This patent application is a National Stage Entry of PCT/CN2018/102926 filed on Aug. 29, 2018, which claims the benefit and priority of Chinese Patent Application No. 201711083480.2 filed on Nov. 7, 2017, the disclosures of which are incorporated by reference herein in their entirety as part of the present application.
The present disclosure relates to the field of display technologies, and more particularly, to a method and a device for controlling a timing sequence, a drive circuit, a display panel, and an electronic apparatus.
At present, liquid crystal display (LCD) panels have become mainstream products in the field of display technologies. The display process of the LCD panels is as follows: a source drive circuit (Source IC) provides, to a data line, a grayscale voltage for a corresponding brightness, and a gate drive circuit (Gate IC) scans a gate of a thin film transistor (TFT). When a transistor is enabled, a voltage of the corresponding data line is supplied to a pixel electrode via the data line and the transistor to charge and discharge a liquid crystal capacitor to form a grayscale, thereby implementing image display.
The display panel may display at different refresh rates. Generally, the refresh rate refers to the number of times of refreshing images by the display panel in unit time, and corresponds to a frame rate of a display signal. When the refresh rate is high, the displayed images have high stability, but power consumption of the display panel is also high. When the refresh rate is low, the displayed images are prone to flickering.
Embodiments of the present disclosure provide a method and a device for controlling a timing sequence, a drive circuit, a display panel, and an electronic apparatus.
A first aspect of the present disclosure provides a method for controlling a timing sequence. In this method, a frame scan timing sequence for a display signal may be set according to a frame rate of the display signal, wherein the frame scan timing sequence includes an active period and a blanking period. The frame scan timing sequence may be arranged to increase the active period as the frame rate of the display signal decreases.
In some embodiments of the present disclosure, the frame scan timing sequence may include a clock signal timing sequence. The clock signal timing sequence may be arranged to increase a cycle of a clock signal as the frame rate of the display signal decreases.
In some embodiments of the present disclosure, the frame scan timing sequence may be further set to have a same blanking period for different frame rates.
In some embodiments of the present disclosure, the method may further include storing a correspondence between the frame rate and the frame scan timing sequence.
In some embodiments of the present disclosure, the method may further include first receiving the display signal. Next, the display signal is decoded to obtain the frame rate of the display signal. The frame scan timing sequence for the display signal is acquired according to the frame rate and the stored correspondence between the frame rate and the frame scan timing sequence. Next, the frame scan timing sequence is outputted.
A second aspect of the present disclosure provides a device for controlling a timing sequence. The device may include a processor. The processor may be configured to set a frame scan timing sequence for a display signal according to a frame rate of the display signal, wherein the frame scan timing sequence includes an active period and a blanking period. The frame scan timing sequence may be arranged to increase the active period as the frame rate of the display signal decreases.
In some embodiments of the present disclosure, the frame scan timing sequence may include a clock signal timing sequence. The clock signal timing sequence may be arranged to increase a cycle of a clock signal as the frame rate of the display signal decreases.
In some embodiments of the present disclosure, the frame scan timing sequence may be further set to have a same blanking period for different frame rates.
In some embodiments of the present disclosure, the device may further include a memory. The memory is configured to store a correspondence between the frame rate and the frame scan timing sequence.
In some embodiments of the present disclosure, the memory may be configured to store a table containing the correspondence between the frame rate and the frame scan timing sequence. In addition, the memory also may be configured to store a function between the frame rate and the frame scan timing sequence.
In some embodiments of the present disclosure, the processor also may be configured to receive the display signal, decode the display signal to obtain the frame rate of the display signal, acquire the frame scan timing sequence for the display signal according to the frame rate and the stored correspondence between the frame rate and the frame scan timing sequence, and output the frame scan timing sequence.
