The invention relates to a method and an arrangement for controlling a drive unit.
A method and an arrangement of the above kind are disclosed in DE 195 36 038 A1 (U.S. Pat. No. 5,692,472). There, in the context of the control of a drive unit of a motor vehicle, for monitoring purposes, a quantity, which represents an output quantity of the drive unit, is compared to a maximum permissible value, which is pregiven for this quantity. Fault reaction measures are initiated when the quantity exceeds the pregiven permissible value. Examples of the output quantity of the drive unit are: the power of the drive unit or a torque of the drive unit, for example, the indicated torque, the output torque, et cetera. In one embodiment, the computer, which executes the control of the drive unit, includes at least two mutually separate program levels. The described comparison for monitoring purposes is computed in the second program level. The first program level is reserved for programs which compute the functions provided for the control of the drive unit. In another embodiment, a limiting of the input value to the maximum permissible value is undertaken in the first program level. This input value controls the drive unit.
For determining the maximum permissible value, and when no drive command of the driver is present, in general, the largest occurring value of the output quantity, which can be adjusted by the idle control, is inputted. In this way, an unlimited drivability is ensured. Especially in vehicles having small motors, low rolling resistance or a low inner friction, consumers such as a climate control compressor, a torque converter, et cetera, operate greatly on the output quantity of the drive unit so that, with respect to drivability, relatively large permissible values are to be inputted.
To improve the accuracy of the determination of the permissible value of the output quantity, and according to U.S. Pat. No. 6,076,500, an expansion of the maximum permissible value is undertaken for the restart phase for a cold drive unit, whereby, in this region, ancillary functions can operate uninfluenced and simultaneously, outside of this region, a relatively precise determination of the maximum permissible value and therefore a large effectivity is achieved for the fault detection. However, with this method, only two operating states are distinguished.
From the not published German patent application 199 63 759.8 of Dec. 30, 1999, it is known, for determining the permissible value, to compute a weighting with the maximum permissible driver command between a maximum permissible and a minimum permissible value. Here, the permissible requirements of the consumer and of the idle controller are additionally checked via a separate path and considered. With a defective computation of these components, these components are limited.
The described known solutions do not provide optimal results in all cases.
With the use of the so-called splines, a continuous smooth reduction of the permissible values of the output quantity is achieved in an advantageous manner in critical operating states of the engine. In comparison to a conventional bit-controlled reduction, this affords the advantage that the reduction does not take place in a jump-like manner and so the danger of vibrations and load impacts, which are often perceived by the driver as too violent, is avoided.
The reduction of the permissible values of the output quantity takes place in a preferred embodiment in each case of a fault; in other embodiments, only in selected faults at least when faults, which increase the output quantity, are perceived as especially disturbing by the driver, that is, for a released accelerator pedal and an rpm above the idle rpm; and/or when the brakes are depressed.
In the reduction of the permissible values of the output quantity, a characteristic line is utilized which is dependent upon engine rpm and is carried out in such a manner that the permissible values of the output quantity reach the value zero for greatly increased rpm. In this way, acceptable fault reactions are obtained even for light-running engines.
It is especially advantageous that the permissible value of the output quantity is reduced when the brake is depressed and the vehicle can be easily braked in the case of a fault.
The introduction of a dead time when filtering the permissible values of the output quantity is of special advantage because, in this way, the intake manifold dead time of the intake system is considered. This leads to a simplified application of the utilized filter constant and leads to the situation that a possibly present dashpot function is not limited.
Furthermore, in an advantageous manner, a more rapid fault reaction is achieved via an initialization of this filter with the reduction of the pedal path. This is especially true for a fault wherein a maximum driver command is pregiven. With this fault, an acceleration up to the maximum rpm can occur, the improved filtering reduces such overshoots. The tendency to vibration of the engine in the case of a fault is significantly reduced with the initialization via the reduction of the pedal path.
