Method and device for compensating for positional and shape deviations

Information

  • Patent Grant
  • 8014892
  • Patent Number
    8,014,892
  • Date Filed
    Tuesday, October 17, 2006
    18 years ago
  • Date Issued
    Tuesday, September 6, 2011
    13 years ago
Abstract
A method for compensating for at least one of positional deviations and shape deviations in NC-controlled cutting production machines where the method includes the steps of securing a new workpiece, processing the workpiece using the nominal data of the NC program, acquiring the set deviation data, optimizing the NC program using the acquired data and repeating these steps until at least one of required positional and shape tolerances have been achieved.
Description
FIELD OF THE INVENTION

The present invention relates to a method for compensating positional and/or shape deviations in Numerical Control (NC)-controlled cutting production machines, and to an NC-controlled cutting production machine having a device for compensating positional and/or shape deviations in workpieces. During machining, in particular of materials that are difficult to machine and of labile components such as those often used in modern engine construction, as a rule there occur systematic positional and shape deviations that are caused primarily by the internal stress of the material and by pressure displacement of the tool or of the workpiece due to their elastic deformation. During processing using NC-controlled machines, these errors have the result that the milled geometry deviates from the programmed geometry, thus lying outside the tolerances according to the drawing.


BACKGROUND

When the existing material internal stresses of a workpiece are dismantled by milling, there often occur torsions or warpings that can assume significant dimensions depending on the component geometry, and that have the result that the geometry of the workpiece lies outside manufacturing tolerances. In addition, the tool and/or the workpiece are pressed out of the target position by the machining forces. The magnitude of the pressure depends essentially on the machining force and on the rigidity of the overall system consisting of the workpiece, the tool, and the machine.


These are undesirable effects that result in a high rejection rate, a high post-processing expense, and, therefore, increased manufacturing costs and high piece costs.


In addition, from the prior art NC-controlled cutting production machines are known. As a rule, in such machines the NC programs are nominally pre-programmed, during their creation, with the corresponding parameters, such as the positional and geometric data of the workpiece to be processed, and additional data such as data relating to, for example, advance speed and cutting speed.


In addition, for example from U.S. Pat. No. 4,660,148, input modules are known that are intended to permit certain data inputs to the NC machine to be made on location by an operator, including the inputting of non-variable data and geometric data of the workpiece. Here, positional and/or shape deviations due to material characteristics and/or tool characteristics are not taken into account.


Therefore, the object of the present invention is to provide an improved method and an improved device for compensating positional and shape deviations that avoid the disadvantages of the prior art, thus providing an economical solution with a reduced manufacturing expense.


SUMMARY

The present invention makes it possible to avoid the disadvantages of the prior art, and provides an economical solution with reduced manufacturing costs. The above-described positional and/or shape deviations are as a rule systematic errors that are compensated according to the present invention by returning the set difference or difference between the target value and the actual value to an NC program that controls the production device. In addition, deformations caused by the release of material internal stresses are compensated. Moreover, transitions between tools having different pressure displacements can be compensated. It is also possible to compensate shape deviations caused by non-uniform finishing, i.e., pre-finishing for constant allowance oversizing situation during finishing is no longer required. In this way, operating sequences can be significantly reduced.


According to the present invention, a method is proposed for compensating positional and/or shape deviations in NC-controlled cutting production machines, the method having the following steps:


securing a new workpiece; processing the workpiece using nominal data of the NC program; acquiring set deviation data; optimizing the NC program using the acquired data; and repeating steps a) to d) until at least one of required positional and shape tolerances are achieved.


Here, the “nominal” data of the NC program are the theoretical or design values inputted by the programmer in a first run of the NC program, and the data automatically optimized by the NC program in the subsequent iterative steps or steps on the basis of the measured values.


The control loop is situated quasi-externally to the NC machine. The sections of the component that are to be corrected are first nominally milled. Subsequently, the set deviations are acquired and are returned to the NC program. The next component is then manufactured using the optimized NC program. This process is iteratively repeated until the required positional and shape tolerances have been achieved.


