The present invention relates to a method and drive unit for a motor vehicle, comprising an internal combustion engine, a manually adjustable throttle control and an electronic engine control unit for controlling the engine torque and engine speed, and to which the throttle control is electrically connected, and in which engine control unit a first and a second throttle control characteristics are stored. Said engine torque and engine speed are controlled via said throttle control and one of said throttle control characteristics.
It has become more and more common in motor vehicles of late to replace a mechanical wire linkage system coupling the accelerator pedal position or its movement to the engine throttle and fuel engine system with electronic transmission for controlling engine torque and speed. A sensor coupled to the accelerator pedal provides signals representing throttle control position to an electronic control unit, commonly in the form of a microprocessor, which controls engine functions as a function of the sensed throttle control position. To achieve this, throttle control characteristics mapping engine torque as a function of r.p.m. for various throttle control positions is stored in the control unit.
Automatic transmissions of the Automatic Mechanical Transmission (AMT) type have become increasingly common in heavy-duty vehicles as microcomputer technology has continued to advance and has made it possible, with a control computer and a number of control elements, for example servo motors, to precision-control the engine speed, the connection and disconnection of an automated clutch between engine and gearbox and coupling members of the gearbox, relative to one another, so that smooth gearshift is always obtained at the correct rev speed. The advantage with this type of automatic transmission compared to a traditional automatic transmission based on a set of planetary gears and with a hydrodynamic torque converter on the input side is firstly that, particularly as regards use in heavy vehicles, it is simpler and more robust and can be produced at substantially lower cost, and secondly that it has higher efficiency, which means the prospect of lower fuel consumption.
WO03048547 shows an arrangement where a computer matrix plotting engine torque as a function of engine speed for various throttle control positions is changed between two different matrixes depending on whether the vehicle is accelerating or not. This is achieved by that a first and a second computer matrix (or throttle control characteristics) are stored in the engine control unit. The curves for the throttle control positions in the diagram of the second matrix have a steeper slope than the curves in the diagram of the first matrix. The engine control unit is disposed, at a setting of: the throttle control giving rise to an acceleration exceeding a predetermined minimum acceleration, to control the engine torque and engine speed along the curves in the first matrix diagram and, upon a signal indicating a drop below said minimum acceleration, to control the engine torque and engine speed along the curves in the second matrix diagram, so that for a certain change in engine speed, a greater change in torque will be provided than when controlling along the curves in the first matrix diagram.
The first matrix in WO03048547 is designed so that the engine control unit provides even acceleration for each throttle control position, i.e. with as little jerking as possible when gear shifting during the acceleration. This is achieved with relatively flat throttle control curves. At the same time the control unit, after having reached the target vehicle velocity at constant throttle control position, maintains this velocity with very small deviations. This is achieved with the second matrix where throttle control position curves are as steep as possible. Steep curves provide large increases in torque for a minor drop in r.p.m. and speed.
The practical experience of the acceleration dependent change between the two different matrixes according to the arrangement in WO03048547 has not been satisfying. When driving at low approximately constant vehicle speeds and the throttle being controlled via a matrix with flat throttle control curves gives the driver difficulties in trying to keep constant speed in lower gears. This is due to that a small torque change gives a relatively big vehicle speed change.
It is desirable to improve the drivability especially at low approximately constant vehicle speeds.
The method and device according to an aspect the invention is for modifying throttle control characteristics of a throttle control in a vehicle, said vehicle comprising an engine coupled to engine driven vehicle wheels via a stepped gear mechanical transmission, and where requested engine torque at a given engine speed of said engine is controlled as a function of positions of said throttle control. The invention is characterized by; when a control unit is sensing a gear shift to a vehicle high speed gear, said control unit is disposed to modify said characteristics so the engine torque and engine speed will be controlled via said throttle control along a first set of relatively flat curves, when said curves are plotted in a diagram with engine torque on the y-axis and engine speed on the x-axis, and when sensing a gear shift to a vehicle low speed gear, modify said characteristics so the engine torque and engine speed will be controlled via said throttle control along a second set of curves, that are steeper than said first set of curves, so that when driving with a vehicle low speed and for a certain change in engine speed, a greater change in torque will be provided than when controlling is done in accordance with the first set of curves.
The advantage with the method and device according to an aspect of the invention is that a change of the throttle control characteristics so that the controlling will be performed in accordance with the steep curves at vehicle low speed gears, gives a much smaller speed variation with a corresponding torque change compared to said flat curves. The overall drivability of the vehicle increases.