Special advantages are provided in systems wherein permissible values of the output quantity are formed in two program levels, the level 1 and the level 2. The reduction of the permissible values of the output quantity by means of splines is carried out only in level 1, so that the complexity of application is clearly reduced. Furthermore, a significantly more rapid fault reaction is reached especially in level 1 with the initialization of the filter by means of the pedal path signal; whereas, the overshoots in the level 2 are reduced for the above-mentioned fault.
Especially advantageous is furthermore a consideration of additional torque requests in the cold start, for example, for switching in additional consumers or control functions. This leads to an improved availability while simultaneously improving the accuracy of the monitoring.
The invention will be explained in greater detail with reference to the embodiments shown in the drawing.
In
In
The input quantities, which are supplied to the control unit 10, are converted into at least one actuating quantity by means of the programs running in the computer. This actuating quantity controls at least one condition variable of the drive unit 12 in the sense of the input variables via at least one output line 40 of the control unit 10. In the preferred embodiment, a desired torque is determined as a desired value for an output quantity from the input quantities, especially the accelerator pedal position and engine rpm. This desired value is converted into drive signals for controlling the throttle flap position, the ignition angle and/or the engine temperature, et cetera, of an internal combustion engine. The torque of the engine (that is, its output quantity) approaches the pregiven desired value.
In another embodiment, in lieu of a torque, the power of the drive unit, its rpm, et cetera, is correspondingly controlled as output quantity. The procedure described hereinafter is not only used in connection with an internal combustion engine but also with other types of drive units, for example, electric motors.
In the preferred embodiment, a partition of the programs into at least two levels is provided. Programs are assigned to the first level which carry out the control function as well as the above-mentioned desired value limiting; whereas, monitoring programs are assigned to the second level which likewise are described in the state of the art mentioned initially herein.
A maximum permissible value is determined in dependence upon the engine rpm for computing the maximum permissible value for the output quantity of the drive unit. The basis of the minimum value is defined by the maximum permissible values of the output quantity for a released pedal. These values are determined in dependence upon the engine rpm and are corrected by means of: a corrective value for the cold start phase, which is formed in dependence upon engine temperature and engine rpm; a corrective value for active catalytic converter heating function, which is likewise dependent upon rpm; and/or permissible consumer requirement values. The permissible consumer requirement values represent the maximum permissible requirement values of the active consumers and/or of a power stabilizing function. These values are put together to the minimum permissible output quantity value. For determining the maximum permissible value of the output quantity, which forms the basis for the comparison for monitoring, the maximum permissible value is weighted between the above-described minimum and maximum permissible values, preferably interpolated. This maximum permissible value was determined from the accelerator pedal position and the engine rpm in accordance with a characteristic field.
In this way, a precise determination of the maximum permissible value of the output quantity of the drive unit is obtained which forms the basis of the monitoring mentioned initially herein. The described procedure takes place with the formation of the maximum permissible values in the level 1 as well as in the level 2.
In the case of a fault, the permissible values of the output quantity are made more sharp, that is, reduced. This sharpening does not take place in a jumplike manner, but continuously and smoothly via so-called splines. These splines permit transition states to be defined so that not only black/white conditions are present but also gray zones. Splines of the first order have the following general formula wherein the input quantity is the variable X, the output quantity is the variable Y and the transition region is identified by ε:
The output signals of several splines can be logically coupled to each other like bits. A multiplication defines a logic AND coupling, an addition defines a logic OR coupling.
In addition to splines of the first order, also splines of higher order can be used which, however, represent an increased complexity of computation. As an example for a spline of the second order, the following general equation is mentioned:
With a spline of the second order, continuity in the first derivation is also ensured. The danger that vibrations can be excited is thereby still further minimized.
In the present application, the splines are used in order to be able to better control the permissible value in specific operating states and to reduce. Such an operating state is present when the pedal angle is 0, that is, the accelerator pedal is released and/or the brakes are depressed, when the rpm is greater than the idle desired rpm and/or when the air desired torque or ignition desired torque exceed the maximum permissible torques.
