1. Field of the Invention
Various embodiments disclosed herein pertain to insertion of intraocular lenses into the eye of a patient, as well as methods and devices for preparing an intraocular lens for insertion, and for achieving the insertion itself.
2. Description of the Related Art
Artificial intraocular lenses are often implanted to replace or supplement the natural crystalline lens. Such a lens may be implanted where the natural lens has developed cataracts or has lost elasticity to create a condition of presbyopia. Implantation devices have been developed to roll or fold an intraocular lens, and/or assist in implanting a rolled or folded lens through a small incision in the patient's eye. However, these known implantation devices suffer from various drawbacks, many of which are addressed by certain embodiments disclosed herein.
One aspect of the invention is an apparatus for compacting an intraocular lens. The apparatus comprises a lens compactor having a first configuration for retaining the intraocular lens in a substantially unstressed condition and a second configuration in which the compactor stresses the lens into an at least partially compacted condition without advancing the lens along an injection axis of the compactor. The compactor accomplishes this by applying a compacting force in a direction generally orthogonal to the optical axis of the lens. The compactor is responsive to a compactor actuator that is movable by a user to change the compactor from the first configuration to the second configuration.
Another aspect of the invention is a method of delivering an intraocular lens into an eye. The method comprises providing an intraocular lens in a housing which has been sterilized, and ejecting the intraocular lens into the eye without opening the housing. In one embodiment, the intraocular lens may comprise an accommodating intraocular lens.
Another aspect of the invention is a method of compacting an accommodating intraocular lens. The method comprises providing the accommodating intraocular lens within a chamber in an uncompacted state, and compacting the accommodating intraocular lens by relatively moving portions of walls of the chamber to alter the shape of the chamber.
Another aspect of the invention is a method of manufacturing an apparatus for delivering an intraocular lens. The method comprises providing a housing and a lens compactor within the housing, and positioning an intraocular lens within the housing such that the lens is compacted upon actuation of the lens compactor. The method further comprises assembling an injector which includes the housing and the lens compactor, and sterilizing the injector, including the housing, the lens compactor and the intraocular lens, together as a single unit.
Another aspect of the invention is an apparatus for manipulating an accommodating intraocular lens having first and second viewing elements with respective optical axes that are substantially aligned. The apparatus comprises a lens compactor having first and second surfaces for engaging the first and second viewing elements. The surfaces are moveable relative to one another to relatively move the viewing elements such that the optical axes are displaced relative to each other.
Another aspect of the invention is an apparatus for manipulating an accommodating intraocular lens having first and second viewing elements with respective optical axes that are substantially aligned. The apparatus comprises a lens compactor having first and second surfaces for engaging the first and second viewing elements. The surfaces are moveable relative to one another to relatively move the viewing elements such that the optical axes are displaced relative to each other. The compactor further comprises a moveable first compacting element which applies force to the viewing elements while the optical axes are displaced such that the viewing elements are compacted against an opposing second compacting element.
Another aspect of the invention is an apparatus comprising a sterile package and an injector disposed within the package. The injector comprises a housing, a lens compactor disposed within the housing, and an intraocular lens disposed within the lens compactor and positioned such the lens is compacted upon actuation of the lens compactor.
Another aspect of the invention is an apparatus for delivering an intraocular lens. The apparatus comprises a lens compactor. The intraocular lens is disposed within the lens compactor and positioned such the lens is compacted upon actuation of the lens compactor. The apparatus further comprises a delivery probe in communication with the lens compactor. The delivery probe defines a delivery axis. The lens compactor comprises a compacting element which contacts the intraocular lens and is moveable in a first direction generally parallel to the injection axis and in a second direction generally orthogonal to the injection axis.
All of these aspects and embodiments are intended to be within the scope of the invention herein disclosed. These and other embodiments of the invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures, the invention not being limited to any particular preferred embodiment(s) disclosed.
Having thus summarized the general nature of the invention, certain preferred embodiments and modifications thereof will become apparent to those skilled in the art from the detailed description herein having reference to the figures that follow, of which:
Like the single-lens IOL 100, the multiple-lens IOL 120 has an optical axis, transverse axis and lateral axis, arranged depicted in
Various types of multiple-lens IOLs are disclosed in U.S. Patent Application Publication No. US 2002/0107568 A1, published on Aug. 8, 2002, titled ACCOMMODATING INTRAOCULAR LENS SYSTEM, and U.S. Patent Application Publication No. US 2003/0074060 A1, published on Apr. 17, 2003, titled METHOD OF PREPARING AN INTRAOCULAR LENS FOR IMPLANTATION. The entire contents of the above-mentioned publications are hereby incorporated by reference herein and made a part of this specification.
