The present invention concerns a device and a method for controlling a drivetrain.
In DE 198 07 095 a method is proposed for controlled braking during an automatic shift in a motor vehicle in thrust operation while moving down a steep slope, to prevent overspeeding of the engine when a low gear is engaged. The danger of stalling because of too low a speed of the internal combustion engine is not mentioned.
When a vehicle pulls up and coasts, the speed of its internal combustion engine falls. At a predetermined engine speed the clutch is disengaged to prevent stalling or straining of the engine. This eliminates the braking torque of the engine, which is clearly perceived by the driver as a change of the rolling resistance of the vehicle, or even, when moving downhill, as an acceleration of the vehicle. No solution for the problem described can be found in the prior art. The often abrupt change of the rolling resistance is undesirable. for reasons of both comfort and safety.
Accordingly, the purpose of the present invention is to indicate a device and a method for preventing an abrupt change of the rolling resistance when a vehicle is coasting and/or stopping.
A drivetrain of a vehicle comprises an internal combustion engine, a transmission, a clutch arranged between the internal combustion engine and the transmission, and at least one wheel. In the case of an automated transmission there is also a transmission control unit. In addition, there is a communications bus to enable communication between the components of the drivetrain. Moreover, at least one brake is also provided, which can be a service brake or a supplementary brake of any type.
According to the invention, from the point when the clutch is disengaged a braking torque that is additional to the braking torque of the drivetrain downstream from the clutch is applied. For example, the braking torque of the drivetrain downstream from the clutch is composed of the drag torques of the transmission, of an axle and/or of one or more brakes. The additional braking torque applied corresponds to the braking torque of the internal combustion engine on the wheel of the drivetrain, at the instant or just before the instant when the engine is decoupled from the drivetrain downstream from the clutch by disengaging the clutch. By applying the additional braking torque to the drivetrain downstream from the clutch, the total braking torque that acts on the wheel both before and after disengaging the clutch is kept the same. The result is to increase both the driving comfort of the vehicle and its safety, since no abrupt change of the vehicle's rolling resistance takes place. Thus, the vehicle can coast or stop in a quiet manner.
A communications bus transmits the instantaneous torque of the internal combustion engine to the transmission control unit many times per second. The torque last determined before the clutch was disengaged is converted by the transmission control unit into a braking torque applied by the internal combustion engine to the wheel. The calculated value is used to enable an exact additional braking torque to be applied to the drivetrain downstream from the clutch.
Furthermore, the additional braking torque is produced by a service brake, a hydrodynamic brake, a hydrostatic brake and/or a transmission brake.
In an advantageous variant of the invention the additional braking torque is removed when the vehicle is at rest, to enable driving to be continued immediately. However, the additional braking torque can be removed gradually in accordance with a predetermined time function, for example a ramp. This gives the driver time to react appropriately to the cessation of the braking torque of the internal combustion engine. However, the additional braking torque is removed at the latest if a driver's wish to accelerate is recognized, for example by virtue of a torque demand from the internal combustion engine.
In a further variant of the invention the additional braking torque is only applied when a driver's wish to stop is recognized. This allows even slow coasting of the vehicle.
Other advantages and advantageous features of the invention are the object of the figures below and their description. The figures show:
At the same time as step 14, i.e. the disengaging of the clutch 3, in step 15 the calculated additional braking torque is applied by the service brake 6 to the drivetrain 1 in such manner that no difference in the rolling resistance of the vehicle can be perceived by the driver. The additional braking torque is remove when one of the following criteria is fulfilled:
step 16: the vehicle is at rest,
step 17: a driver's wish to accelerate is recognized, or
step 18: a time function has lapsed,
and in the case of the time function the additional braking torque is removed in stages.
In
Number | Date | Country | Kind |
---|---|---|---|
10 2007 030 489.9 | Jun 2007 | DE | national |
This application is a National Stage completion of PCT/EP2008/056450 filed May 27, 2008, which claims priority from German patent application serial no. 10 2007 030 489.9 filed Jun. 30, 2007.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/056450 | 5/27/2008 | WO | 00 | 12/14/2009 |