An alternative method according to the present invention for compensating positional and shape deviations in NC-controlled cutting production machines has the following steps:


preparing a workpiece in which an allowance is greater than at least one of a maximum positional deviation and a shape deviation that is to be expected; acquiring deviation data; optimizing the NC program using the acquired data; and finishing of the workpiece using a modified NC program.


This represents a second method for returning the set deviation to the NC program. In this method, the closed control loop is run within the NC processing machine during the processing of an individual component. Here, in a first step the component is processed in such a way that the segments of the component that are to be corrected are first only first-finished. The finishing allowance must be greater than the maximum positional and shape deviations that are to be expected. In a second step, the set deviation for the first-finished areas is acquired by corresponding measurement devices inside the machine. In a further step, the determined deviations are then returned to the NC program and are automatically implemented in this program. The component is then finally milled using the optimized finishing program. For the next component, this method is repeated in the same way, so that it is also possible to compensate for non-systematic, individual flaws in an individual workpiece.


Given an external control loop, the NC program is optimized for one component, or, iteratively, for a plurality of components. If the set deviation lies within the allowable tolerance, all following components can then be processed using the same NC program without further optimization. Given an internal control loop, the program optimization takes place individually for each component.


An advantageous development of the method according to the present invention provides that the acquisition of the set deviation takes place using a tactile measurement method or an optical measurement method. In order to acquire the set deviation, all measurement or test methods may be used with which the deviation can be determined with the required quality and quantity. Inter alia, the acquisition can be carried out using tactile systems (measurement probes), e.g.: measurement machines or measurement probes inside the processing machine; optical acquisition (laser triangulation, extended optical measurement systems) inside or outside the processing machine are also possible measurement methods. However, acquisition can also take place using manual measurement means or special measurement means.


Another advantageous development of the method according to the present invention provides that the returning of the set deviation to the NC program takes place in such a way that a correction vector is allocated to each support point of the tool path. The correction vector consists of the magnitude and the direction of the set deviation. Each support point of the tool path is then displaced by the associated correction vector.


An advantageous development of the method according to the present invention provides that the determination of the correction vectors takes place in such a way that the actual geometry is set into clear comparison with the target geometry. The correction vectors are determined by placing the acquired actual geometry, i.e. the determined measurement data, into comparison with the target geometry, determined for example from a CAD model. Here it is of decisive importance that the corresponding regions or support points be set off against one another.


An advantageous development of the method according to the present invention provides that the clear comparison between the associated areas be defined by synchronizing markings that are set between areas having a strong curvature change. Synchronizing markings are always to be placed between areas between which the curvature changes strongly. If all measurement points, i.e. the actual geometry, are set into relation with the associated points in the CAD model, i.e. the target geometry, a vector field is obtained with which the corresponding support points of the NC program can be adjusted. The clear comparison between the correction vectors of the vector field and the NC program is produced using the same synchronizing markings that were already used for the actual geometry and the target geometry.


An NC-controlled cutting production machine according to the present invention having a device for compensating positional and/or shape deviations in workpieces comprises the following: a control unit that has a storage unit for storing a target geometry of a workpiece, a measurement device for acquiring the actual geometry of a workpiece, and a computing unit for calculating the set deviation, which controls the further processing of the workpiece, or automatically optimizes the NC program, corresponding to the set deviation.


These components are advantageously integrated into the production machine, but can also be situated outside the machine, in the case of what is called an external control loop.


An advantageous specific embodiment of the NC-controlled cutting production machine is an NC-controlled milling machine.


An advantageous specific embodiment of the NC-controlled cutting production machine has tactile or optical measurement devices for acquiring the actual geometry. The tactile or optical measurement devices are advantageously integrated into the actual cutting machine, but here it is also possible for the measurement devices to be connected externally.





BRIEF DESCRIPTION OF THE DRAWINGS

Additional measures that improve the present invention are indicated in the subclaims, and are shown in more detail below together with the description of a preferred exemplary embodiment of the present invention on the basis of the Figures.



