This disclosure relates generally to methods for controlling a tension applied to a web member moving through a device, and more particularly to methods for maintaining tension applied to media webs in printers.
In general, inkjet printing machines or printers include at least one printhead unit that ejects drops of liquid ink onto recording media or an imaging member for later transfer to media. Different types of ink may be used in inkjet printers. In one type of inkjet printer, phase change inks are used. Phase change inks remain in the solid phase at ambient temperature, but transition to a liquid phase when heated to a melting temperature. The printhead unit ejects melted ink supplied to the unit onto media or an imaging member. Once the ink is ejected onto media, the ink droplets quickly solidify.
The media used in both direct and offset printers may be in web form. In a web printer, a continuous supply of media, typically provided in a media roll, is entrained onto rollers that are driven by motors. The motors and rollers pull the web from the supply roller through the printer to a take-up roll. The rollers are arranged along a linear media path, and the media web moves through the printer along the media path. As the media web passes through a print zone opposite the printhead or heads of the printer, the printheads eject ink onto the web.
Moving the web through the media path in a controlled manner presents challenges to web printing systems. As the media web moves through various portions of the media path, one or more of the rollers apply tension to the web. An appropriate level of tension between the media web enables the media web to engage the rollers in the media path via friction without slipping. During operation, however, one or more rollers that contact the media web may slip relative to the motion of the web, resulting in a drop in the tension of the media web. Various causes of the drop in tension include excess slack introduced by a media web winder or rewinder, variations in the rotational rates of two or more drive rollers that are positioned on the media path, and a loss of friction between the media web and a roller due to oil or other substance on the web that reduces the coefficient of friction between the media web and the roller.
If the web slips when engaged with one or more rollers in the media path, the position of the media web with respect to the printheads is affected and errors in images formed on the media web may occur. Media slippage may produce positional errors based on calculations of web velocity because the actual velocity of the web and the web velocity identified with respect to the angular velocity of the rollers differ. These positional errors may adversely impact the effectiveness of registration techniques that coordinate the operation of multiple printheads to form ink images on the media web. When a media web slips over rollers in the media path, one solution known to the art increases a normal force between one or more rollers and the media web to reduce or eliminate the slip and restore tension to the web. The increased normal force applied to the media web may be great enough to distort or break the media web. Thus, improvements in operating continuous web printing systems to reduce slip on the media web while maintaining the normal force that is applied to the media web within an operating range would be beneficial.
In one embodiment, a method of adjusting operation of a printing apparatus has been developed. The method includes moving a web over a first roller and along a media path in a process direction at a web linear velocity, operating an actuator to rotate a second roller that is in contact with the web, the second roller being at a location on the media path that is offset from the first roller in the process direction, identifying at least one of a first velocity difference and a second velocity difference between a linear velocity of the second roller and at least one of a linear velocity of the first roller and the web linear velocity, respectively, the at least one of the first and second velocity differences being positive when the linear velocity of the second roller is greater than the at least one of the linear velocity of the first roller and the web linear velocity, respectively, and adjusting operation of the actuator to modulate the linear velocity of the second roller between a first linear velocity and a second linear velocity in response to the identified at least one of the first and second velocity differences being positive and above at least one of a first velocity differential threshold and a second velocity differential threshold, respectively, the first linear velocity being greater than the second linear velocity and the first and second linear velocities being greater than the at least one of the linear velocity of the first roller and the web linear velocity.
A printing apparatus that is configured to adjust tension on a media web has been developed. The apparatus includes a plurality of rollers configured to move a media web along a media path in a process direction, a first roller in the plurality of rollers rotates to move the web in the process direction at a web linear velocity, and a second roller in the plurality of rollers is positioned along the media path at a location that is offset from the first roller in the process direction, an actuator operatively connected to the second roller, the actuator being configured to rotate the second roller to move the media web past the second roller in the process direction, and a controller operatively connected to the actuator, the controller being configured to operate the actuator to adjust a rotation of the second roller to move the media web past the second roller, identify at least one of a first velocity difference and a second velocity difference between a linear velocity of the second roller and at least one of a linear velocity of the first roller and the web linear velocity, respectively, the at least one of the first and second velocity differences being positive when the linear velocity of the second roller is greater than the at least one of the linear velocity of the first roller and the web linear velocity, respectively, and adjust operation of the actuator to modulate a linear velocity of the second roller between a first linear velocity and a second linear velocity in response to the identified at least one of the first and second velocity differences being positive and above at least one of a first velocity differential threshold and a second velocity differential threshold, respectively, the first linear velocity being greater than the second linear velocity and the first and second linear velocities being greater than the at least one of the linear velocity of the first roller and the web linear velocity.