The last condition is only present in a preferred embodiment and can be omitted in other embodiments.
A fault indicator is obtained from the logic coupling of these conditions with the splines. If one of the input quantities of the spline approaches its limit up and into the applicable gray zone, then the affected spline supplies values between 0 and 1. The fault indicator then supplies values different from 0 when all conditions are located at least in their gray zones. Dependent upon the value of the fault indicator, a value, which is to be applied, is subtracted from the permissible output quantities. If all conditions are satisfied, the value of the fault indicator is 1. Then the largest applied value is subtracted from the permissible values and the fault reaction is, in this way, more controllable.
Furthermore, a dead time is introduced in the determination of the permissible values in addition to the filtering. This dead time considers the intake manifold performance. Filter and dead time are initialized by a reduction of the pedal path. Furthermore, the minimum charges of an internal combustion engine are considered in the determination of the permissible value in accordance with the description which follows.
Sequence diagrams are shown in
From the supplied quantities “pedal position WPED” and “engine rpm Nmot”, the maximum permissible driver command torque MIFAZUL is formed in a first characteristic field 100. Furthermore, a minimum permissible torque MIMINZUL is formed in dependence upon the engine rpm and the engine temperature Tmot in 102; whereas, in 104, a maximum permissible maximum torque MIMAXZUL is determined, for example, on the basis of the engine rpm.
The determination of the minimum and maximum permissible torques is essentially known from the state of the art mentioned initially herein. In a preferred embodiment, the maximum permissible torque is formed from the smaller value of the maximum permissible torque, which is read out of the characteristic line in dependence upon rpm, and of the maximum torque which actually occurred in the past.
For the minimum torque, a cold start amount is additively superimposed in dependence upon the engine temperature additionally in the cold start. Depending upon the engine temperature, time-dependent filtered differently sized components are considered. In this way, the maximum permissible torque is expanded in the cold start so that the availability of the vehicle is less intensely limited in this region.
In 106, a preliminary value of the maximum permissible torque MIZUV is formed in accordance with the weighting of the maximum permissible, relative driver desired command torque MIFAZUL and between the minimum and maximum permissible torques. The preliminary maximum permissible torque MIZUV is supplied to a dead time member 108. The dead time is orientated on the dead time of the intake manifold system of the internal combustion engine or corresponds to this dead time. After the dead time member, the preliminary permissible torque is then supplied to a lowpass filter 110 and is there filtered. The output signal is the filtered maximum permissible torque MIZUFIL. The filtering is initialized when a pullback of the accelerator pedal was recognized. This takes place via a corresponding threshold value switch 112 to which the pedal position signal WPED is supplied. The switch 112 generates an output signal when the accelerator pedal is pulled back, that is, for example, when this drops below a threshold value. The output signal leads, on the one hand, to an initialization of the filter 110 with the preliminary maximum permissible value as well as to a switchover of the switch element 114 into the position shown by the broken line. This position means that the filtered maximum permissible value is outputted. Further, it is provided that the filter 110 is to be initialized when external torque requests are present, for example, requests of an engine drag torque controller, a drive slip controller, et cetera. In this case, the pullback of the preliminary maximum permissible torque MIZUV is evaluated as a second initialization quantity in lieu of the pullback of the accelerator pedal position. Furthermore, in a comparison element 116, the filtered maximum permissible torque MIZUFIL is compared to the unfiltered MIZUV. If the unfiltered is less than the filtered, then the switch element 114 is switched over into the position shown by the solid line via the output line of the comparator element 116. This means that the unfiltered torque is transmitted further rather than the filtered maximum permissible torque.
In a corresponding manner, the dead zone member 108 is initialized with the preliminary value.
