The present invention refers to a burner for operating a premix combustion system with one or more fuels. It also refers to a method for operating such a burner.
As a result of the almost global aim with regard to reducing greenhouse gases in the atmosphere, not least established in the so-called Kyoto Protocol, the emission of greenhouse gases which is to be expected in the year 2010 is to be reduced to the same level as in the year 1990. For implementing this plan, greater efforts are required especially for reducing the contribution of anthropogenically induced CO2 releases. Approximately a third of the CO2 which is released into the atmosphere by man is to be recycled for power generation, in which in most cases fossil fuels are combusted in power plants for electric power generation. Especially as a result of applying modern technologies, and also as a result of additional political framework conditions, in the power-generating sector a significant saving potential can be seen for avoiding a further increase of CO2 emissions.
An as-known per se and technically controllable way of reducing the emission of CO2 in combustion plants exists in the extraction of hydrocarbon from the fuels which are obtained for combustion before introducing the fuel into the combustion chamber. This requires corresponding fuel pretreatments, such as the partial oxidation of the fuel with oxygen and/or pretreatment of the fuel with steam. Fuels which are pretreated in such a way in most cases have a large portion of H2 and CO, and, depending upon mixing ratios, have calorific values which as a rule lie below those of native natural gas. Depending upon their calorific value, gases which are synthetically produced in such a way are referred to as MBTU or LBTU gases which are not readily suitable for use in conventional burners which are designed for combusting gases, such as natural gas, as can be gathered for example from EP 0 321 809 B1, EP 0 780 629 A2, WO 93/17279 and also from EP 1 070 915 A1. These publications all form an integrating element of the present description. In all the previous publications, burners of the fuel premixing type are described, in which a swirled flow consisting of combustion air and admixed fuel, which conically widens in the flow direction, is produced in each case, which flow, after exiting from the burner, as far as possible after achieving a homogeneous air-fuel mixture, becomes unstable in the flow direction as a result of the increasing swirl and changes into an annular swirled flow with backflow in the core. Purely according to the device, the possibility also exists of providing a cylindrical or virtually cylindrical tube in which the air flows via longitudinal slots into the inside of the tube, wherein for maximizing the intended premixing the desired swirl formation of the air is provided with a fuel, which is injected at a suitable point, by means of a conically extending inner body, wherein this inner body features the conical tapering in the flow direction, as results for example from EP-0 777 081 A1. Also, this type of construction forms an integrating element of the present description.
Depending upon the burner concept, and also in dependence upon the burner capacity, the swirled flow of liquid and/or gaseous fuel, which is formed inside the premix burner, is fed for forming a fuel-air mixture which is as homogeneous as possible. If it is necessary, however, as previously mentioned, to use synthetically processed gaseous fuels alternatively to, or in combination with, the combusting of conventional fuel types for the purpose of reduced emission of pollutants, especially emission of CO2, then special requirements arise for the constructional design of conventional premix burner systems. Therefore, for feeding into burner systems synthesis gases require a multiple fuel volumetric flow in comparison to comparable burners which are operated with natural gas so that considerably different flow impulse ratios result. On account of the high portion of hydrogen in the synthesis gas and the low ignition temperature and high flame velocity of the hydrogen associated therewith, a high reaction tendency of the fuel exists which leads to an increased risk of flashback. In order to avoid this, it is necessary to reduce, as much as possible, the average residence time of ignitable fuel-air mixture inside the burner.
In WO 2006/058843 A1, a method and also a burner for combusting gaseous fuel, liquid fuel and also fuel which contains hydrogen, or consists of hydrogen, subsequently referred to as synthesis gas, are described. In this case, a double-cone burner with a mixing section connected downstream according to EP 0 780 629 A2 is used, which is schematically shown in
By means of a transition section 6, in which provision is made for the flow means 7 which stabilize the swirled flow, the fuel-air mixture, which is formed inside the swirl generator 1, in the form of a swirled flow reaches a mixer tube 8 along which a completely homogeneous intermixing of the formed fuel-air mixture is carried out, before the ignitable fuel-air mixture is ignited inside a combustion chamber B which is connected downstream to the mixer tube 8. On account of a varying increase of flow cross section in the transition from the mixer tube 8 to the combustion chamber B, the swirled flow of the intermixed fuel-air mixture breaks down, forming a backflow zone in the form of a backflow bubble RB in which a spatially stable flame front is established.