For a general understanding of the environment for the system and method disclosed herein as well as the details for the system and method, the drawings are referenced throughout this document. In the drawings, like reference numerals designate like elements. As used herein the term “printer” refers to any device that is configured to eject a marking agent upon an image receiving member and includes photocopiers, facsimile machines, multifunction devices, as well as direct and indirect inkjet printers and any imaging device that is configured to form images on a print medium. As used herein, the term “process direction” refers to a direction of travel of an image receiving member, such as an imaging drum or print medium, and the term “cross-process direction” is a direction that is perpendicular to the process direction along the surface of the image receiving member. As used herein, the terms “web,” “media web,” and “continuous media web” refer to an elongated print medium that is longer than the length of a media path that the web traverses through a printer during the printing process. Examples of media webs include rollers of paper or polymeric materials used in printing. The media web has two sides forming surfaces that may each receive images during printing. Each surface of the media web may be viewed as a grid-like pattern of potential drop locations, sometimes referred to as pixels.
As used herein, the term “capstan roll” refers to a cylindrical member that is configured to have continuous contact with media web moving over a curved portion of the member and to rotate in accordance with a linear motion of the continuous media web. As used herein, the term “angular velocity” refers to the angular movement of a rotating member for a given time period, sometimes measured in rotations per second or rotations per minute. The term “linear velocity” refers to the velocity of a member, such as a media web, moving in a straight line. When used with reference to a rotating member, the linear velocity represents the tangential velocity at the circumference of the rotating member. The linear velocity ν for circular members may be represented as: ν=2πrω where r is the radius of the member and ω is the rotational or angular velocity of the member. A media web that is in contact with a roller slips when the tension differential across the roller is greater than what the capstan friction eμθ can support to enable traction. In identifying capstan friction, μ represents the coefficient of friction of the capstan roller, and θ represents the angle of the surface of the capstan roller that contacts the media web. Media web slip generates velocity errors between the media web that is in contact with the roller and the surface of the roller.
The printer 10 includes a web supply and handling system 60, a printhead assembly 14, a web heating system 100, and a fixing assembly 50. The web supply and handling system 60 includes one media supply roll 38 for supplying a media web 20 to the printer 10. The supply and handling system 60 is configured to feed the media web 20 in a known manner along a media pathway in the printer 10 through a print zone 18 located adjacent to the printhead assembly 14, past the web heating system 100, and through the fixing assembly 50. To this end, the supply and handling system 60 includes any suitable device 64, such as drive rollers, idler rollers, tensioning bars, etc., for moving the media web 20 through the printer 10. The printer 10 includes a take-up roll (not shown) for receiving the media web 20 after printing operations have been performed. Alternatively, the media web 20 can be fed to a cutting device (not shown) as is known in the art for cutting the media web into discrete sheets. The printhead assembly 14 is appropriately supported to eject drops of ink directly onto the media web 20 as the web moves through the print zone 18. In other printers in which the media web tension control method and apparatus is used, the printhead assembly 14 is configured to eject drops onto an intermediate transfer member (not shown), such as a rotating drum or belt, for subsequent transfer to a media web or media sheets.
Referring to
Referring again to
Ink is supplied to the printhead assembly from a solid ink supply 24. In aqueous or emulsion ink systems, which use the media web tension control method and apparatus disclosed herein, the liquid ink may be stored in one or more volumetric containers installed in the printer. Since the printer 10 of
Referring still to
In order to form an image with the ink ejected by the printhead assembly 14, image data received by the printer 10 are converted into firing signals that selectively actuate the inkjets in the printheads to eject ink onto the web 20 as the web 20 moves past the printhead assembly 14. The controller 40 receives velocity data from encoders mounted proximately to rollers positioned on either side of the portion of the path opposite the four printhead modules 21A, 21B, 21C, and 21D to compute the position of the web 20 as the web moves past the printhead modules 21A, 21B, 21C, and 21D. The controller 40 uses this velocity data to generate timing signals that are delivered to printhead controllers in the printhead modules that enable the printhead controllers to generate firing signals that actuate selected inkjet ejectors in the printheads. The inkjet ejectors actuated by the firing signals correspond to image data processed by the controller 40.
Referring still to
Referring now to
The second roller 72 is configured to adjust the tension of the media web 20 in response to the measured tension being below a predetermined tension threshold. As used herein, the term “predetermined tension threshold” is a tension value or a range of tension values that enable the media web 20 to engage the first and second rollers 70, 72 by means of static, or non-slip, friction and that do not distort or break the media web 20. When the web tension is at or within the predetermined tension threshold, web tension adjustment is achieved by operating an actuator 74 to increase or decrease a rotation of the second roller 72 to respectively increase or decrease the web tension. However, when the web tension is below the predetermined tension threshold, such as when transient conditions of low friction or insufficient normal force exist between the rollers 70, 72 and the media web 20, the second roller 72 is unable to impose sufficient force along the web 20 by increasing the rotation of the second roller 72 alone.
