This invention refers to a method and device for covering and waterproofing joints, cracks and/or fissures between concrete members of hydraulic works, such as for example concrete and gravity dams, hydraulic galleries and water reservoirs, in which the body of the hydraulic work can be subject to deformation caused by interaction with the water in the basin, by differential settling, earthquakes or other reasons causing movements between concrete members of the hydraulic work.
In the description that follows, specific reference is made to gravity dams in loose materials and to concrete dams, without limiting general applications of the method and of the waterproofing cover device for joints for any type of hydraulic work subjected to corresponding movements between opposite members of concrete material.
Dams made of loose materials substantially consist of an embankment of rolled compacted material having varying granulometry. In order to prevent water leakage through the body of the dam, a waterproofing cover or lining consisting of a plurality of side by side arranged concrete slabs that extend from the top of the dam to a base plinth are arranged on the upstream side; thus between opposite surfaces of the concrete slabs and the base plinth, vertical and longitudinal joints are formed that can extend over considerable lengths, ranging from tens to hundreds of metres or more, subjected to water pressures ranging from some metres to many tens of meters of water column.
As in the case of relative movements between opposite surfaces or members of a joint, or of a crack or fissure, a considerable loss of water would occur that would seep into the body of the dam, with consequent financial loss and danger for the same dam; during construction of the dam or subsequently, the joints must be sealed by suitable sealing devices commonly known as “waterstops”, with the possibility of carrying out repairs at the tearing and/or breakage points of the waterproofing cover.
Owing to the geological features of the place, the dynamic behaviour of the dam body, or other accidental causes, over time the dam body may undergo significant deformation, with consequent opening of joints or relative sliding of tens of centimetres or more. It must also be considered that the seal of the joints, especially at or near the base plinth of a dam, has to bear considerable stress caused by the hydrostatic pressure of the water, which may be many tens or hundreds of metres high.
In general, the use of various types of copper waterstops or known waterproofing systems of bituminous material, PVC, EPDM, or of another type of material are not suitable to compensate for significant movements or settling between concrete members of the dam body or of the hydraulic works without losing their fundamental waterproofing features. Further, conventional waterstops make it difficult to perform maintenance and/or carry out repair operations subsequently a joint has been damaged.
Waterproofing devices for joints are known for example from GB 1.197.414, GB 930.627 and WO 00/06846; waterproofing devices of this type in general consist of an elastic diaphragm inside the concrete structure that is suitable to compensate only for small movements of a joint and which cannot be installed in any manner after the hydraulic work has been completed.
These problems have been partially solved by the method and device for covering and waterproofing joints of WO 00/34588. According to the disclosed method, an impermeable membrane of elastically yieldable synthetic material is fixed, in a taut condition straddling the joint, supporting the membrane by a plurality of metal slabs fastened to the concrete structure to slide and following the opening/closing movements of the joint.
This system is suitable only in the case of joints openings in one direction only and to compensate for only small settling movements of the body of the hydraulic work, of the order of few centimetres, without losing waterproofing features. Nevertheless, this system is completely unsuitable for compensating large deformations or sliding movements of the two-dimensional and three-dimensional joints.
In fact, in the case of relative three-dimensional movements of a joint, the support members consisting of metal slabs would become deformed in an irreversible plastic manner, applying excessive stress to the impermeable membrane, which, being excessively stressed, could tear at the edges of the support slabs, causing infiltration of water into the body of the hydraulic work and inevitable leakage of water at the breakage points.
Expansion joint covers of buildings or to cover and seal gaps between concrete members, or water stops, have been variously proposed in DE4204497, GB1536684, U.S. Pat. No. 3,581,450, US2001/0008060 and GB128556. In particular DE4204497 discloses an expansion joint between concrete members of a lining of concrete structures. The lining comprises a U-shaped sheet of elastically flexible plastic material, laid down into the gap, having outwardly turned flanges welded to adjoining plastics panels fastened to the outer surface of the concrete members of the structure; the joint is then covered with a cover plate to prevent inlet of foreign matter. The use of the expansion joint is suitable for refuse disposal areas.
GB1536684 discloses an expansion joint structure to cover and seal gaps deliberately left between concrete slabs for pavement, curtain wall structures, or arcuated pipe structures to provide sealing and keep out foreign matter or moisture, or retain foundation material such as sand.
A strip of elastomeric material is laid down and U-folded coextensive to the gap; a cover plate is again provided to protect the strip of plastic sheet; this solution is again suitable for small relative movements between the concrete members in one direction only in the plane of the cover plate.
