Method and device for controlling a drive unit of a vehicle

Information

  • Patent Grant
  • 6832136
  • Patent Number
    6,832,136
  • Date Filed
    Tuesday, May 7, 2002
    22 years ago
  • Date Issued
    Tuesday, December 14, 2004
    19 years ago
Abstract
A device and a method for controlling a drive unit of a vehicle. Starting from the position of an operating element, a power determining signal may be preselected. The actuator element is controlled as a function of a filtered power determining signal. The signal is filtered with a filter having at least one high-pass filter and one low-pass filter connected in parallel. The filtering is performed so that the filtered signal has at least one corresponding pulse in a transition to a modified signal.
Description




FIELD OF THE INVENTION




The present invention relates to a method and a device for controlling a drive unit of a vehicle.




BACKGROUND OF THE INVENTION




A method and a device for controlling a drive unit of a vehicle are described in German Patent No. 195 34 633, for example. In the method and device described therein, changes in engine torque are delayed by low-pass filtering of the driver's selection. In addition, a pulse-shaped characteristic of the injection volume is proposed to achieve a smooth application of the engine, after which the amount of fuel injected is released for acceleration without delay.




Low-pass filtering has a negative effect on the spontaneity of the driving performance. In addition, with modern drive train concepts, an interaction between engine movement and drive train may be observed, so that load shock may be further intensified.




SUMMARY OF THE INVENTION




Changes of state between thrust and traction may be implemented very rapidly due to the fact that a filter in which at least one high-pass filter and one low-pass filter are connected in parallel is used. Due to the rapid change of state, a spontaneous response of the vehicle to the driver's selection may be implemented. Damping of shock on arrival in the new contact position yields a definite noise reduction during the load reversal process, a reduction in the load shock at load reversal as a result of minor changes in the driver's selection and a reduced bucking tendency of the drive train.




Due to the parallel connection of the signals of the high- and low-pass filters and the fact that the variation of their phase angles is applied to the engine-drive train combination, the driving performance may be designed to be largely independent of the damping of load shock.




When there are gradual changes in driver's selection, a comfortable transition in state is possible even without acceleration and deceleration of masses. With such an excitation, there is no intervention by the load shock damper.




Due to the special combination of filters, the masses of the drive train are accelerated by at least one moment pulse and are decelerated again prior to reading the new contact position, so the position of this pulse relative to the time of the change in quantity selection as well as the position of the pulses relative to one another are variable.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

shows a block diagram of a device for controlling a drive unit of a vehicle according to the present invention.





FIG. 2

shows a detailed illustration in the form of a block diagram of the device for controlling a drive unit of a vehicle according to the present invention.





FIG. 3

shows filtered signals plotted over time.











DETAILED DESCRIPTION





FIG. 1

shows a block diagram of a device for controlling the drive unit of a vehicle in which the procedure according to the present invention may be used. The procedure according to the present invention is illustrated here with the example of a diesel engine. However, the procedure according to the present invention may also be used with other types of internal combustion engines, in particular engines having spark ignition.




The figure shows an internal combustion engine


100


connected to a controller


110


. Controller


110


processes signals of various sensors


115


and a signal QKF supplied by a filter means


120


. Filter means


120


receives signal QK as an input quantity. The filter means also processes the output signals of various sensors


125


. Signal QK is supplied by a quantity input


130


. The quantity input receives signals from a accelerator pedal position sensor


140


and various sensors


135


.




Starting from the position of the accelerator pedal, the accelerator pedal position sensor


140


generates a signal FP with regard to the position of the accelerator pedal. The accelerator pedal position sensor may be designed as a rotary potentiometer, for example. A resistance value and/or the voltage drop on the potentiometer is used as the signal in this case.




Starting from the output signal of accelerator pedal position sensor


140


and the output signals of various sensors


135


, quantity setpoint


130


calculates signal QK, which is a measure of the power desired from the engine. Fuel quantity QK is selected, for example, according to sensors


135


, which detect various temperature values, pressure values and other operating states.




In the case of a diesel engine, this is may be the quantity of fuel to be injected. In the case of an engine having spark ignition, this is may be a signal indicating the throttle valve position or the ignition time.




To prevent load shock, the injection quantity must not be released suddenly in the case of a diesel engine. It is sufficient here to filter the injection quantity only in the range in which the engine is moving relative to the vehicle body. This filtering of the fuel quantity signal takes place through filter means


120


, with the filtering depending on various status parameters characterizing the state of the combustion engine and/or the vehicle driven. Filtering can depend on rpm, which is detected by an rpm sensor


125


. The transmission performance of filter means


120


is shown in FIG.


2


. Filtered quantity signal QKF is sent to controller


110


.




Actuator


110


is, for example, a fuel metering device which sets the quantity of fuel to be injected. It may be, for example, a solenoid valve. Depending on filtered fuel quantity signal QKF and the output signals of other sensors


115


, controller


110


apportions the proper amount of fuel to combustion engine


100


.




The procedure according to the present invention is not limited to use with diesel engines. It may also be used with other internal combustion engines. Furthermore, it is not limited to use with fuel injection. It may also be used with other quantities that determine power delivery, such as the throttle valve setting or the firing angle.