A third aspect of the present disclosure provides a drive circuit for a display panel. The drive circuit may include a gate drive circuit and the device for controlling a timing sequence according to the second aspect of the present disclosure. The device may be coupled to the gate drive circuit and may be configured to provide the frame scan timing sequence to the gate drive circuit.
A fourth aspect of the present disclosure provides a display panel. The display panel may include the drive circuit according to the third aspect of the present disclosure.
A fifth aspect of the present disclosure provides an electronic apparatus. The electronic apparatus may include the display panel according to the fourth aspect of the present disclosure.
To describe the technical solutions of the present disclosure more clearly, the accompanying drawings of the embodiments will be briefly introduced below. It is to be known that the accompanying drawings in the following description merely involve with some embodiments of the present disclosure, but not limit the present disclosure. In the figures:
To make technical solutions and advantages of the embodiments of the present disclosure clearer, the technical solutions in the embodiments of the present disclosure will be described clearly and completely below, in conjunction with the accompanying drawings. Apparently, the described embodiments are merely some but not all of the embodiments of the present disclosure. All other embodiments obtained by those of ordinary skill in the art based on the described embodiments without creative efforts shall fall within the protection scope of the present disclosure.
Hereinafter, unless otherwise stated, the expression “Component A being coupled to Component B” means that the Component A is directly coupled to the Component B or is indirectly coupled to the Component B through one or more other components.
As used herein, the singular forms “a”, “the” and “said” may be intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, the terms “comprising” and “including” specify the presence of the features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “display signal” refers to a multi-frame image signal, a video signal, an image signal, or the like. The display signal is outputted to a display panel via an element having a display signal output capability, such as a graphics card, an image controller, an image processor, and the like.
As used herein, the term “communication connection” may be implemented through a wired connection, such as by twisted pair, coaxial cable, or fiber optic transmission, or may be implemented through wireless connection, such as Bluetooth, Zigbee, Wi-Fi, or the like.
As used herein, the processor may be a device having a data processing capability and/or program execution capability, for example, a central processing unit (CPU), or a graphics processing unit (GPU), or a field programmable gate array (FPGA), or a digital signal processor (DSP), or a microprogrammed control unit (MCU), etc.
As used herein, the memory may include one or more volatile memories and/or non-volatile memories. The volatile memories may include, for example, a random access memory (RAM) and/or a cache and the like. The non-volatile memories may include, for example, a read only memory (ROM), a hard disk, an erasable programmable read only memory (EPROM), a USB memory, a flash memory, and the like. One or more operation instructions, one or more application programs or various data, such as, data used and/or generated by the application programs, operation instructions, or the like, may be stored on the memory. The memory may be either provided individually, or provided together with a register, a cache and the like in the processor. Furthermore, a register in a display panel driving circuit may also be configured as the memory.
Generally, a gate drive circuit may scan a transistor TFT according to a frequency of a display signal provided by a timing sequence controller TCON. Herein, the frequency of the display signal is the frequency of refreshing images by the display panel (also known as frame rate), indicating the number of frames displayed per second. As the frame rate of the display signal is n hertz (Hz), the time of one frame is (1/n) second(s). For example, for the display signal corresponding to a frame rate of 60 Hz, the time of one frame is 16.7 ms.
It is to be understood that different frame rates may correspond to different frame scan timing sequences. The frame scan timing sequence of the display signal includes an active period and a blanking period. In the active period, the liquid crystal capacitor can be charged, whereas in the blanking period, the liquid crystal capacitor can be discharged.
Generally, for different frame rates, time length of the active period in the frame scan timing sequence remains constant, whereas time length of the blanking period varies accordingly. That is, with respect to a display signal having a higher frame rate, a display signal having a lower frame rate has a longer blanking period of the frame scan timing sequence. For reducing the power consumption of the display panel, a static image may be typically displayed in a lower frame rate. However, at a lower frame rate, the blanking period of the frame scan timing sequence is too long, resulting in a longer discharging time (holding time) of the liquid crystal capacitor. A single pixel voltage of the display panel cannot be held. Therefore, images of the display panel become darker at a lower frame rate, thereby producing a flickering phenomenon and causing a brightness difference of a same image at different frame rates.