Intraocular lenses are typically implanted (after any removal of the natural lens) by first folding or rolling the IOL. The folded/rolled IOL is then inserted into the desired location in the eye by passing the IOL through one or more incisions made in the cornea, sclera and/or ciliary capsule. Once in place, the natural resilience of the IOL causes it to return, either partially or completely, to its original unrolled/unfolded state, whereupon the IOL can function as desired to improve the patient's vision.
With reference now to
As best seen in
Referring again to
In yet another embodiment, the delivery lumen 208 can have a generally oval cross-section (taken orthogonal to the delivery axis), with the channels 214, 244 shaped to have a similarly oval cross-section upon their convergence when the upper lens compactor 240 is in the second compacted position (see below).
The upper lens compactor 240 preferably further comprises first and second upper bearing surfaces 260, 262 disposed on respective opposite sides of the upper engagement face 242 and upper insertion channel 244, as well as a third upper bearing surface 264, which extends forward from the second upper bearing surface 262. The first, second and third upper bearing surfaces 260, 262, 264 preferably comprise generally flat surfaces which extend longitudinally, the first and second upper bearing surfaces 260, 262 being sloped with respect to the upper engagement face 242 and/or delivery axis A-A. The first and second upper bearing surfaces 260, 262 are (at least initially) slidably disposed against similarly-sloped first and second lower bearing surfaces 266, 268 formed on support ribs 270, 272 of the lower housing 204.
With reference now to
The upper and lower bearing surfaces 262, 264, 266, 268, and the compactor actuator 280 and compactor guide 282, coact to permit the upper lens compactor 240 to advance forward and downward from a home position (see
Note that the IOL 120 is considered to be substantially unstressed even when the faces 212, 242 compress the viewing elements 122, 124 together somewhat, thereby slightly stressing the biasing members 126, 128. Accordingly, the separation between the faces 212, 242 may be chosen to slightly compress the viewing elements 122, 124 together when the upper lens compactor 240 is in the home position. The IOL 120 is also considered to be substantially unstressed when the faces 212, 242 draw the viewing elements 122, 124 apart somewhat, thereby slightly stressing the biasing members 126, 128. The separation between the faces 212, 242 may therefore be chosen to draw the viewing elements 122, 124 slightly apart when the upper lens compactor 240 is in the home position. The IOL 120 is also considered to be substantially unstressed when the outer faces or other portions of one or both of the viewing elements 122, 124 are deformed or stressed due to adhesion stresses between the faces 212, 242 and the viewing elements (which stresses can arise where the viewing elements 122, 124 comprise optics), as such stresses are relatively minor when viewed in the context of the entire IOL 120.
In the depicted embodiment, the engagement faces 212, 242 comprise generally flat surfaces constructed from a material to which the outer faces of the viewing elements 122, 124 will tend to self-adhere. For example, acetal (sold as DELRIN™) may be employed to construct one or both of the faces 212, 242; this material displays good adhesion properties with many of the materials (e.g., silicone, polyurethanes, hydrogels, acrylics, PVA, styrene-based copolymers) typically employed to construct IOLs. Of course, any other material having good adhesion properties with the contacted portions of the IOL may be employed to form the engagement faces 212, 242.
From the home position depicted in
As best seen in
From the first compacted position, the upper lens compactor 240 may be advanced laterally to the second compacted position (see
With further reference to
Where the IOL 120 has been compacted into the second compacted configuration (or is otherwise disposed in the lower insertion channel 214 or between the insertion channels 214, 244 when the upper lens compactor 240 is in the second compacted position), this forward movement of the driving member 290 causes the forward end of the driving member to advance through the lower insertion channel (or between the insertion channels 214, 244 when the upper lens compactor 240 is in the second compacted position), thereby urging the IOL 120 forward and into the delivery lumen 208 of the delivery probe 206. Further advancement of the driving member will then extrude the IOL from the forward end of the delivery probe 206.