FIG. 1 shows a flow diagram of a first specific embodiment of a method according to the present invention;



FIG. 2 shows a flow diagram of a second specific embodiment of a method according to the present invention;



FIG. 3 shows a first example of positional and shape deviations during the milling of a flow profile;



FIG. 4 shows a second example of positional and shape deviations during the milling of a flow profile;



FIG. 5 shows a third example of positional and shape deviations during the milling of a flow profile.





DETAILED DESCRIPTION


FIG. 1 shows a flow diagram of a first specific embodiment of a method according to the present invention for compensating positional and shape deviations in an NC-controlled cutting production machine.


The control loop takes place outside the NC machine. The parts of the component that are to be corrected are first nominally milled. Subsequently, the set deviations are acquired and are returned to the NC program. The next component is then manufactured using the optimized NC program. This process is iteratively repeated until the required positional and shape tolerances are achieved.


With the external control loop, the NC program is optimized to one component, or is iteratively optimized to a plurality of components. If the set deviation lies within the allowable tolerance, all subsequent components can then be processed using the same NC program without further optimization.



FIG. 2 shows a flow diagram of a second specific embodiment of a method according to the present invention for compensating positional and shape deviations in an NC-controlled milling machine. In this method, the closed control loop is executed inside the NC processing machine during the processing of each individual component. After the start of the method, in a first step the component secured or chucked in the processing machine is first-finished. The finishing allowance must be greater than the maximum positional and shape deviations that are to be expected, because otherwise the workpiece will be rejected as scrap. In a second step, the set deviation is acquired for the first-finished areas by corresponding measurement devices inside the machine; in the present exemplary embodiment, these are automatic probes. The determined measurement results are then returned to the NC program in an additional step. For the case in which the set deviation is within the allowable tolerance, i.e. in the case of a yes-branching, the component is processed to the finished state. For the case in which the set deviation is not within the allowable tolerance, i.e. in the case of a no-branching, the deviation is automatically implemented into the NC program, and another finishing pass is carried out. The component is then milled to a finished state using the optimized finishing program. For the next component, this method is executed in the same way.


The illustrations in FIG. 3 to FIG. 5 show some examples of positional and shape deviations during the milling of a flow profile, as occur for example during the manufacture of blades for turbo engines. Here, the target geometry of a flow profile 1 is shown by a broken line. The dotted line shows the actual geometry. The deviations between the actual geometry and the target geometry are represented by correction vectors. In addition, synchronization points are shown in the area of the profile nose and the profile rear edge.



FIG. 3 shows a circumferentially constant shape deviation, i.e., the deviations of the actual geometry from the target geometry are equally large at all points of the profile contour. The profile is oversized at all points of its geometry.



FIG. 4 shows an example of a flow profile having shape deviations that are not constant over the entire contour. The profile is undersized in the suctioning area, i.e., the actual geometry lies inside the target geometry at some points.


Finally, FIG. 5 shows an example of a flow profile having positional and shape deviations.