In the region of the mixer tube 8, the axial flow velocity distribution of the swirled flow, which propagates axially along the mixer tube 8, is shown in
The disclosure is directed to a burner for operating a premix combustion system with one or more fuels. The burner includes a swirl generator on a head side, a feeder for feeding a fuel and a feeder for introducing combustion air into the swirl generator. A first feeder for feeding a liquid fuel and/or a gaseous fuel along a burner axis and a second feeder for feeding liquid fuel and/or gaseous fuel along air inlet slots which are tangentially delimited by the swirl generator are provided. Downstream of the swirl generator the burner has a directly connected transition section and a mixer tube which is connected downstream to the transition section, the mixer tube, with a changeable flow cross-sectional transition, leading into a combustion chamber. A third feeder is provided along the transition section and/or downstream of the transition section for feeding the fuel which contains hydrogen, or consists of hydrogen. A fourth feeder is also provided for feeding the fuel which contains hydrogen, or consists of hydrogen, and/or a further gaseous fuel.
The disclosure is directed, in another embodiment, to a method for operating a burner for a premix combustion system with one or more fuels. The burner includes a swirl generator on a head side, with a feeder for feeding a fuel and a feeder for introducing combustion air into the swirl generator. The method includes providing a first feeder to ensure the feed of a liquid fuel and/or of a gaseous fuel along a burner axis (A). The method also includes providing a second feeder to ensure the feed of liquid fuel and/or of gaseous fuel along air inlet slots which are and/or a further gaseous fuel.
The invention is exemplarily described below, without limitation of the general inventive idea, based on exemplary embodiments with reference to the drawings. In the drawings:
a, b show longitudinal sections through a premix burner according to the prior art,
The invention is based on the object of developing a device for combusting fuel which contains hydrogen, or consists of hydrogen, with a burner of the previously referred to type, in a way in which improved combustion results are to be obtained with regard to reduced nitrogen oxide emission values, but especially also with regard to a considerably reduced risk of flashback. In particular, it shall be possible to make the premix burner accessible to an efficient burner operation which enables the combustion both of natural gas, crude oil and of synthesis gases, i.e. fuels which contain hydrogen or consist of hydrogen.
The achieving of the object upon which the invention is based is disclosed in claims 1 and 9. Features which advantageously develop the inventive idea are the subject of the dependent claims and are also to be gathered from the further description with reference to the exemplary embodiments. Attention should expressly be made to the fact that the content of all the claims counts towards the overall disclosure content of the description.
According to the solution, in a device for combusting fuel which contains hydrogen, or consists of hydrogen, subsequently referred to as synthesis gas, along the transition section, provision is made for a third feeder for feeding synthesis gas and also a fourth feeder for selective feeding of the synthesis gas or of the gaseous fuel, preferably in the form of natural gas.
By providing two separate feed possibilities of both synthesis gas and natural gas along the transition section between the swirl generator and the mixer tube, an exceedingly high degree of flexibility is opened up for the burner concept of a premix burner with regard to the operation with different fuels and fuel combinations. A premix burner which is modified in such a way according to the solution can be operated individually in a staged manner with different fuel feeds, not least in dependence upon the burner load, wherein in a particularly advantageous manner the inherently critical characteristics with regard to combusting synthesis gases can be advantageously utilized by the directed feed along the transition section. In this way, a feed of the synthesis gas, which is as close to the wall as possible, in the region of the transition section contributes towards increasing the flow velocity profile close to the wall, especially in the region of the mixer tube, and towards decisively flattening the considerable increase of flow velocity along the burner axis which is shown in
In the same way, it is necessary to carry out the feed of natural gas inside the transition section, i.e. the flow direction and the flow impulse from the discharge openings, which are provided for the feed of natural gas, into the region of the transition section are adapted to the local flow conditions of the swirled flow which is formed inside the burner without unduly irritating these in the process. Therefore, the feed of natural gas is also carried out with a radial component relative to the burner axis in order to maintain an intermixing of the fed natural gas, which is as effective and homogeneous as possible, with the axially propagating swirled flow.
