The present invention pertains to a method and a device for creating a hinge-like bendable zone in a sheet of paper, paperboard, cardboard or foil, particularly a brochure cover, by means of rotatively driven tools.
Methods in which material is compressed and/or displaced are conventionally employed for creating hinge-like bending zones or lines in a sheet of paper, paperboard, cardboard or foil, especially for use in covers for books or brochures (collectively, “cover sheets”). In this case, the sheet is scored along the bending line such that the bending resistance in the bending line is reduced and the stability of the sheet is barely changed.
Various scoring devices with rotatively driven tools are listed on page 116 of the technical book “Industrial Bookbinding” by Dieter Liebau and Inès Heinze, Publishing House Beruf+Schule, 2001. An upper tool in the form of a scoring blade or a scoring disk carries out the scoring process in cooperation with a lower tool that may consist of a sleeve with a circumferential radial groove or be composed of two opposite sleeves with rounded edges, the gap between which is adjustable. It is also known to utilize a scoring blade for directly scoring against a cylindrical rubber roller.
In order to realize the scoring with adequate quality such that a uniform scoring bead is produced and no tearing of the upper and lower sides occurs, the geometric relations (width of the scoring blade, width of the groove in the lower tool and depth of penetration of the scoring blade) need to be adapted to the respective material to be scored. It may even be required to exchange the tools if the product thickness varies significantly.
DE 200 22 488 U1 describes a scoring device in which the scoring blade consists of an elastic ring that is exchangeably accommodated in a groove of the upper tool. The upper tool features several grooves of different widths and depths that are arranged adjacent to one another such that rings of different diameters and/or geometries can be inserted into the upper tool. In addition, the lower tool features a series of adjacently arranged grooves that can be allocated to the respective rings of the upper tool with respect to the material to be scored and the material thickness by means of a color code. In this case, it is disadvantageous that rings need to be exchanged and that the upper and lower tools need to be positioned relative to one another anew in accordance with a predetermined allocation matrix if the material or the material thickness changes, wherein these procedures require a significant set-up effort.
The present invention is based on the objective of developing a method and a device for creating a hinge-like bendable line in a sheet of paper, paperboard, cardboard or foil, particularly a brochure cover, i.e., cover sheet, by means of rotatively driven tools, wherein the method and device make it possible to process a broad variety of sheet materials and sheet thicknesses with the same tool set of upper and lower tools and to quickly adjust the device to the respective sheet to be processed. A related objective is improving the additional processing of the processed sheet.
This objective is attained in that the bending line is created by means of roll bending without scoring the material in the form of a scoring bead. The conventional allocation between the scoring blade and the lower tool that serves as the scoring counterpart is eliminated because the sheet material is no longer displaced into a defined groove at the bending point. The roll bending process lowers the bending resistance of the sheet in the region of the bending point, whereby the sheet is simultaneously pre-bent in a certain direction along the bending point, e.g., in order to take into account the position of the brochure cover on the book block at the spine edges (the sheet is pre-bent inward in a U-shaped fashion in this case) or to simplify the opening and closing of the brochure cover on the assembled brochure (the sheet is pre-bent inward or outward in dependence on the desired opening characteristics).
The roll bending is preferably realized by the cooperation of a tool edge of the first rotary tool with a conical outside surface of the second rotary tool such that the respective sheet can be pre-bent in a defined direction. In another variation of the method, the roll bending is realized by the cooperation of essentially complementary conical outside surfaces of the two rotary tools, whereby an edge of one outside surface respectively cooperates with the outside surface of the other rotary tool. This causes the sheet to be bent in opposite directions in the form of a Z-bend such that, for example, a box-shaped brochure cover contour can be realized during the processing of the spine edges.
The objective is attained with a device in which the first rotary tool features a substantially radially projecting tool edge, and the second rotary tool features a conical outside surface that is inclined toward the rotational axis and cooperates with the tool edge of the first rotary cool while it acts upon the sheet.
According to one advantageous embodiment, the radially projecting tool edge has an essentially triangular cross section such that the required stability of the tool edge is ensured. In another advantageous embodiment, the radially projecting tool edge is rounded with a defined radius such that the sheet being processed is provided with a semicircular depression. It is advantageous that the tool edge consists of an elastic material. This enables the tool edge to yield in order to protect the sheet material from being overstressed or destroyed.
In order to realize a desired bending direction, for pre-bending the sheet inward or outward, another advantageous embodiment proposes that the second rotary tool with the outside surface that is inclined toward the rotational axis can be used as upper or as lower tool. The inclination of the outside surface is preferably greater than 30°, wherein an inclination of the outside surface between 45° and 70° proved particularly advantageous.
