 Belhe et al. Oct 2004 A1
20040243170 Suresh et al. Dec 2004 A1
20040249408 Murphy et al. Dec 2004 A1
20040249453 Cartledge et al. Dec 2004 A1
20040267358 Reitan Dec 2004 A1
20050004668 Aklog et al. Jan 2005 A1
20050015109 Lichtenstein Jan 2005 A1
20050054938 Wehman et al. Mar 2005 A1
20050055089 Macoviak et al. Mar 2005 A1
20050060030 Lashinski et al. Mar 2005 A1
20050064665 Han Mar 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050096047 Haberman et al. May 2005 A1
20050107723 Wehman et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050125030 Forsberg Jun 2005 A1
20050137700 Spence et al. Jun 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050154252 Sharkey et al. Jul 2005 A1
20050182365 Hennemann et al. Aug 2005 A1
20050187620 Pai et al. Aug 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050197716 Sharkey et al. Sep 2005 A1
20050209636 Widomski et al. Sep 2005 A1
20050216052 Mazzocchi et al. Sep 2005 A1
20050216054 Widomski et al. Sep 2005 A1
20050240249 Tu et al. Oct 2005 A1
20050251116 Steinke et al. Nov 2005 A1
20050267574 Cohn et al. Dec 2005 A1
20060014998 Sharkey et al. Jan 2006 A1
20060015002 Moaddeb et al. Jan 2006 A1
20060015003 Moaddes et al. Jan 2006 A1
20060015038 Weymarn-Scharli Jan 2006 A1
20060025800 Suresh Feb 2006 A1
20060030881 Sharkey et al. Feb 2006 A1
20060135968 Schaller Jun 2006 A1
20060135970 Schaller Jun 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060199995 Vijay Sep 2006 A1
20060229491 Sharkey et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060241334 Dubi et al. Oct 2006 A1
20060264980 Khairkhahan et al. Nov 2006 A1
20060276683 Feld et al. Dec 2006 A1
20060281965 Khairkhahan et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20070016068 Grunwald et al. Jan 2007 A1
20070118215 Moaddeb May 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070198058 Gelbart et al. Aug 2007 A1
20070213578 Khairkhahan et al. Sep 2007 A1
20070213815 Khairkhahan et al. Sep 2007 A1
20070219460 Goldenberg Sep 2007 A1
20070250160 Rafiee Oct 2007 A1
20070270688 Gelbart et al. Nov 2007 A1
20080004643 To et al. Jan 2008 A1
20080004697 Lichtenstein et al. Jan 2008 A1
20080045778 Lichtenstein et al. Feb 2008 A1
20080071298 Khairkhahan et al. Mar 2008 A1
20080086164 Rowe Apr 2008 A1
Foreign Referenced Citations (15)
Number Date Country
9015582 Dec 1990 WO
0178625 Oct 2001 WO
03015611 Feb 2003 WO
03077800 Sep 2003 WO
2004012629 Feb 2004 WO
2004047679 Jun 2004 WO
2004084746 Oct 2004 WO
2004100803 Nov 2004 WO
2005070330 Aug 2005 WO
2005102181 Nov 2005 WO
2006017809 Feb 2006 WO
2006135747 Dec 2006 WO
2006135749 Dec 2006 WO
2007021647 Feb 2007 WO
2007115390 Oct 2007 WO
Related Publications (1)
Number Date Country
20070198058 A1 Aug 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11357011 Feb 2006 US
Child 11436585 US