U.S. Pat. No. 3,581,450 relates to an expansion joint for covering the gap between panels of a building, in which a pair of corrugated metal strips are joined to one another by an elongated U-shaped panel of flexible material and an elastomeric median strip to allow expansion along the longitudinal axis and in a perpendicular direction of the joint.
US 2001/0008060, FIG. 17 discloses a waterproofing joint between two concrete members of building structures in which the surface of the concrete members is paved with a synthetic asphalt, which is heated to penetrate into the capillary pores of the concrete; a waterproofing plastic cloth is subsequently attached to the synthetic asphalt, again paved with a second layer of hot molten synthetic asphalt to securely hold the waterproofing cloth.
GB1285556—describes an expansion joint in which support sheet of polyethylene or polypropylene is made adhere to a waterproofing membrane by a pressure-sensitive adhesive such as a bituminous-rubber composition; no free relative movements between the waterproofing membrane and the support sheet is therefore allowed, unless to cause a deformation of the pressure-sensitive rubber composition.
As previously referred to, most of the expansion joints disclosed in the above mentioned prior art documents, merely suggests a structure of the joint suitable to be used at the environmental conditions in building structures, or similar applications; although GB1285556 describes the use of the joint even in quite high hydrostatic pressure condition, the key factor merely resides in the plastic deformation of the adhesive layer.
The main object of the present invention is to provide a method and a device for covering and waterproofing joints between concrete members of hydraulic works, suitable to compensate also for significant movements, for example opening, closing or sliding movements in all directions, between opposite concrete members of a joint, of tens of centimetres or more, without causing excessive stress or breakage of a waterproofing membrane, and without losing the waterproofing features of the joint.
A further object of the invention is to provide a method and a cover device for waterproofing between concrete members of joints in hydraulic works, as disclosed above, which are particularly suitable for being used in concrete-face rock-fill dams (CFRD), or dams made of rolled and compacted concrete (RCC) and for other applications in water pressure conditions, and which are able to provide a suitable support for the waterproofing impermeable membrane, without it tearing or breaking even under significant stress caused by considerable hydrostatic pressure.
Yet another object of the invention is to provide a method and a cover device for waterproofing joints between concrete members of hydraulic works that are constructionally simple, enable the seal of the joint to be repaired easily, both in the absence and presence of water in the hydraulic work.
These and still other objects of the invention are achievable by the method according to the invention, and by the cover device for waterproofing joints according to the invention.
In particular, according to the invention, a method has been provided for covering and waterproofing a gap of a joint between opposite concrete members of a hydraulic work by a cover strip transversely folded and longitudinally extending along the gap, fastened to the concrete members along elongated side edges, comprising the steps of:
providing the cover strip by superimposing at least one flexible waterproofing membrane in elastomeric material having a first elastic modulus, and at least one flexible support layer in synthetic material having a second elastic modulus greater than the first elastic modulus of the waterproofing membrane;
transversely folding the water proofing membrane and the support layer of the cover strip, and laying down the folded strip straddling the gap of the joint; and
sealingly fastening the elongated side edges of the folded cover strip to the concrete members keeping the support layer facing the concrete members, allowing a relative free movement between the superimposed waterproofing membrane and support layer of the folded cover strip.
According to another aspect of the invention, a cover device has been provided for covering and waterproofing a gap of a joint between concrete members in a hydraulic work, according to the method mentioned above, in which the cover device comprises at least one impermeable waterproofing membrane in elastically yieldable or elastomeric material, and a support layer both sealingly fixed to the concrete members along longitudinal edges of the joint, wherein that the cover device comprises:
a flexible cover strip comprising waterproofing membrane and a flexible support layer of synthetic material on at least one side of the waterproofing membrane;
in which the impermeable membrane and the flexible support layer comprise superimposed central bands, freely slidable and folded into a loop that extends longitudinally to the joint; and
in which the flexible support layer has an elastic modulus and breakage strength greater than those of the waterproofing membrane of the cover device.
The impermeable membrane and the flexible support layer can be any way folded into a loop; for example they can form one or more longitudinal loops positioned inside or outside the gap of the joint. The folding and superimposing of the waterproofing membrane and of the flexible support layer must anyway be such as to maintain the membrane freely in contact with the flexible support layer, or at a short distance therefrom, so as to limit the elastic deformation of the waterproofing membrane, while maintaining the membrane below the critical breakage point thereof. In this manner, the cover strip is also suitable to withstand great stress caused, for example by high hydrostatic pressures of the water in the hydraulic work, in conditions of significant openings of the joint, or of relative movements in all directions between the concrete members of the joint.