FIG. 2

shows filter means


120


in detail. Elements already described in conjunction with

FIG. 2

are labeled here with the same reference numbers. Quantity request signal QK goes to a first lag element


200


, a second lag element


220


and a third lag element


250


. A low-pass filter


210


receives the output signal of first lag element


200


. Signal QKF


0


is available at the output of low-pass filter


210


and acts on a first coupling point


215


.




The output signal of second lag element


220


goes via a first input limiter


230


to a first high-pass filter


240


. Output signal QKF


1


is available at the output of the first high-pass filter and is sent to first coupling point


215


.




The output signal of third lag element


250


goes over a second input limit


260


to a second high-pass filter


270


. The output signal of second high-pass filter


270


goes to a second coupling point


280


at whose second input the output signal of first coupling point


215


is available. The output signal of coupling point


280


goes to actuator


110


as filtered quantity request QKF via an output limiter


290


.




A PTD


1


element may be used as low-pass filter


210


. However, other filters having low-pass characteristics may also be used according to the present invention. Filters having a DT


1


characteristic may be used as the first and second high-pass filters. However, other filters having high-pass performance characteristics may also be used.




In a simplified embodiment, third lag element


250


, second input limiter


260


and/or second high-pass filter


270


may be omitted. The arrangement of lag elements


200


,


220


and


250


is selected only as an example. These lag elements may also be arranged downstream from the input limit or downstream from the low- or high-pass filters. Instead of these lag elements, special low- and high-pass filters containing higher-order elements may also be used. In addition, it is possible to omit input limiters


230


,


260


and output limiter


290


, depending on the design.




Low-pass filter


210


determines the static transmission performance of the filter. Likewise, this transmission element essentially determines the response to the driver's selection.




In the case of a change in input quantity QK, a fuel quantity pulse that guarantees acceleration and deceleration of the masses is needed. This fuel quantity pulse is supplied by high-pass filters


240


and


270


. The signals of filters


210


,


240


and/or


270


are phase shifted in time relative to one another by lag elements


220


and


250


. This guarantees the chronological sequence of pulses and thus the desired variation of the output signal. Through suitable selection and/or dimensioning of the lag elements, the location of this pulse relative to the time of the change in quantity request and the relative position of pulses may be applied. It is especially advantageous if the lag elements and thus the phase shift are selected so they are variable, depending on the operating state of the engine and/or the vehicle. Suitable parameters for characterizing the operating state include the rpm of the internal combustion engine, the load of the internal combustion engine, the driving speed and/or other parameters.




High gains of high-pass filters


240


and


270


permit damping of load shock with even a small change in quantity input QK. Input limits


230


and


260


prevent an excessively strong intervention when there are large changes in signal QK.




According to the present invention, input limiters


230


and


260


may be preselected according to quantity request QK. In the case of medium and high loads, the drive train usually rests securely. Changes in quantity request in this range do not usually cause any transition in state between thrust and traction. Therefore, no load shock can occur here either. Input limits


230


and


260


are designed so that damping of load shock is deactivated at these operating points.




Output limit


290


guarantees that the highest allowed quantity values are not exceeded. Through suitable choice of lag elements, input limiter, the transmission characteristic of the high-pass filters, the low-pass filter and output limiter, the performance of the filter may be optimally adapted to any desired vehicle.





FIG. 3

shows the behavior of the various signals plotted as a function of time. At time T


1


, the quantity request changes to an increased quantity. At time T


3


, the quantity request returns to its original level. This is plotted in Sub

figure 3



a


. Sub

figure 3



b


shows the output signal of low-pass filter


210


. After time T


1


, signal QKF


0


approaches its new end value according to an exponential function, for example. After time T


3


, signal QF


0


does not return directly, but instead the transition to its original output value takes place only after a certain delay after time T


4


. This lag between time T


3


and time T


4


is caused by first lag element


200


.




Sub

figure 3



c


shows a diagram of output signal QKF


1


of the first high-pass filter. This filter produces a positive pulse at time T


1


and a negative pulse at time T


3


, i.e., the first high-pass filter produces a positive quantity pulse in the transition to increased fuel quantities and a negative quantity pulse in the transition to lower fuel quantities.




Output signal QKF


2


of second high-pass filter


270


is plotted in Subfigure


3


D. The second high-pass filter produces a negative quantity pulse in the transition to larger quantities and a positive quantity pulse in the transition to smaller quantities. Furthermore, the respective quantity pulse is delayed by lag element


250


by a certain lag time, i.e., the negative pulse does not occur at time T


1


but instead occurs at time T


2


, and the positive quantity pulse does not occur at time T


3


but instead at time T


4


.




In the embodiment illustrated here, a first high-pass filter generates a positive quantity pulse in the transition to larger quantities and a negative quantity pulse in the transition to lower quantities. The second high-pass filter generates an inverse quantity pulse with a time lag. The low-pass filter connected in parallel relays the corresponding quantity request directly with a given characteristic. Output signal QKF of filter means


120


as illustrated in Sub

figure 3



a


is obtained by addition of these three filtered signals.