Except where otherwise noted, the components of the apparatus 200 may be formed from any suitably rigid material, including plastics such as ABS. The lower housing 204 (or, alternatively, at least the lower lens compactor 210 and/or delivery probe 206) may be formed from a transparent plastic such as clear polycarbonate, to promote visibility of the IOL during compaction/delivery.
Accordingly, the apparatus 200 may be employed to deliver or insert an IOL, such as the IOL 120, into an eye, such as a human eye. In doing so, the user/physician first accesses an insertion location (e.g., the capsular bag, anterior chamber, etc) within the eye via any suitable technique, for example, by making a small incision or series of small incisions in the anterior structures of the eye. If necessary, the natural crystalline lens is removed via a suitable technique such as phacoemulsification. Through the incision(s) the physician inserts the forward end of the delivery probe 206, preferably after compacting the IOL as detailed above and, if desired, after advancing the IOL partway through the lumen 208 of the delivery probe 206. With the end of the delivery probe in place, the physician extrudes the IOL from the probe 206, thereby inserting the IOL in the eye. (By employing the apparatus 200, the compacting and delivery may be done without opening the housing 202/204 or otherwise manually accessing the IOL.) Upon departure from the probe 206, the IOL “un-compacts” by virtue of its elasticity, returning substantially to its unstressed condition. The physician then withdraws the probe 206 and, if necessary, adjusts the positioning of the IOL within the eye. Upon satisfactory positioning of the IOL, the physician closes the incision(s) to complete the operation.
The apparatus 400 preferably comprises an upper housing 402 and a lower housing 404 which cooperate to enclose and support the components of the apparatus 400. Disposed within the lower housing 404 is an injector plate 405 which forms a delivery probe 406 which in turn defines a delivery lumen 408; both the delivery probe 406 and lumen 408 extend along a longitudinally-oriented delivery or injection axis A-A of the apparatus 400. The injector plate 405 also forms a lower lens compactor or lower compacting element 410 comprising a lower engagement face or wall 412 and a lower insertion channel 414 which extends along the delivery axis A-A.
Best seen in
The opening 424 also facilitates visibility of the IOL within the apparatus 400 at various stages of the compaction/delivery process. To further promote visibility of the IOL during compaction/delivery, a window or opening 407 may be formed in the lower housing 404 (see
Referring again to
In yet another embodiment, the delivery lumen 408 can have a generally oval cross-section (taken orthogonal to the delivery axis), with the channels 414, 444 shaped to have a similarly oval cross-section upon their convergence when the upper lens compactor 440 is in the second compacted position (see below).
The upper lens compactor 440 preferably further comprises first and second upper bearing surfaces 460, 462 disposed on respective opposite sides of the upper engagement face 442 and upper insertion channel 444. The first and second upper bearing surfaces 460, 462 preferably comprise generally flat surfaces which extend longitudinally and are sloped with respect to the upper engagement face 442 and/or delivery axis A-A. The first and second upper bearing surfaces 460, 462 are (at least initially) slidably disposed against similarly-sloped first and second lower bearing surfaces 466, 468 formed on support ribs 470, 472 of the lower housing 404 (see
Thus, the compactor actuator 480 is employed to move and guide the upper lens compactor 440 along a range of motion (similar to that of the upper lens compactor 240 of the apparatus 200) between a home position, first compacted position and second compacted position. At the home position, the upper lens compactor 440 is rearwardly disposed on the ribs 470, 472, with the first upper bearing surface 460 resting on the first lower bearing surface 466 and straddling a gap 474 formed in the surface 466/rib 470, and with the second upper bearing surface 462 resting on the second lower bearing surface 468. In one embodiment, the rearward edges of the surfaces 460 and 466 (and/or those of the surfaces 462 and 468) are aligned when the upper lens compactor 440 is in the home position.