As shown in
For this reason, in some embodiments of present disclosure, the charging time and the holding time of the pixel electrode are controlled by setting the frame scan timing sequence corresponding to different frame rates, which is described in detail below.
When a correspondence between the frame rate of the display signal and the frame scan timing sequence is set for the first time, the correspondence between the frame rate and the frame scan timing sequence may be stored in Step S220 after Step S210.
After the frame rate and the frame scan timing sequence are stored correspondingly, the frame scan timing sequence corresponding to the frame rate may be looked up for subsequent display.
For example, the frame scan timing sequence corresponding to the frame rate of 10 Hz is stored as the timing sequence K0, and the frame scan timing sequence corresponding to the frame rate of 60 Hz is stored as the timing sequence K70, and the like. Table 1 schematically illustrates the frame scan timing sequences corresponding to different frame rates (for example, 10 Hz-60 Hz).
For example, the correspondence between the frame rate p and the frame scan timing sequence K may be expressed as a function K=f(p) by mathematical fitting and statistical sampling methods, etc., and may be stored. Then, the stored function may be called for the frame rate p to determine the frame scan timing sequence K corresponding to the frame rate p.
In some embodiments of the present disclosure, the frame scan timing sequence may be set to have a same blanking period for different frame rates.
In some embodiments of the present disclosure, in the process of setting the frame scan timing sequence, the timing sequence of the clock signal CPV may be set such that the cycle of the clock signal CPV increases as the frame rate of the display signal decreases. As shown in
As an example, when the display signal is decoded to determine a frame rate of 11 Hz, the stored control timing sequence K1 corresponding to the frame rate is called according to Table 1. According to the timing sequence K1, the transistor TFT is controlled to be charged and discharged via the source drive circuit (Source IC) and the gate drive circuit (Gate IC) according to the frame scan timing sequence set corresponding to 11 Hz.
According to some embodiments of the present disclosure, the above method for controlling a timing sequence can avoid occurrence of a low frequency flickering phenomenon and reduce brightness difference of the same image at different frame rates.
In some embodiments of the present disclosure, the processor 510 may set a frame scan timing sequence for a display signal according to a frame rate of the display signal, wherein the frame scan timing sequence includes an active period and a blanking period. The memory 520 may store a correspondence between the frame rate and the frame scan timing sequence. For example, the memory may be configured to store a table containing the correspondence between the frame rate and the frame scan timing sequence. In addition, the memory may also be configured to store a function between the frame rate and the frame scan timing sequence. In some embodiments, the frame scan timing sequence is set such that the active period increases as the frame rate of the display signal decreases.
In the process of setting the frame scan timing sequence by the processor 510, the clock signal timing sequence may be set such that a cycle of a clock signal increases as the frame rate of the display signal decreases.
In addition, the processor 510 may further set the frame scan timing sequence to have a same blanking period for different frame rates.
In some embodiments of the present disclosure, the processor 510 may also read the display signal. In an embodiment, the processor 510 may receive the display signal and decode the display signal to obtain a frame rate of the display signal. Then, the processor 510 may retrieve, according to the frame rate, the frame scan timing sequence for the frame rate of the display signal from the memory 520, and then may output the frame scan timing sequence, thereby controlling the gate drive circuit to scan a transistor.
In another embodiment of the present disclosure, the processor may acquire, from other external devices, the correspondence between the frame rate of the display signal and the frame scan timing sequence, rather than the memory. For example, a drive program of a graphics processing unit (GPU) may be programmed to output, according to an acquired extended display identification data (i.e., EDID data) of the display panel, the display signal based on the correspondence between the frame rate associated with the display signal and the frame scan timing sequence. The processor performs corresponding display according to the acquired GPU drive information by controlling a drive circuit of the display panel.