Claims
  • 1. A method for compensating for at least one of positional deviations and shape deviations in NC-controlled cutting production machines having an NC program, the method having the following steps: a) securing a workpiece;b) processing the workpiece using nominal data of the NC program, wherein the nominal data includes design values of the workpiece;c) acquiring set deviation data which is based on differences between the nominal data and measured values of the workpiece;d) optimizing the NC program using the acquired set deviation data;e) repeating steps a) to d) until at least one of required positional and shape tolerances have been achieved;f) returning of the set deviation data wherein a correction vector is allocated to each support point of a tool path;g) determining each correction vector by setting an actual geometry into clear comparison with a target geometry; andh) defining the clear comparison between associated regions by placing the correction vectors between areas having a change in curvature.
  • 2. A method for compensating for positional and shape deviations in NC-controlled cutting production machines having an NC program, the method having the following steps: a) preparing a workpiece in which an allowance is greater than at least one of a maximum positional deviation and a shape deviation that is to be expected;b) acquiring set deviation data which is based on differences between design values and measured values of the workpiece;c) optimizing the NC program using the acquired set deviation data; andd) finishing of the workpiece using a modified NC program;e) returning of the set deviation data, wherein a correction vector is allocated to each support point of a tool path;f) determining each correction vector by setting an actual geometry into clear comparison with a target geometry; andg) defining the clear comparison between associated regions by placing the correction vectors between areas having a change in curvature.
Priority Claims (1)
Number Date Country Kind
10 2005 050 205 Oct 2005 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/DE2006/001832 10/17/2006 WO 00 9/3/2008
Publishing Document Publishing Date Country Kind
WO2007/045223 4/26/2007 WO A
US Referenced Citations (61)
Number Name Date Kind
4031368 Colding et al. Jun 1977 A
4382215 Barlow et al. May 1983 A
4428055 Zurbrick et al. Jan 1984 A
4499359 Obara Feb 1985 A
4523135 Kogawa Jun 1985 A
4555610 Polad et al. Nov 1985 A
4603391 Inoue et al. Jul 1986 A
4605886 Inoue Aug 1986 A
4731607 Yoneda et al. Mar 1988 A
4748554 Gebauer et al. May 1988 A
4790697 Hines et al. Dec 1988 A
4816729 Carlson Mar 1989 A
4864520 Setoguchi et al. Sep 1989 A
4905417 Oda et al. Mar 1990 A
4963805 Suzuki et al. Oct 1990 A
4967515 Tsujiuchi et al. Nov 1990 A
4992948 Pilland et al. Feb 1991 A
5031107 Suzuki et al. Jul 1991 A
5047966 Crow et al. Sep 1991 A
5060164 Yoneda et al. Oct 1991 A
5088055 Oyama Feb 1992 A
5117169 Kakino et al. May 1992 A
5355705 Schulze et al. Oct 1994 A
5411430 Nishimura et al. May 1995 A
5412300 Meyer et al. May 1995 A
5465474 Kimura et al. Nov 1995 A
5614800 Nakano et al. Mar 1997 A
5691909 Frey et al. Nov 1997 A
5710709 Oliver et al. Jan 1998 A
5748482 Nishimura May 1998 A
5815400 Hirai et al. Sep 1998 A
5841096 Takahashi et al. Nov 1998 A
5898590 Wampler et al. Apr 1999 A
5903459 Greenwood et al. May 1999 A
5910040 Moriyasu et al. Jun 1999 A
5940301 Damman et al. Aug 1999 A
5953233 Higasayama et al. Sep 1999 A
6032377 Ichikawa et al. Mar 2000 A
6233533 Xu et al. May 2001 B1
6246920 Mizuno et al. Jun 2001 B1
6256546 Graham et al. Jul 2001 B1
6535788 Yoshida et al. Mar 2003 B1
6539642 Moriyasu et al. Apr 2003 B1
6571145 Matsumiya et al. May 2003 B1
6681145 Greenwood et al. Jan 2004 B1
6823235 Toyozawa et al. Nov 2004 B2
6862492 Sagasaki et al. Mar 2005 B2
6892153 Puchtler May 2005 B2
6912446 Wang et al. Jun 2005 B2
7075531 Ando et al. Jul 2006 B1
7450127 Hong et al. Nov 2008 B2
7479959 Han et al. Jan 2009 B2
7686988 Hosoe Mar 2010 B2
7869899 Hammond et al. Jan 2011 B2
20010012972 Matsumoto et al. Aug 2001 A1
20030018408 Sagae et al. Jan 2003 A1
20040083024 Wang Apr 2004 A1
20040174358 Takagi Sep 2004 A1
20070171223 McArdle et al. Jul 2007 A1
20090112357 Hammond et al. Apr 2009 A1
20100119104 Mamour et al. May 2010 A1
Foreign Referenced Citations (4)
Number Date Country
36 20 422 Jan 1988 DE
0 326 625 Aug 1989 EP
0 431 572 Jun 1991 EP
WO 2004103622 Dec 2004 WO
Related Publications (1)
Number Date Country
20090132080 A1 May 2009 US