From the home position, the actuator 480 and compactor 440 can be moved longitudinally forward by appropriate manipulation of the handle 481, to the first compacted position in which the first upper bearing surface 460 may remain on the first lower bearing surface 466, but forward of the gap 474, and the second upper bearing surface 462 is displaced forward of, and no longer rests on, the second lower bearing surface 468. In addition, the lateral guide rib 483 is longitudinally aligned with or forward of the gap 474, thereby permitting (subsequent) inward lateral movement of the actuator 480 and compactor 440, and the guide projections 489 are disposed at the forward ends of the longitudinal slots 484 of the corresponding compactor guides 482 (see
From the first compacted position, the actuator 480 and compactor 440 can be moved generally laterally inward to the second compacted position. The second compacted position is, in one embodiment, characterized by relative situation of the compactors 410, 440, bearing faces 412, 442, channels 414, 444, edges 418, 448, etc. similar to that depicted in
With further reference to
A spring 495, washer 497 and O-ring 499 may be situated surrounding the driving member 490 between the driving member guide 493 and the plunger 491. In addition, finger grips 501 may be provided on the upper and/or lower housings 402, 404 to facilitate holding the apparatus 400 between the thumb and forefingers, in a “syringe” fashion, with the thumb on the rear of the plunger 491 and one forefinger on each of the finger grips 501. This arrangement likewise facilitates single-handed operation of the apparatus 400 when delivering/inserting an IOL situated in the lower insertion channel 414. The spring 495 provides resistance and tactile feedback when a user is urging the driving member 490 forward with the plunger 491; if desired, the spring 495 and plunger 491 may be sized to reach an abutting relation (and thereby provide this resistance/feedback) once the forward end of the plunger 491 has entered the delivery lumen 408.
Accordingly, the apparatus 400 may be employed to deliver or insert an IOL, such as the IOL 120, into an eye, such as a human eye. In doing so, the user/physician first accesses an insertion location (e.g., the capsular bag, anterior chamber, etc) within the eye via any suitable technique, for example, by making a small incision or series of small incisions in the anterior structures of the eye. If necessary, the natural crystalline lens is removed via a suitable technique such as phacoemulsification. Through the incision(s) the physician inserts the forward end of the delivery probe 406, preferably after compacting the IOL as detailed above and, if desired, after advancing the IOL partway through the lumen 408 of the delivery probe 406. With the end of the delivery probe in place, the physician extrudes the IOL from the probe 406, thereby inserting the IOL in the eye. (By employing the apparatus 400, the compacting and delivery/insertion may be done without opening the housing 402/404 or otherwise manually accessing the IOL.) Upon departure from the probe 406, the IOL “un-compacts” by virtue of its elasticity, returning substantially to its unstressed condition. The physician then withdraws the probe 406 and, if necessary, adjusts the positioning of the IOL within the eye. Upon satisfactory positioning of the IOL, the physician closes the incision(s) to complete the operation.
Various embodiments of the apparatus 200/400 disclosed herein advantageously facilitate delivery of an IOL into the eye of a patient without need for a physician to handle the IOL or manually load it into an insertion device. For example, the IOL may be positioned within the lens compactor (e.g., between the upper and lower lens compactors) of the apparatus 200/400 during manufacture/assembly of the apparatus. The apparatus 200/400, with the IOL thus disposed inside the lens compactor, may then be sterilized as a unit, either at the point of manufacture or at some downstream location. Where appropriate, the sterilized apparatus-IOL assembly may be contained in a sterile package, wrapper, bag, envelope, etc. in which the apparatus-IOL assembly may remain until arrival at the point (or time) of use. (The apparatus-IOL assembly may be sterilized before and/or after placement in the package, etc.) This further facilitates a simple point-of-use procedure for medical personnel involved in implanting the IOL contained in the apparatus 200/400: after opening (any) packaging, the physician, or other medical personnel, can compact and insert the IOL using the apparatus 200/400 as discussed above, without (any need for) removing the IOL from the apparatus. Accordingly, there is no need to handle the IOL or manually load it into an insertion device at the point of use, both of which can be difficult and tedious, and can compromise the sterility of the IOL.
As seen in
As yet another alternative, one or both of the engagement face 212/412, 242/442 may be suitably roughened to engage the viewing elements 122, 124. Such surface roughening may be employed on its own, or in connection with any of the alternatives discussed herein for constructing the engagement face 212/412, 242/442. In one embodiment, the surfaces in question are sanded; as one example, 100 grit sandpaper may be employed. In other embodiments, the surfaces may be ribbed, knurled, etc.
In further embodiments of the apparatus 200/400, the lower housing 204/404, lower lens compactor 210/410 and/or upper lens compactor 240/440 may be configured such that the upper lens compactor 210/410 is moveable only from the first compacted position to the second compacted position. In other words, the first compacted position replaces the home position as the “start” location of the upper lens compactor 240/440, which can move from the first compacted position to the second compacted position in the manner already described. Any or all of the structures described above as facilitating longitudinal movement of the upper lens compactor 210 between the home and first compacted positions may be omitted, if desired. The balance of the structure and function of the apparatus 200/400 preferably remains as described above.