The web tension control method disclosed herein varies operation of the actuator 74 to increase the tension of the media web 20 when the measured web tension is below the predetermined tension threshold. In one embodiment, proper tensioning is achieved by operating the actuator 74 to modulate a linear velocity of the second roller 72 between different linear velocities. In another embodiment, proper tensioning is achieved by deactivating the actuator 74 to enable the second roller 72 to rotate at a linear velocity of the web 20. In yet another embodiment, proper tensioning is achieved by selectively activating and deactivating the actuator 74 to enable the second roller 72 to rotate at the linear velocity of the web. In yet another embodiment, proper tensioning is achieved by identifying the linear velocity of the web and operating the actuator 74 to rotate the second roller 72 with the identified linear velocity.
The web tension control method can also operate additional actuators in association with the actuator 74 to increase the tension of the media web 20 when the measured web tension is below the predetermined tension threshold. In one embodiment, proper tensioning is achieved by rotating the first roller 70 with a second actuator 80 and operating the actuator 74 to modulate the linear velocity of the second roller 72 between different linear velocities. In another embodiment, proper tensioning is achieved by operating the second actuator 80 to rotate the first roller 70 to move the web 20 a predetermined distance along the media path and operating the actuator 74 to rotate the second roller 72 after the web 20 has moved the predetermined distance. In yet another embodiment, proper tensioning is achieved by operating a third actuator 82 to engage a third roller 78 with the second roller 72 to form a nip with the second roller 72. Additional embodiments of printers employing the web tension control method disclosed herein are configured by combining individual elements of the above-referenced embodiments; thus, this listing of embodiments is not exhaustive.
Referring still to
The printer 10 includes a controller 40 that is operatively connected to the tension sensor 76 and the actuator 74. In an alternative embodiment, the controller 40 is operatively connected to one or both of the second and third actuators 80, 82. The controller 40 is configured to identify the tension of the media web 20 with reference to signals generated by the tension sensor 76. The controller 40 is also configured to operate the actuator 74 to adjust the rotation of the second roller 72. In one embodiment, the controller 40 is similarly configured to operate the second actuator 80 to adjust the rotation of the first roller 70. In an alternative embodiment, the controller 40 is configured to activate the third actuator 82 to move the third roller 78 into engagement with the web 20 to form the nip with the second roller 72. Although the controller 40 has been shown with alternative configurations to operate the second and third actuators 80, 82, a printer operating the web tension control method disclosed herein can employ these configurations in a single embodiment to operate both of the second and third actuators 80, 82.
Referring still to
Although the disclosed embodiment is shown using rotational speed sensors 84, 86 to generate the rotational speed signals that are used by the controller to identify the web linear velocity, a web velocity sensor 87 can be configured to monitor the web directly and generate a signal corresponding to a linear velocity of the web. In this embodiment, the printer controller 40 is operatively connected to the web velocity sensor 87 and configured to receive the signal from sensor 87 that corresponds to the linear velocity of the web. The web velocity sensor 87 can be located anywhere along the media path, but is preferably located near the second roller 72. The sensors 84, 86, 87 are known sensors that operate with known techniques to generate their respective signals. Such techniques include mechanical, optical, radio, or laser techniques to measure a physical parameter and generate an electrical signal corresponding to the measurement.
A flow diagram of a process 200 that controls the tension of the media web in a printer is shown in
After the first velocity difference is computed (block 202), the controller configured to execute the programmed instructions to implement the process 200 determines whether the computed velocity difference is greater than a first velocity differential threshold (block 204). As use herein, the term “first velocity differential threshold” is a velocity differential or a range of velocity differentials that indicate the media web is engaged in static, or non-slip, friction with the first and second rollers. The controller implementing the process 200 compares the velocity difference to the first velocity differential threshold to determine whether the first velocity difference is greater than the first velocity differential threshold. Computing a positive velocity difference that is greater than the first velocity differential threshold can be indicative of the media web being slack or broken or of slipping contact between the media web and the second roller.
If the velocity difference is not greater than the first velocity threshold (block 204), the controller implementing the process 200 computes a velocity difference between the velocity of the second roller and the velocity of the web (block 206). As the web is moved along the media path, the second rotational speed sensor and the web velocity sensor generate respective signals corresponding to the rotational speed of the second roller and the linear velocity of the web. The controller implementing the process 200 transforms the signals into standardized quantities, such as linear velocities, and computes the difference between the second roller velocity and the web velocity. This roller/web velocity difference is positive if the difference of the second roller velocity to the web velocity is greater than zero. A positive roller/web velocity difference indicates that the second roller is rotating faster than the web is moving over the second roller.
