The application of radiation is used for a variety of diagnostic and therapeutic purposes. For example, external radiotherapy known as “teletherapy” is used to treat approximately half of all patients with cancer in the United States, as well as being used to treat patients with arterio-venous malformations, intraocular subfoveal neovascular membranes and Parkinson's disease, among other diseases and conditions.
Generally, teletherapy has been performed using x-ray beams or electron beams. More recently, however, teletherapy has been performed using proton beams due to two characteristics of proton beams. First, proton beams do not scatter as much as either x-ray beams or electron beams. Thus, teletherapy with a proton beam can be applied with a steeper dose gradient near the edge of the proton beam than for an x-ray beam or electron beam. Second, protons lose energy at a more rapid rate as they penetrate tissue, thereby delivering a greater dose at the depth of the target tissue. These two characteristics of proton beams allow the delivery of higher doses to target tissues while minimizing radiation to adjacent normal tissues.
The delineation of target tissues from non-target tissues and the selection of beam directions is typically performed using a computerized treatment planning system. The computerized treatment planning system analyzes input information, such as x-ray axial computed tomography and magnetic resonance imaging, and provides output information, such as beam directions, shapes of normal tissue shields for each beam, and patient alignment information for each beam.
Regardless of the type of teletherapy, however, proper patient alignment is critical to delivering sufficient radiation to target tissues while minimizing radiation delivered to non-target tissues. Patient alignment is the process by which a patient is reproducibly interfaced with the radiation delivery equipment for the purposes of obtaining anatomical, morphological, and physiological information, for performing treatment simulations, and for delivering treatments. The goals of patient alignment are to permit unrestricted access to the patient by radiation beams, and to provide accurate tissue targeting and dose delivery, while promoting patient comfort and safety, and allowing for quick patient egress from the radiation delivery equipment.
The five steps in the patient alignment process are registration, immobilization, localization, positioning and verification. Registration comprises placing the patient on a patient positioner, such as a movable table, in a reproducible manner. Immobilization comprises fixing the registered patient to the patient positioner so that they move together as a single unit in a controlled fashion. Localization comprises determining the location of the target tissue relative to the diagnostic, simulation or treatment unit. Positioning comprises moving the patient positioner to place the target tissue in the desired orientation at the desired location. Verification comprises verifying the patient's orientation and location, and can comprise using the same technique as localization. One or more than one of these steps can be repeated as required. If patient alignment is performed rapidly, the patient is more likely to remain properly aligned, minimizing the margin placed around the target tissue to account for motion and reducing the radiation dose to non-target tissues
Patient alignment is usually performed with the patient in a supine position because a larger surface area of the patient is captured by registration and immobilization devices, because the entire patient is at a height more accessible to treatment personnel and because patients are generally more comfortable in the supine position. Most patient positioners have, therefore, been some form of a table.
Registration is typically accomplished using a registration device such as a low-density foam that is custom molded to the patient's shape and attached to the top of the patient positioner. The patient lies directly on the foam, preventing the patient from rolling and translating with respect to the patient positioner, and increasing patient comfort.
Immobilization is typically accomplished using a thermoplastic net that attaches to the patient positioner and that covers both the patient and the registration device. Alternatively, for teletherapy involving the head and neck, immobilization can be accomplished using a ring referred to as a ‘halo’ that is screwed into the patient's skull and then bolted to the patient positioner.
High precision localization and verification generally rely on radiographic techniques and fiducial markers. The fiducial markers can be internal, such as natural anatomical landmarks or implanted landmarks, or can be external such as a z-box attached to a halo.
Localization and verification for proton beam teletherapy typically uses proton beam treatment units that comprise a diagnostic x-ray source capable of projecting an x-ray beam to simulate the intended path of the proton beam. The x-ray beam passes through the patient creating localization images captured on film or by an electronic portal imaging device. Localization is achieved by comparing the localization images with digitally reconstructed radiographs (DRRS) generated by the treatment planning system. The patient is repositioned iteratively and new localization images are generated until coincidence of the localization images and digitally reconstructed radiographs are obtained thereby verifying the location.