Such a modified apparatus 200/400 is particularly useful for compacting and/or inserting a single-lens IOL, such as (but not limited to) the IOL 100 described above. Alternatively, a multiple-lens IOL, such as (but not limited to) the IOL 120 described above, may be compacted and/or inserted with this modified apparatus. In one embodiment, the multiple-lens IOL is disposed or stored in the compactor in the first compacted condition described above, when the upper lens compactor is in the first compacted position (again, the “start” location of the upper lens compactor). In another embodiment, the multiple-lens IOL is disposed or stored in the compactor in the substantially unstressed condition described above, when the upper lens compactor is in the first compacted position.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.
This application is a divisional application of U.S. patent application Ser. No. 10/637,376, filed Aug. 8, 2003, now U.S. Pat. No. 7,615,056 titled METHOD AND DEVICE FOR COMPACTING AN INTRAOCULAR LENS, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/448,190, filed Feb. 14, 2003, titled METHOD AND DEVICE FOR FOLDING AN ACCOMMODATING INTRAOCULAR LENS. The entire contents of both of the above-mentioned patent applications are hereby incorporated by reference herein and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
4240163 | Galin | Dec 1980 | A |
4409691 | Levy | Oct 1983 | A |
4636210 | Hoffer | Jan 1987 | A |
4655770 | Gupta et al. | Apr 1987 | A |
4666445 | Tillay | May 1987 | A |
4681102 | Bartell | Jul 1987 | A |
4702244 | Mazzocco | Oct 1987 | A |
4731079 | Stoy | Mar 1988 | A |
4790847 | Woods | Dec 1988 | A |
4834094 | Patton et al. | May 1989 | A |
4836201 | Patton et al. | Jun 1989 | A |
4842601 | Smith | Jun 1989 | A |
4862885 | Cumming | Sep 1989 | A |
4883485 | Patel | Nov 1989 | A |
4888012 | Horn et al. | Dec 1989 | A |
4892543 | Turley | Jan 1990 | A |
4919130 | Stoy et al. | Apr 1990 | A |
4932966 | Christie et al. | Jun 1990 | A |
4963148 | Sulc et al. | Oct 1990 | A |
4994082 | Richards et al. | Feb 1991 | A |
5098439 | Hill et al. | Mar 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5171319 | Keates et al. | Dec 1992 | A |
5190552 | Kelman | Mar 1993 | A |
5190553 | Kanert et al. | Mar 1993 | A |
5275604 | Rheinish et al. | Jan 1994 | A |
5275623 | Sarfarazi | Jan 1994 | A |
5281227 | Sussman | Jan 1994 | A |
5326347 | Cumming | Jul 1994 | A |
5354335 | Lipshitz et al. | Oct 1994 | A |
5425734 | Blake | Jun 1995 | A |
5443506 | Garabet | Aug 1995 | A |
5468246 | Blake | Nov 1995 | A |
5474562 | Orchowski | Dec 1995 | A |
5476514 | Cumming | Dec 1995 | A |
5494484 | Feingold | Feb 1996 | A |
5496328 | Nakajima et al. | Mar 1996 | A |
5499987 | Feingold | Mar 1996 | A |
5507806 | Blake | Apr 1996 | A |
5578081 | McDonald | Nov 1996 | A |
5607472 | Thompson | Mar 1997 | A |
5616148 | Eagles et al. | Apr 1997 | A |
5620450 | Eagles et al. | Apr 1997 | A |
5653754 | Nakajima et al. | Aug 1997 | A |
5728102 | Feingold | Mar 1998 | A |
5735858 | Makker et al. | Apr 1998 | A |