As a rule, the unfiltered maximum permissible torque is transmitted for further processing insofar as no pullback of the accelerator pedal was detected. In this case, the maximum permissible torque is filtered because the pullback of the accelerator pedal becomes noticeable only after a specific dead time with delay of the torque. To prevent that too rapid a reduction of the maximum permissible torque occurs and therefore a fault reaction occurs too rapidly, the filtered maximum permissible torque is transmitted via the dead zone member 108 and the filter 110. With the initialization of the dead zone member and filter, the unfiltered torque is set as starting point. As soon as the filtered torque is less than the unfiltered torque, the unfiltered torque is transmitted again.
The permissible torque MIZUL, which is formed in this manner, is then processed further in accordance with FIG. 3. In
To determine the reduction factor, which is considered in the difference stage 126, the-above-mentioned splines are utilized. In
In this way, and as mentioned above, a value is formed between 0 and 1 by the splines for the case that the input quantity thereof enters into the gray zone region ε. For input quantities below the gray zone region, the value 0 is the output quantity of the splines. If the value deviates from 0, then the corrective value, which is dependent upon the engine rpm, is superposed on the maximum permissible torque in the multiplier position 132 and is weighted in the accordance with the extent of the entry of the input quantities into the gray zone region. At the end of the gray zone region, when the threshold value is reached, the output value assumes the value 1. In this way, the maximum permissible torque is continuously reduced when approaching the abovementioned operating states.
A further value, which is to be superposed in the logic position 208, is formed in filter 214. The filter 214 preferably defines a lowpass filter, wherein an engine temperature dependent value, which is formed in 216, is filtered. In 216, the engine temperature tmot is read in and is set in relationship to a fixed temperature value TNS and, if required, is weighted with additional pregiven quantities. The temperature value defines a limit value which delimits the operating state of the cold start from other states. In the preferred embodiment, the signal dm_zusatz, which is supplied to the filter, is formed as follows:
dm—zusatz=(TNS−tmot)*dmzul/Δmns
wherein dmzul and Δmns are fixedly pregiven weighting quantities.
The lowpass filter is configured in such a manner that a filtering only takes place when a positive flank was detected in the condition signal B_zusatz (see 218), that is, only with the occurrence of a new torque request. The value dm_zusatz, which is present at this time point, is filtered at a specific time constant. Changes of this value after the above-mentioned time point are not considered. The filtered value dm_zusatz therefore defines a time-dependent filtered engine temperature-dependent component (cold start amount).
The described determination of the minimum permissible torque takes place in level 1 as well as in level 2.
The measures, which are defined in the context of the above description, are applicable depending upon the embodiment individually or in any combination and include the following: the consideration of splines; the filtering of the maximum permissible value; the formation of the cold start amount for the minimum permissible torque; and, the consideration of the minimum charge.
Number | Date | Country | Kind |
---|---|---|---|
100 36 282 | Jul 2000 | DE | national |
This application is the national stage of PCT/DE01/02690, filed Jul. 17, 2001, designating the United States.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTDE01/02690 | 7/17/2001 | WO | 00 | 1/27/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0208595 | 1/31/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5484351 | Streib et al. | Jan 1996 | A |
5692472 | Bederna et al. | Dec 1997 | A |
5931136 | Isobe et al. | Aug 1999 | A |
6035825 | Worth et al. | Mar 2000 | A |
6076500 | Clement et al. | Jun 2000 | A |
6220221 | Flinspach et al. | Apr 2001 | B1 |
6220226 | Alm et al. | Apr 2001 | B1 |
6223721 | Bauer et al. | May 2001 | B1 |
Number | Date | Country |
---|---|---|
197 41 565 | Apr 1999 | DE |
198 14 743 | Oct 1999 | DE |
199 63 759 | Jul 2001 | DE |
WO 9913207 | Mar 1999 | WO |
WO 99 23379 | May 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20030183193 A1 | Oct 2003 | US |