After patient alignment has been completed, teletherapy is commonly performed using isocentric gantries that facilitate the entry of radiation beams into patients from multiple directions in a timely manner. A gantry is a mechanical device that houses a radiation beam delivery system, and comprises one or more than one instrument, such as a particle accelerator, an x-ray tube, a beam spreading device, beam limiting collimators, a particle range modifier, a fluence modifying device and a dose monitoring detector.
The rotation axes of the gantry and the patient positioner intersect at a point in space called the isocenter. The center of the target tissue within the patient is generally placed at the isocenter. Unfortunately, radiation beam delivery devices within the gantry are prone to flex when rotated and, thereby, cause misalignment of the radiation beam with the target tissue.
Historically, when radiation field alignment was not critical to avoid normal tissues adjacent to the target tissues, the edges of radiation fields were placed at large distances around the target tissue volumes to ensure that the target tissue would be hit regardless of the misalignment of the radiation beam due to deflections of the radiation beam delivery system. When critical normal tissues were adjacent to target tissues, however, precise alignment was achieved either by radiographically repositioning the patient for each individual beam or by using large, rigid, and complex mechanical structures to reduce deflections of radiation beam delivery system. Disadvantageously, however, radiographically repositioning a patient requires at least about 15 minutes to align each radiation beam prior to radiation delivery. Therefore, delivering six beams to a patient requires a total treatment time of at least about 1.5 hours. Hence, radiographically repositioning a patient for each radiation beam significantly limits the number of patients that can be treated by each treatment apparatus and increases the cost per treatment.
Therefore, it would be useful to have a method of aligning a patient for delivering multiple radiation beams, such as proton beams, that allows a patient to be aligned in less time between beam deliveries. Further, It would be useful to have a device for aligning a patient for delivering multiple radiation beams, such as proton beams, that allows a patient to be aligned in less time.
According to one embodiment of the present invention, there is provided a device for aligning a patient for delivering a plurality of radiation beams. The device comprises a patient support surface, a coarse alignment subsystem connected to the patient support surface, and a fine alignment subsystem connected to the patient support surface. In one embodiment, the patient support surface comprises a table. In another embodiment, the coarse alignment subsystem can induce coarse movements of the patient support surface comprising translation motions of as large as about 2 m, and rotations of as large as about 60°. In another embodiment, the coarse alignment subsystem comprises an elevating column. In another embodiment, the coarse alignment subsystem further comprises a base and a plurality of wheels connected to the base. In another embodiment, the coarse alignment subsystem further comprises a base and a counterweight connected to the base. In another embodiment, the device further comprises electronics to control movement of the coarse alignment subsystem. In another embodiment, the coarse alignment subsystem comprises a position detection system to calculate the position of the device. In another embodiment, the device further comprises an interface for affixing one or more than one registration and immobilization device connected to the patient support surface. In a preferred embodiment, the fine alignment subsystem can induce fine movements of the patient support surface comprising translation motions as large as about ±20 mm with a resolution of between about 0.04 mm and 0.1 mm resolution in three perpendicular axes, and pitch and roll rotations as large as about ±5° with a resolution of between about 0.1° and 0.2°. In another preferred embodiment, the fine alignment subsystem can induce fine movements of the patient support surface comprising translation motions as large as about ±20 mm with about 0.05 mm resolution in three perpendicular axes, and pitch and roll rotations of as large as about ±5° with a resolution of about 0.1°. In another embodiment, the device further comprises electronics to control movement of the fine alignment subsystem.