On account of the different physical properties with regard to density, calorific value characteristics and ignition behavior, the discharge openings, through which the fuel which features the synthesis gas, i.e. the hydrogen, is discharged, are to be dimensioned larger than the discharge openings through which the natural gas is customarily discharged in the region of the transition section. Also, the radial component with which the respective fuels are fed into the inside of the burner in the region of the transition section is to be individually set in the light of an intermixing which is as quick and efficient as possible and at the same time taking into consideration an irritation which is as insignificant as possible of the swirled flow which propagates inside the burner. With regard to a flow irritation of the swirled flow which is as little as possible, a radial angle, which is included by the fuel delivery direction of the synthesis gas and the burner axis, is to be selected larger than that radial angle with which the natural gas is discharged in the region of the transition section, particularly as the natural gas has a higher flow impulse and is able to more noticeably impair the swirled flow.
A preferred embodiment variant makes provision in each case for discharge openings, which are arranged in a circularly equally distributed manner in the transition section, through which openings the synthesis gas is discharged into the inside of the burner. All the discharge openings are connected to a common reservoir volume which preferably encompasses the transition section in a circular manner and is fed with synthesis gas via a supply line. Separately to this, provision is made for a further multiplicity of discharge openings along the transition section, also circularly equally distributed in a similar manner, via which the gaseous fuel, preferably natural gas, is delivered. Also, the second group of discharge openings is connected in each case with a standardized reservoir volume which is fed with natural gas via a separate supply line. Along the respective supply lines provision is preferably made for restrictor valves via which a metered and controlled respective fuel feed via the corresponding discharge openings is possible.
An especially preferred embodiment makes provision along the supply line, via which natural gas is fed in the normal case, for a three-way valve which enables the possibility of an alternative feed either of natural gas or of synthesis gas. By such a three-way valve it is therefore possible to discharge synthesis gases via all the discharge openings which are provided inside the transition section.
In order to prevent the respective fuel feeds being mutually non-sustainably influenced, for example by natural gas penetrating into the region of the discharge openings through which synthesis gases are discharged, or vice versa, in the case of a mixed operation, i.e. in the case of simultaneous feed both of synthesis gas and of natural gas, the discharge openings of the respective fuel types are arranged in a circularly offset manner in relation to each other. The discharge openings, through which natural gas is discharged, can preferably be arranged downstream of the discharge openings through which synthesis gas is discharged. Further details with regard to arrangement and design of a transition section which is formed according to the solution are to be gathered from the further description with reference to the exemplary embodiments.
In
It is apparent from the longitudinal sectional view according to
In contrast to the longitudinal sectional view which is shown in
According to the cross-sectional view through the transition section 6 which is shown in
For better understanding, the feed passages 10″″ for the feed of natural gas are likewise also drawn in in the cross-sectional view according to
In
With reference to the flow regions of the respectively fed fuels BH2 and also BEG, which can be gathered from
The measures according to the solution help the burner arrangement towards the following advantages:
The mode of operation of a staged feed of synthesis gas inside the region of the transition section, this being the case if the two fuel feeders which are provided along the transition section are controlled and supplied with synthesis gas in a metered manner, opens up the possibility of adjusting the fuel ratio between two settings with regard to an optimization in respect to emission and combustion chamber pulsations which occur, and also in respect to flashback characteristics.
The measure according to the solution, on account of its high integration capability, solves a problem of space, which always exists in burner construction, by the natural gas feeder also being able to be used for the extended feed of synthesis gas in addition to using it for feeding natural gas.