The device for covering and waterproofing joints in hydraulic works according to the present invention is thus a combination of various flexible layers that are foldable into a loop that are superimposable on one another, in particular:
a) at least one impermeable waterproofing membrane, of elastically extendible synthetic or elastomeric material, having a waterproofing function, for example a geomembrane having a thickness between 2 to 6 cm and an elastic modulus E1 between 0.010 and 0.030 GPa at ambient temperature;
b) at least one flexible support layer, of fiber reinforced synthetic material positioned on one or both sides of the waterproofing membrane, for example a geotextile or another suitable geosynthetic textile material, having stiffness or an elasticity modulus E2 and breakage strength greater than those E1 of the waterproofing membrane; the elastic modulus E2 of the support layer may be between 2 and 8 GPa or more that is from 40 to 70 times greater than the modulus E1. This ensures that the flexible support layer limits the deformation of the waterproofing membrane, thus preventing the latter from reaching breakage conditions and resisting most stress. Further, as the waterproofing membrane is subjected to little stress, with the large opening of the joint or corresponding movements between concrete members of the joint, the waterproofing membrane will thus be able to withstand greater hydrostatic pressure of some tens of water column and more; if the flexible support layer is provided on both sides of the waterproofing membrane, this will be advantageous if there will be hydrostatic stress on one or both sides, for example a negative pressure in the event of emptying of the basin or of a hydraulic structure in general;
c) an intermediate textile layer (optional) between the waterproofing membrane and the flexible support layer, having an anti-puncturing function. The intermediate textile layer can be separated from or coupled to the waterproofing membrane, for example in the form of a geocomposite; this textile layer, in addition to performing the anti-puncturing function, also contributes to increasing the resistance of the impermeable membrane, because the geocomposite can withstand greater pressure than the waterproofing membrane alone;
d) lastly, an external protective textile layer (optional) can be provided, for example a geotextile suitable to the folded into a loop together with the waterproofing membrane and of the flexible support layer.
For the purposes of the present description, “joint” is defined as the space or gap between facing surfaces of two concrete members of any hydraulic work, or a crack or fissure. It is also stated that:
“geomembrane” is a flat sheet of waterproofing polymeric thermoplastic material, or of another type of elastomeric material;
“geotextile” is defined as a polymeric synthetic material suitable for coming into contact with the ground or another material for the intended use;
“geocomposite” is defined as a flat manufactured or assembled material using at least one geomembrane and a geotextile.
These and other features of the method and the cover device for waterproofing joints and/or cracks and/or fissures between concrete members of hydraulic works, will be disclosed further below with reference to a concrete-face rock-fill dam and to the attached drawings, in which:
With reference to
In
As shown in the example in
Still with reference to
In each of these conditions the part of the strip 17A that was initially folded into a loop and was in a non-stressed condition into the gap 18 of the joint, can now freely extend to compensate for any shift between the slab 12 and plinth 14 within the limits permitted by the width of the cover strip, and of a transverse permissible extension thereof; the cover and waterproofing strip 17 thus has to be designed in such a manner as to be able to withstand a large opening of the joint, remaining waterproofing of the same water head.
In this connection, as shown in the detail of
In particular, in the example in
The waterproofing cover strip 17 in the example shown further comprises a third support layer 23 for the impermeable membrane 21, of the third support layer 23 including a flexible layer of a geotechnical synthetic textile material that extends over the entire length of the impermeable membrane 21; in particular the support layer 23 can be made of a geosynthetic or fiber reinforced material having great mechanical resistance features than the waterproofing membrane 21, as already mentioned, for example a textile substrate to which longitudinal strands in synthetic fibre are sewn for supporting and withstanding the tension generated in the cover strip 17; the surface of the flexible support layer 23 to come into contact with concrete members 12, 14 must also have resistance to the abrasion.
The cover strip 17 including the membrane 21, the protective geotextile 22 and the geosynthetic support layer 23, in general has to have flexibility features such as to enable the strip to be folded inside or outside the gap 18 of the joint, so as to form at least one freely extendible loop, ensuring waterproofing and mechanical resistance features in the various operative conditions.