The present invention will be described in greater detail below with reference to the accompanying drawings which, for the purpose of exemplification, shows further preferred embodiments of the invention and also the technical background, and in which:
The drive unit 1 shown in
In the automatic mode gear selections and shift decisions are made by the control unit 18 based on certain measured and/or calculated parameters such as vehicle speed, engine speed, rate of change of vehicle speed, rate of change of engine speed, throttle control position, rate of change of throttle control position, actuation of a vehicle braking system, currently engaged gear ratio and the like are known from prior art.
At point C on the curve A2 representing 40% of full throttle opening, the engine speed is 1600 r.p.m. and the torque is 820 Nm. With a gear ratio of 1,25:1 for current engaged gear speed, the torque at the output shaft of the gearbox will be 1025 Nm. After shifting up to a gear speed with the ratio 1:1 with constant throttle opening, i.e. still 40%, the engine speed will drop to 1280 r.p.m. at the same time as the torque at the output shaft of the gearbox will rise to 1025 Nm (see point D), i.e. the same torque as prior to shifting. This means that, at constant throttle control position, the output torque from the gearbox, prior to and after shifting between adjacent vehicle high speed gears, will be at least approximately constant. By virtue of the fact that the output torque is the same prior to and after shifting, the unavoidable little break in torque delivery, when the clutch 4 between the engine and the gearbox 9 is released, will be unnoticed, i.e. with minimal jerking, and the acceleration will be experienced as being constant.
As mentioned above
According to a preferred embodiment of the invention the engine control unit 15 is programmed to modify said throttle control characteristics from controlling along said vehicle high speed curves, corresponding to a first throttle control characteristic (A-curves), to controlling along said vehicle low speed curves, corresponding to a second throttle control characteristic (G-curve), when the transmission control unit 18 is changing gear from a vehicle high speed gear to a vehicle low speed gear. The opposite modification of the throttle control characteristics will happen when the transmission control unit is changing gear from a vehicle low speed gear to a vehicle high speed gear.
The actual function for controlling the throttle opening as a function of throttle control position and engine r.p.m. can be realized in several ways. It can be done via algebraic algorithms (maps, matrices etc) or dynamic algorithms (transfer functions, differential equations etc) or combinations of the mentioned examples or other known methods. The result of a controlling via one or several of the mentioned methods, when plotted in a diagram like the one in
In a further preferred embodiment of the invention said vehicle low speed gears are defined as being the same as vehicle idle driving gears. Idle driving gears are those low gears (one or several of total number of gears) with a high gear ratio where the driver is allowed to idle drive, which means that the transmission control unit holds a gear even if the accelerator pedal is not depressed at all and the engine speed reaches its lower engine speed limit for down shifting. A down shift will not occur when an idle driving gear is engaged and when an engine low speed limit is reached. Idle driving gears are gears where the driver is expected to drive in a constant relatively low vehicle speed. When idle driving, the engine control unit will fuel the engine so that the engine rpm will not decrease further below said lower engine speed limit, thus, killing the engine is avoided.
Now follows an example of an embodiment of the invention where a change or modification of said throttle control characteristics is performed. This will be explained with reference to
In a preferred embodiment the transmission control unit 18 switches over the engine control unit 15 to control the throttle opening with throttle control characteristics following one of the steep (G) or flat (A1 to A5) curves. The curves G are preferably as steep as possible to give a smaller speed variation with a corresponding torque change. The curves G cannot, however, be infinitely steep. Essentially, the curves G can be said to be described by y=k*x+m, where y=torque, k=slope and x=r.p.m. If the driving resistance increases at the same time as the driver maintains constant throttle opening, there will be a substantially greater additional torque for a given drop in speed, which is revealed by the diagram in
The sequence shown in
In another embodiment the control units 15 and 18 can be replaced with only one control unit or the opposite three or more control units to perform the functions according to the inventive embodiments mentioned above.
In a further embodiment of the invention the transmission 10 could be a manual or semiautomatic gear stepped mechanical transmission.
The invention should not be deemed to be limited to the embodiments described above, but rather a number of further variants and modifications are conceivable within the scope of the following patent claims.
The present application is the U.S. National Stage application of PCT/SE2006/001008, filed Sep. 1, 2006, which claims priority of U.S. Provisional Application No. 60/596,214, filed Sep. 8, 2005.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE2006/001008 | 9/1/2006 | WO | 00 | 2/26/2008 |
Number | Date | Country | |
---|---|---|---|
60596214 | Sep 2005 | US |