Two corresponding quantity pulses can occur in the transition to an altered quantity request. In other words, in the transition to an increased quantity, there is first a positive quantity pulse and then a negative quantity pulse, and in the transition to smaller quantities there is first a negative quantity pulse and then a positive quantity pulse. This guarantees that no load shock will occur.




The procedure according to the present invention is not limited to the embodiment described here having a low-pass filter and a high-pass filter. In particular, corresponding digital filters having a suitable performance characteristic may also be used. It is essential that filtering takes place so that the filtered signal has at least a corresponding pulse in the transition to a modified signal. This means that a positive pulse occurs in the transition to an increased value, and a negative pulse occurs in a transition to a lower value.




The procedure according to the present invention has so far been illustrated using the example of fuel quantities. However, the procedure according to the present invention may also be used accordingly for torque signals or other quantities corresponding to the quantity of fuel.




The quantity request received by the control element can be filtered accordingly. However, the output signal of sensor


140


or another quantity corresponding to the driver's selection may also be filtered accordingly.



Claims
  • 1. A method of controlling a drive unit of a vehicle having an actuator element for influencing power provided to the drive unit, the method comprising:determining a power determining signal from a position of an operating element of the drive unit of the vehicle; filtering the power determining signal with a filter, the filter including at least one high-pass filter and at least one low-pass filter connected in parallel; and controlling the actuator element of the drive unit of the vehicle as a function of the filtered power determining signal.
  • 2. The method according to claim 1, wherein the filtered power determining signal has at least one pulse that corresponds in direction to a direction of a change in power derived from the power determining signal.
  • 3. A method of controlling a drive unit of a vehicle having an actuator element for influencing power provided to the drive unit, the method comprising:determining a power determining signal from a position of an operating element; filtering the power determining signal with a filter, the filter including at least one high-pass filter and at least one low-pass filter connected in parallel; and controlling the actuator element as a function of the filtered power determining signal; wherein the at least one high-pass filter includes first and second high-pass filters connected in parallel.
  • 4. The method according to claim 3, wherein signals of at least one ofi) both the first and second high-pass filters, and ii) the low-pass filter are phase-shifted relative to one another.
  • 5. A device for controlling a drive unit of a vehicle having an actuator element for influencing power provided to the drive unit, comprising:a quantity input determining unit for determining a power-determining signal from a position of an operating element of the drive unit of the vehicle; and a filter unit coupled to the quantity input determining unit, the filter unit including at least one high-pass filter and one low-pass filter connected in parallel, the filter unit filtering the power-determining signal output from the quantity input determining unit, wherein the actuator element of the drive unit of the vehicle is controlled as a function of the filtered power-determining signal.
  • 6. The device according to claim 5, wherein the filtered power-determining signal has at least one pulse that corresponds in direction to a direction of a change in power derived from the power-determining signal.
  • 7. The method according to claim 1, wherein the operating element of the drive unit of the vehicle includes at least one of an acceleration pedal of the vehicle and a rotary potentiometer.
  • 8. The method according to claim 1, wherein the actuator element of the drive unit of the vehicle includes at least one of a fuel metering device and a solenoid valve.
  • 9. The device according to claim 5, wherein the operating element of the drive unit of the vehicle includes at least one of an acceleration pedal of the vehicle and a rotary potentiometer.
  • 10. The device according to claim 5, wherein the actuator element of the drive unit of the vehicle includes at least one of a fuel metering device and a solenoid valve.
  • 11. A device for controlling a drive unit of a vehicle including an actuator element for influencing power provided to the drive unit, comprising:a quantity input determining unit configured to determine a power-determining signal from a position of an operating element of the drive unit of the vehicle; and a filter unit coupled to the quantity input determining unit, the filter unit including at least one high-pass filter and one low-pass filter connected in parallel, the filter unit configured to filter the power-determining signal output from the quantity input determining unit; wherein the actuator element of the drive unit of the vehicle is configured to be controlled as a function of the filtered power-determining signal.
  • 12. The device according to claim 11, wherein the filtered power-determining signal has at least one pulse that corresponds in direction to a direction of a change in power derived from the power-determining signal.
  • 13. The device according to claim 11, wherein the operating element of the drive unit of the vehicle includes at least one of an acceleration pedal of the vehicle and a rotary potentiometer.
  • 14. The device according to claim 11, wherein the actuator element of the drive unit of the vehicle includes at least one of a fuel metering device and a solenoid valve.
Priority Claims (1)
Number Date Country Kind
100 18 551 Apr 2000 DE
PCT Information
Filing Document Filing Date Country Kind
PCT/DE01/01411 WO 00
Publishing Document Publishing Date Country Kind
WO01/79674 10/25/2001 WO A
US Referenced Citations (3)
Number Name Date Kind
4337839 Taplin Jul 1982 A
4345558 Yamaguchi et al. Aug 1982 A
5919244 Danz et al. Jul 1999 A
Foreign Referenced Citations (3)
Number Date Country
195 34 633 Dec 1996 DE
198 38 454 Mar 2000 DE
0 449 160 Oct 1991 EP