5800442 | Wolf et al. | Sep 1998 | A |
5807400 | Chambers et al. | Sep 1998 | A |
5860984 | Chambers et al. | Jan 1999 | A |
5873879 | Figueroa et al. | Feb 1999 | A |
5876440 | Feingold | Mar 1999 | A |
5921989 | Deacon et al. | Jul 1999 | A |
5928245 | Wolf et al. | Jul 1999 | A |
5941886 | Feingold | Aug 1999 | A |
5944725 | Cicenas et al. | Aug 1999 | A |
5947975 | Kikuchi et al. | Sep 1999 | A |
5968094 | Werblin et al. | Oct 1999 | A |
5984962 | Anello et al. | Nov 1999 | A |
6010510 | Brown et al. | Jan 2000 | A |
6013101 | Israel | Jan 2000 | A |
6056758 | Vidal et al. | May 2000 | A |
6083230 | Makker et al. | Jul 2000 | A |
6106554 | Bretton | Aug 2000 | A |
6117171 | Skottun | Sep 2000 | A |
6129733 | Brady et al. | Oct 2000 | A |
6162229 | Feingold et al. | Dec 2000 | A |
6176878 | Gwon et al. | Jan 2001 | B1 |
6179843 | Weiler | Jan 2001 | B1 |
6197058 | Portney | Mar 2001 | B1 |
6197059 | Cumming | Mar 2001 | B1 |
6203549 | Waldock | Mar 2001 | B1 |
6217612 | Woods | Apr 2001 | B1 |
6228094 | Erdman | May 2001 | B1 |
6231603 | Lang et al. | May 2001 | B1 |
6258123 | Young et al. | Jul 2001 | B1 |
6280449 | Blake | Aug 2001 | B1 |
6280471 | Peyman et al. | Aug 2001 | B1 |
RE37387 | Brady et al. | Sep 2001 | E |
6283975 | Glick et al. | Sep 2001 | B1 |
6299641 | Woods | Oct 2001 | B1 |
6334862 | Vidal et al. | Jan 2002 | B1 |
6386357 | Egawa | May 2002 | B1 |
6423094 | Sarfarazi | Jul 2002 | B1 |
6443985 | Woods | Sep 2002 | B1 |
6450642 | Jethmalani et al. | Sep 2002 | B1 |
6454802 | Bretton et al. | Sep 2002 | B1 |
6464725 | Skotton | Oct 2002 | B2 |
6468282 | Kikuchi et al. | Oct 2002 | B2 |
6488708 | Sarfarazi | Dec 2002 | B2 |
6497708 | Cumming | Dec 2002 | B1 |
6500181 | Portney | Dec 2002 | B1 |
6503275 | Cumming | Jan 2003 | B1 |
6551354 | Ghazizadeh et al. | Apr 2003 | B1 |
6558420 | Green | May 2003 | B2 |
6605093 | Blake | Aug 2003 | B1 |
6761737 | Zadno-azizi et al. | Jul 2004 | B2 |
6764511 | Zadno-azizi et al. | Jul 2004 | B2 |
6786934 | Zadno-azizi et al. | Sep 2004 | B2 |
6818158 | Pham et al. | Nov 2004 | B2 |
6846326 | Zadno-azizi et al. | Jan 2005 | B2 |
6858040 | Nguyen et al. | Feb 2005 | B2 |
6884261 | Zadno-azizi et al. | Apr 2005 | B2 |
6899732 | Zadno-azizi et al. | May 2005 | B2 |
6923815 | Brady et al. | Aug 2005 | B2 |
7041134 | Nguyen et al. | May 2006 | B2 |
7087080 | Zadno-azizi et al. | Aug 2006 | B2 |
7097660 | Portney | Aug 2006 | B2 |
7118596 | Zadno-azizi et al. | Oct 2006 | B2 |
7125422 | Woods et al. | Oct 2006 | B2 |
7198640 | Nguyen | Apr 2007 | B2 |
7226455 | Jeannin et al. | Jun 2007 | B2 |
7226478 | Ting et al. | Jun 2007 | B2 |
7452362 | Zadno-azizi et al. | Nov 2008 | B2 |
7452378 | Zadno-azizi et al. | Nov 2008 | B2 |
7615056 | Ayton et al. | Nov 2009 | B2 |
7645300 | Tsai | Jan 2010 | B2 |
20010020171 | Heyman et al. | Sep 2001 | A1 |
20020002404 | Sarfarazi | Jan 2002 | A1 |
20020004682 | Zhou et al. | Jan 2002 | A1 |
20020077633 | Kikuchi et al. | Jun 2002 | A1 |
20020082609 | Green | Jun 2002 | A1 |
20020107568 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020138140 | Hanna | Sep 2002 | A1 |