After the velocity difference is computed (block 206), the controller implementing the process 200 determines whether the computed roller/web velocity difference is greater than a second velocity differential threshold (block 208). As used herein, the term “second velocity differential threshold” is a velocity differential or a range of velocity differentials that indicate the media web is engaged in static, or non-slip, friction with the second roller. The controller implementing the process 200 compares the velocity difference to the second velocity differential threshold to determine whether the velocity difference is greater than the second velocity differential threshold. Computing a positive roller/web velocity difference that is greater than the second velocity differential threshold can be indicative of the media web being slack or broken or of slipping contact between the media web and the second roller.
In one embodiment of the process 200, the first and second velocity differential thresholds are equal. In an alternative embodiment, the first and second velocity differential thresholds are different. Selecting the first and second velocity differential thresholds can depend on a number of operational parameters, such as the process speed of the printer, the weight and thickness of the web, and the like. In addition, in one embodiment of the process 200, only one of the velocity differences is computed. Similarly, and depending on which one of the velocity differences is computed, only one of the velocity differences is compared to the respective first or second velocity differential thresholds. Selecting which one of the velocity differences is computed can similarly depend on a number of operational parameters, such as those listed above.
If the computed velocity differences are not greater than the respective first and second velocity differential thresholds (blocks 204, 208), the controller implementing the process 200 operates the actuator with a tension controller, such as a servo or PID controller, to adjust the web tension (block 210). Under this type of actuator control, the tension controller receives signals from the tension sensor, transforms those signals into a standardized quantity, such as force or tension, and compares that measured tension to a desired tension, or a tension set. The tension controller then implements an algorithm to generate a varying command to operate the actuator to keep the web tension constant, or near constant, at the tension set.
The tension sensor is preferably located within or near the print zone of the media path; however, the tension measurement can be made anywhere along the media path between the first and second rollers. The tension sensor can employ any method to obtain the tension measurement, such as a load cell positioned at one of the idler rollers located between the first and second rollers. The tension set can be any tension value or range of tension values at or within the predetermined tension threshold. The tension set can be contained in the programmed instructions stored in memory and associated with the controller or can be entered by a user through an I/O device 41 as shown in
Referring again to
The velocity difference 42 between the second roller and the first roller generally increases from zero at 49.5 on the x-axis and decreases to zero at approximately 57.5 on the x-axis during operation of the control method in this example. The increasing magnitude of the velocity difference starting at about 49.5 represents the second roller losing non-slip contact with the web while the decreasing magnitude of the velocity difference ending at about 57.5 represents the second roller regaining non-slip contact with the web.
Referring still to
Referring to
Referring again to
In yet another control method, the controller implementing the process 300 operates the third actuator to move the third roller into engagement with the second roller to form a nip with the second roller (block 318). The formation of the nip between the second and third rollers urges the web into contact with the second roller. Operation of the second roller after formation of the nip advances the web past the second roller to enable the printer to achieve tension when conditions of low friction or low normal force exist between the web and the first and second rollers.
In yet another control method, the controller implementing the process 300 identifies the linear velocity of the web (block 320) and then operates the actuator to rotate the second roller with the identified linear velocity (block 322). In one embodiment, the linear velocity of the web is identified by first measuring the rotational velocities of the first and second rollers and then by calculating the linear velocity of the web with reference to the measured linear velocities of the first and second rollers. In an alternative embodiment, the web velocity can be measured directly. In another embodiment, the measured velocities of the first roller, the second roller, and the web can be used to identify the linear velocity of the web.
In yet another control method, the controller implementing the process 300 operates the second actuator to rotate the first roller with the third linear velocity (block 324) and then actuates the actuator to modulate the linear velocity of the second roller between the first and third linear velocities (block 326). The velocity of the second roller is modulated in the same manner as the velocity modulation control method described in block 314. In yet another control method, the controller implementing the process 300 deactivates the actuator of the second roller (block 328), operates the second actuator to rotate the first roller to move the web a predetermined distance (block 330), and activates the actuator to rotate the second roller after the web has moved the predetermined distance (block 332). In this control method, deactivation of the actuator (block 328) and operation of the second actuator to rotate the first roller (block 330) advance the media web along media path and past the second roller. Subsequent activation of the actuator to rotate the second roller after the web has moved the predetermined distance allows the second roller to engage a new portion of the web. After implementation of one or more of the control methods disclosed in blocks 314-332 of process 300, the controller implementing the process 200 computes one or both of the velocity differences (blocks 202, 206) and assesses whether either of the computed velocity differences are greater than the respective first and second velocity differential thresholds (blocks 204, 208).
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems, applications or methods. Various presently unforeseen or unanticipated alternatives, modifications, variations or improvements may be subsequently made by those skilled in the art that are also intended to be encompassed by the following claims.