The risk of flashback can be appreciably reduced by the measure according to the invention, particularly as a fuel accumulation both close to the wall and along the burner axis can be avoided by corresponding adjustment of the fuel inlet characteristics.
As a result of feeding synthesis with high flow velocity along the wall regions the risk of flashback can also be reduced.
In addition, feeding synthesis gas along the transition section helps in reducing nitrogen oxide emissions, particularly as the synthesis gas, on account of its lighter weight, is homogeneously distributed comparatively quickly along the entire flow cross section counter to the centrifugal forces which act in the swirled flow.
Since the transition section is formed as a simple and robust component, fuel feed passages therein, and also fuel reservoirs which are to be connected thereto, can be easily and simply realized.
The burner arrangement according to the solution offers a maximum of variability with regard to operation of a burner with different fuel types and also their combinations.
As a result of a clever arrangement of the respective discharge openings along the transition section, a corresponding purging of the discharge openings with air can be dispensed with.
As a result of feeding natural gas and/or synthesis gas along the transition section, shorter residence times especially of hydrogen inside the burner are incorporated. As a result of this, the burner can be operated more reliably and the risk of flashback is considerably reduced because of this.
Number | Date | Country | Kind |
---|---|---|---|
1837/07 | Nov 2007 | CH | national |
This application is a continuation of International Application No. PCT/EP2008/065107 filed Nov. 7, 2008, which claims priority to Swiss Patent Application No. 01837/07, filed Nov. 27, 2007, the entire contents of all of which are incorporated by reference as if fully set forth.
Number | Name | Date | Kind |
---|---|---|---|
2647568 | Sloan | Aug 1953 | A |
4604050 | Henriksson | Aug 1986 | A |
4932861 | Keller et al. | Jun 1990 | A |
5375995 | Dobbeling et al. | Dec 1994 | A |
5482457 | Aigner et al. | Jan 1996 | A |
5588826 | Dobbeling et al. | Dec 1996 | A |
5626017 | Sattelmayer | May 1997 | A |
5645410 | Brostmeyer | Jul 1997 | A |
5735687 | Knopfel et al. | Apr 1998 | A |
5791894 | Dobbeling et al. | Aug 1998 | A |
5833451 | McMillan | Nov 1998 | A |
5895211 | McMillan | Apr 1999 | A |
5937632 | Dobbeling et al. | Aug 1999 | A |
6126439 | Knopfel et al. | Oct 2000 | A |
6152726 | Ruck et al. | Nov 2000 | A |
6331109 | Paikert et al. | Dec 2001 | B1 |
6558154 | Eroglu et al. | May 2003 | B2 |
7003957 | Griffin et al. | Feb 2006 | B2 |
7137809 | Bueche et al. | Nov 2006 | B2 |
7140183 | Ruck et al. | Nov 2006 | B2 |
7445445 | Eroglu et al. | Nov 2008 | B2 |
20070099142 | Flohr et al. | May 2007 | A1 |
20070259296 | Knoepfel | Nov 2007 | A1 |
20080280239 | Carroni et al. | Nov 2008 | A1 |
20090123882 | Eroglu et al. | May 2009 | A1 |
Number | Date | Country |
---|---|---|
4409918 | Sep 1995 | DE |
10026122 | Nov 2001 | DE |
0321809 | Jun 1989 | EP |
625673 | Nov 1994 | EP |
0777081 | Jun 1997 | EP |
0780629 | Jun 1997 | EP |
0833105 | Apr 1998 | EP |
1070915 | Jan 2001 | EP |
2345958 | Jul 2000 | GB |
09327641 | Dec 1997 | JP |
9317279 | Sep 1993 | WO |
WO 3036167 | May 2003 | WO |
2005121648 | Dec 2005 | WO |
2006058843 | Jun 2006 | WO |
2006069861 | Jul 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20100266970 A1 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2008/065107 | Nov 2008 | US |
Child | 12785253 | US |