According to an embodiment of the present disclosure, there is also provided a display panel, which includes the above drive circuit 600 and a display circuit.
The display panel may be, for example, a liquid crystal display (LCD) panel, an organic light-emitting diode (OLED) display panel, and the like.
In addition, an embodiment of the present disclosure also provides an electronic apparatus including the display panel. The electronic apparatus may be, for example, a mobile phone, a tablet computer, a display screen, a wearable apparatus, or the like.
Though a plurality of embodiments of the present disclosure are described in detail above, the scope of protection of the present disclosure is not limited thereto. Apparently, those of ordinary skill in the art may make various modifications, substitutions, and variations on the embodiments of the present disclosure without departing from the spirit and scope of the present disclosure. The scope of protection of the present disclosure is limited by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201711083480.2 | Nov 2017 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/102926 | 8/29/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/091190 | 5/16/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
7499043 | Vasqnez | Mar 2009 | B2 |
8040334 | Kim | Oct 2011 | B2 |
8194065 | Walker | Jun 2012 | B1 |
9087473 | Walker | Jul 2015 | B1 |
9240031 | Wang | Jan 2016 | B1 |
10657862 | Zhang | May 2020 | B2 |
10789908 | Zhu | Sep 2020 | B2 |
10832624 | Ahn | Nov 2020 | B2 |
10902817 | Koo | Jan 2021 | B2 |
10909935 | Koo | Feb 2021 | B2 |
10930248 | Lin | Feb 2021 | B2 |
11043184 | An | Jun 2021 | B2 |
20070279407 | Vasquez | Dec 2007 | A1 |
20080158234 | Kim | Jul 2008 | A1 |
20110187700 | Kumakawa | Aug 2011 | A1 |
20140055476 | Wang | Feb 2014 | A1 |
20180059868 | Brahma | Mar 2018 | A1 |
20180174551 | Ansari | Jun 2018 | A1 |
20180247616 | Glen | Aug 2018 | A1 |
20190005862 | Zhang | Jan 2019 | A1 |
20190180713 | Zhu | Jun 2019 | A1 |
20190206348 | Ahn | Jul 2019 | A1 |
20200066215 | Koo | Feb 2020 | A1 |
20200082781 | An | Mar 2020 | A1 |
20200090596 | Oh | Mar 2020 | A1 |
20200126508 | Kim | Apr 2020 | A1 |
20200135149 | Lin | Apr 2020 | A1 |
20200243012 | Jin | Jul 2020 | A1 |
20200335033 | Kim | Oct 2020 | A1 |
20210134235 | Koo | May 2021 | A1 |
20210142758 | Koo | May 2021 | A1 |
20210272531 | Shin | Sep 2021 | A1 |
20210280156 | Mehta | Sep 2021 | A1 |
20210287595 | An | Sep 2021 | A1 |
20210287605 | Wang | Sep 2021 | A1 |
20210304681 | Noh | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
101859549 | Oct 2010 | CN |
102044207 | Feb 2013 | CN |
102930839 | Feb 2013 | CN |
104662596 | May 2015 | CN |
105321486 | Feb 2016 | CN |
106205460 | Dec 2016 | CN |
107610671 | Jan 2018 | CN |
201335910 | Sep 2013 | TW |
Entry |
---|
PCT International Search Report, Application No. PCT/CN2018/102926, dated Nov. 26, 2018, 6 pages: with English translation. |
PCT Written Opinion, Application No. PCT/CN2018/102926, dated Nov. 26, 2018, 5 pages.: with English translation of relevant part. |
China First Office Action, Application No. 201711083480.2, dated Mar. 5, 2019, 19 pps.: with English translation. |
China Second Office Action, Application No. 201711083480.2, dated Aug. 15, 2019, 18 pps.: with English translation. |
Number | Date | Country | |
---|---|---|---|
20210358440 A1 | Nov 2021 | US |