20020156486 | Nadel | Oct 2002 | A1 |
20020188351 | Laguette | Dec 2002 | A1 |
20030018384 | Valyunin et al. | Jan 2003 | A1 |
20030078657 | Zadno-azizi et al. | Apr 2003 | A1 |
20030078658 | Zadno-azizi | Apr 2003 | A1 |
20030114927 | Nagamoto | Jun 2003 | A1 |
20030158560 | Portney | Aug 2003 | A1 |
20030187504 | Weinschenk, III et al. | Oct 2003 | A1 |
20040059343 | Shearer et al. | Mar 2004 | A1 |
20040160575 | Ayton et al. | Aug 2004 | A1 |
20050182419 | Tsai | Aug 2005 | A1 |
20050228401 | Zadno-azizi et al. | Oct 2005 | A1 |
20050234547 | Nguyen et al. | Oct 2005 | A1 |
20050251236 | Jeannin et al. | Nov 2005 | A1 |
20060100703 | Evans et al. | May 2006 | A1 |
20060178741 | Zadno-azizi et al. | Aug 2006 | A1 |
20060184244 | Nguyen et al. | Aug 2006 | A1 |
20060259139 | Zadno-azizi et al. | Nov 2006 | A1 |
20060271187 | Zadno-azizi et al. | Nov 2006 | A1 |
20070027540 | Zadno-azizi et al. | Feb 2007 | A1 |
20070032866 | Portney | Feb 2007 | A1 |
20070050023 | Bessiere et al. | Mar 2007 | A1 |
20070050025 | Nguyen et al. | Mar 2007 | A1 |
20080027461 | Vaquero et al. | Jan 2008 | A1 |
20080125790 | Tsai et al. | May 2008 | A1 |
20090005788 | Rathert | Jan 2009 | A1 |
20090112313 | Mentak | Apr 2009 | A1 |
20090234366 | Tsai et al. | Sep 2009 | A1 |
20100076449 | Tsai | Mar 2010 | A1 |
Number | Date | Country |
---|---|---|
19501444 | Jul 1996 | DE |
10015472 | Nov 2001 | DE |
0162573 | Nov 1985 | EP |
0269288 | Jun 1988 | EP |
0337390 | Oct 1989 | EP |
0336877 | Oct 1993 | EP |
1114623 | Nov 2001 | EP |
1481652 | Dec 2004 | EP |
1736118 | Dec 2006 | EP |
2900570 | Nov 2007 | FR |
S61-279241 | Dec 1986 | JP |
02-126847 | May 1990 | JP |
H03-137325 | Jun 1991 | JP |
WO 9513022 | May 1995 | WO |
WO 9629956 | Oct 1996 | WO |
WO 9812969 | Apr 1998 | WO |
WO 9920206 | Apr 1999 | WO |
WO 9921513 | Jun 1999 | WO |
WO 0021467 | Apr 2000 | WO |
WO 0027315 | May 2000 | WO |
WO 0061036 | Oct 2000 | WO |
WO 0066037 | Nov 2000 | WO |
WO 0119289 | Mar 2001 | WO |
WO 0134067 | May 2001 | WO |
WO 0164136 | Sep 2001 | WO |
WO 0166042 | Sep 2001 | WO |
WO 0187186 | Nov 2001 | WO |
WO 03015657 | Feb 2003 | WO |
WO 04000171 | Dec 2003 | WO |
WO 2004073560 | Sep 2004 | WO |
WO 2007080868 | Jul 2007 | WO |
Entry |
---|
Tsutomu Hara et al., “Accommodative Intraocular Lens with Spring Action Part 1. Design and Placement in an Excised Animal Eye,” Opthalmic Surgery, Feb. 1990, vol. 21, No. 2,pp. 128-133. |
U.S. Appl. No. 12/258,339, filed Oct. 24, 2008. |
English Translation of Office Action dated Apr. 24, 2009 and issued in related Japanese Patent Application No. 2006-503503. |
International Search Report and Written Opinion of the International Searching Authority, mailed May 18, 2005, in related international application No. PCT/US2004/004033. |
U.S. Appl. No. 12/258,339, filed Oct. 24, 2008 and its prosecution history. |
Number | Date | Country | |
---|---|---|---|
20080045971 A1 | Feb 2008 | US |
Number | Date | Country | |
---|---|---|---|
60448190 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10637376 | Aug 2003 | US |
Child | 11844964 | US |