In another embodiment of the device, both rotary tools feature conical outside surfaces that are essentially inclined in opposite directions and complement one another, wherein a radially projecting edge of one outside surface respectively cooperates with the outside surface of the other rotary tool. The bending point is subjected to uniform pressure over a defined width such that a changed appearance of the bending point is realized in comparison with instances in which the bending point is processed with a single tool edge that cooperates with an outside surface. In addition, the sheet is practically pre-bent in opposite directions in the form of a Z-bend such that a step is realized at the bending point. A box-shaped contour is produced in the sheet due to the processing of a bending point that extends parallel thereto and features a mirror-inverted step, wherein this box-shaped contour is advantageous with respect to the arrangement of a brochure cover sheet on the book block spine. The bending point with a Z-bend is also suitable for use as a folded joint because the respective bends of the Z-bend essentially neutralize one another.
In another advantageous embodiment, both rotary tools can be adjusted relative to one another in the axial direction. This means that the rotary tools can be adjusted to the respective sheet thickness or that the degree of material compression can be adapted to the properties of the sheet material. It is furthermore advantageous that the axial spacing between the two rotary tools is adjustable such that it is possible, for example, to influence the shape of the Z-bend.
The characteristics of preferred embodiments of the present invention are described in greater detail below with reference to the accompanying drawing in which:
a shows a detail of the roll bending processing zone in
a shows a detail of the roll bending processing zone in
The disclosed roll bending devices 6.1 to 6.3 respectively consist of left and right pairs 7a,b of roll bending tools that are respectively realized and arranged in a mirror-inverted fashion, wherein these pairs of roll bending tools are spaced apart by the spine width B in the embodiments shown in
In the roll bending device 6.1 according to
The tool edge 12a of the first rotary tool member 8.1 cooperates with the inclined, conical outside forming surface 11a of the second rotary tool member 9.1, whereby the continuously transported cover sheet 1 lying therebetween is deformed in accordance with the roll bending principle. In this context, “conical” should be understood as exemplified by the inclined, substantially frustoconical surface 11a observable as, e.g., the left rotary tool 9.1 is viewed along the rotational axis 10b from the spine region 2.
In this embodiment, the inclination a of the outside forming surface 11a relative to the rotational axis 10b amounts to approximately 67.5°, but it should be noted in this context that the tools may be realized with any angle α between 30° and 90°.
The detail shown in
As mentioned above,
In the second embodiment of the roll bending device 6.2 shown in
The revolving projecting edge of one rotary tool member 8.2 or 9.2 respectively cooperates with the outside forming surface 11a of the other rotary tool member 9.2 or 8.2 in the form of a radiused tool edge 11b in this case. The cover sheet 2 is bent inward once along the bending line 4a or 4b and bent outward again once directly adjacent thereto such that a bending point of essentially Z-shaped cross section is produced.
In the embodiment shown in
Another adjustment VA can be realized by varying the axial distance A between the two tools 7.1 and 7.2. This adjustment makes it possible to vary the working position of the tool edge 12a on the outside forming surface 11a. In the second embodiment of the roll bending device 6.2 shown in
In addition, it is possible to realize an adjustment VD of each pair 7a and b of roll bending tools in order to adjust the processing distance of the tool edge 12a (or 11b) relative to the corresponding outside forming surface 11a in the sense of a basic setting. This also makes it possible, in principle, to realize a defined adjustment of the cover sheet thickness.
However, an adjustment VD of the processing distance as well as an adjustment VA of the axial distance A is not required during the normal operation of an inventive roll bending device 6.1 to 6.3 of this type. Various cover sheet materials and thicknesses can be processed with one and the same adjustment of the pairs 7a and b of roll bending tools. Bending lines 3a,b, 4a,b or 5a,b of adequate quality are produced in all instances, wherein these bending lines are characterized in that they bend easily and feature no torn surfaces.
In order to carefully process the cover sheet 1, the ring 12 and therefore the tool edge 12a may consist of an elastic material. However, it was determined that hard tool edges 12a and outside surfaces 11 are advantageous with respect to producing high-quality bending lines 3a,b, 4a,b or 5a,b in a multitude of different sheet materials.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 033 117 | Jul 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2117220 | Sieg | May 1938 | A |
3917255 | Watrous | Nov 1975 | A |
4410316 | Yoke | Oct 1983 | A |
4731047 | Lobb | Mar 1988 | A |
4936818 | Holohan, Jr. | Jun 1990 | A |
5138923 | Kent et al. | Aug 1992 | A |
5393295 | Knecht | Feb 1995 | A |
5533889 | Scalia et al. | Jul 1996 | A |
5888183 | Ruthenberg et al. | Mar 1999 | A |
6364590 | Gayoso | Apr 2002 | B1 |
6508751 | Weishew et al. | Jan 2003 | B1 |
6572519 | Harris | Jun 2003 | B1 |
6682468 | Lauderbaugh | Jan 2004 | B2 |
6699167 | Manley | Mar 2004 | B2 |
Number | Date | Country |
---|---|---|
200 22 488 U 1 | Sep 2001 | DE |
Number | Date | Country | |
---|---|---|---|
20080020917 A1 | Jan 2008 | US |