The flexible support layer 23 is thus positioned longitudinally by being straddled over the joint 16, facing the concrete members, taking care to fold the flexible support layer 23 into a “U” shape so as to form a longitudinal loop 23A, as shown in
After positioning and extending the flexible support layer 23, as mentioned previously, the impermeable waterproofing membrane 21 is positioned, being kept straddled over the joint 16, superimposing the impermeable membrane 21 to the flexible support layer 23 that has already been positioned and folded into a loop in the gap 18.
In particular, the impermeable membrane 21, or the geocomposite 21, 22, will be straddled over the joint 16 being in turn crosswise folded into a “U” shape in the gap 18 to provide a loop 21A that substantially corresponds to the loop 23A of the flexible support layer 23. In other words, the crosswise folding at the impermeable membrane 21 into a loop 21A inside the gap 18 must be such as to take the loop 21A as far as possible into contact with the flexible support layer 23, or any way at a distance such that through the action of the external forces, the impermeable membrane 21 deforms slightly and rests against the flexible support layer 23 without reaching the breakage deformation limit, thus without losing the waterproofing function inasmuch as the greater stress is supported by the flexible layer 23.
From the various figures, in particular from
Once the impermeable waterproofing membrane 21, or the geocomposite 21, 22, has been positioned and folded into the gap 18, being superimposed on the flexible support layer 23 facing the concrete members 12, 14, the latter and the membrane 21 are sealingly anchored along their longitudinal edges, in any suitable way; for example, the anchoring can be achieved by a plurality of pins 26, spaced apart by a constant pitch, fastened in a manner per se known at corresponding holes made on two sides of the gap 18, in the corresponding concrete members 12, 14 of the joint 16; the sealing fastening of the two longitudinal edges of the cover strip 17 can be made, for example, by a steel plate 27, interposing a suitable seal washer 28 between the steel plate 27 and the impermeable waterproofing membrane 21.
After installation and anchorage of the impermeable membrane 21 and of the flexible support layer 23 of the covering strip 17, in the same manner previously disclosed a protective textile layer 29 is installed, also being folded into the groove 18, against the impermeable waterproofing membrane 21; the protective textile layer 29 is positioned over all the strip 17 being superimposed on the pins 26 and anchored along the side edges by respective pins 30, as shown in
The device for covering and waterproofing joints in hydraulic works according to the invention, can be used to form a watertight seal along longitudinal joints that run over the entire length of the hydraulic work, or part of the work, as occurs, for example, between cover slabs of the upstream side of a dam and a base plinth, and along vertical joints between adjacent slabs.
As mentioned previously,
In order to check the operation and seal of the device for covering and waterproofing joints according to the invention, experimental tests have been performed using a suitable autoclave, after choosing suitable materials for the flexible support layer and for the impermeable membrane, and for the anchoring system.
A system including a geocomposite in PVC, and a support geotextile, positioned on a plane having a cavity comparable to dimensions of a possible open joint, was closed in an autoclave and the peripheral edge being sealingly fixed; a relevant hydrostatic pressure was then created inside the autoclave that was equal to a water column of about 60 meters and was then maintained for a great number of hours.
At the end of the tests a slight elongation of the support geotextile and a water loss that was deemed to be negligible were detected. The experimental tests provided data completely positive, confirming the capability of the cover and waterproofing device to operate for a long time, even at high pressure, and to compensate also for large joint openings.
According to the preceding examples, the flexible support layer 23 and the waterproofing membrane 21 are installed and folded in the gap 18, in subsequent steps; as an executive variant it is nevertheless possible to install and fold into a loop at the same time as the flexible support layer 3 and the waterproofing membrane 21, maintaining the flexible support layer 23 and the membrane 21 superimposed during installation; other methods for folding the flexible support layer 23 and the waterproofing membrane 21 are possible that are different from the method shown, the general features of the method of the device for covering and waterproofing joints in hydraulic works according to the invention remaining the same.
The next
From the curve SL of
It is thus understood that other modifications or variations can be made to the method and to the device for waterproofing joints in hydraulic works subject to deformation over time, in particular to the conformation of the longitudinal joint 16, of the entire cover strip 17, or the component parts thereof, or to the methods and arrangement of sealingly anchoring the waterproofing cover strip 17 to two opposite concrete members of any hydraulic work, in particular concrete-face rock-fill dams without thereby departing from the claims.
Number | Date | Country | Kind |
---|---|---|---|
MI2013A000560 | Apr 2013 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/057153 | 4/9/2014 | WO | 00 |