According to another embodiment of the present invention, there is provided a device for aligning a patient for delivering a plurality of radiation beams comprising patient support means, coarse alignment means connected to the patient support means, and fine alignment means connected to the patient support means. In one embodiment, the patient support means comprises a table. In another embodiment, the coarse alignment subsystem can induce coarse movements of the patient support surface comprising translation motions of as large as about 2 m, and rotations of as large as about 60°. In another embodiment, the coarse alignment means comprises an elevating column. In another embodiment, the coarse alignment means further comprises a base and a plurality of wheels connected to the base. In another embodiment, the coarse alignment means further comprises a base and a counterweight connected to the base. In another embodiment, the device further comprises electronics to control movement of the coarse alignment means. In another embodiment, the coarse alignment means comprises a position detection system to calculate the position of the device. In another embodiment, the device further comprises an interface for affixing one or more than one registration and immobilization means connected to the patient support means. In a preferred embodiment, the fine alignment subsystem can induce fine movements of the patient support surface comprising translation motions as large as about ±20 mm with a resolution of between about 0.04 mm and 0.1 mm resolution in three perpendicular axes, and pitch and roll rotations as large as about ±5° with a resolution of between about 0.1° and 0.2°.
According to another embodiment of the present invention, there is provided a method of aligning a patient for delivering a plurality of radiation beams from a plurality of device positions comprising providing a device of the present invention. In one embodiment, the device has a beamline center, and the method additionally comprises compensating for flexion of the device during movement of the device from a first device position to a second device position by using a set of predetermined data describing the flexion behavior of the device so that target tissue within the patient is placed at the beamline center for the device at the second device position.
According to another embodiment of the present invention, there is provided a method of aligning a patient for delivering a plurality of radiation beams from a plurality of device positions comprising compensating for flexion of a radiation beam delivery device having a beamline center during movement of the radiation beam delivery device from a first device position to a second device position by using a set of predetermined data describing the flexion behavior of the radiation beam delivery device so that the target tissue within the patient is placed at the beamline center for the radiation beam delivery device at the second device position.
According to another embodiment of the present invention, there is provided a method of aligning a patient with a target tissue within the patient for delivering a plurality of radiation beams from a plurality of device positions. The method comprises, a) providing a radiation beam delivery device having a beamline center; b) deriving a set of predetermined data describing the flexion behavior of a radiation beam delivery device; c) selecting a patient having one or more than one target tissue suitable for receiving a plurality of radiation beams; d) producing a treatment plan; e) aligning the patient with respect to the radiation beam delivery device oriented at a first device position using the derived set of predetermined data describing the flexion behavior of the radiation beam delivery device to place the target tissue within the patient at the beamline center for the first device position; f) delivering a first radiation beam from the first device position to the target tissue; g) moving the radiation beam delivery device to a second device position; h) compensating for flexion of the radiation beam delivery device produced by the move to the second device position using the derived set of predetermined data describing the flexion behavior of the radiation beam delivery device to place the target tissue within the patient at the beamline center for the second device position; and i) delivering a second radiation beam from the second device position to the target tissue within the patient. In one embodiment, the method further comprises a) moving the radiation beam delivery device to a third device position; b) compensating for flexion of the radiation beam delivery device produced by the move to the third device position using the derived set of predetermined data describing the flexion behavior of a radiation beam delivery device to place the target tissue within the patient at the beamline center for the third device position; and c) delivering a third radiation beam from the third device position to the target tissue within the patient. In another embodiment, selecting a patient having one or more than one target tissue suitable for receiving a plurality of radiation beams comprises selecting a patient having one or more than one target tissue having a disease or condition amenable to teletherapy. The disease or condition can be selected from the group consisting of acoustic neuroma, adenocarcinoma, astrocytoma, chordoma, meningioma, nasopharyngeal carcinoma and pituitary adenoma. In another embodiment, aligning the patient with respect to the radiation beam delivery device oriented at a first device position comprises using a two-stage patient positioner. In another embodiment, compensating for flexion of the radiation beam delivery device produced by the move to the second device position comprises using a two-stage patient positioner and moving the patient and patient positioner as a unit. In another embodiment, compensating for flexion of the radiation beam delivery device produced by the move to the second device position comprises one or more than one action selected from the group consisting of shifting an aperture or block holding cone with respect to the beam delivery apparatus center, shifting the position of beam delivery apparatus defining collimators, and offsetting the scan pattern of a magnetically scanned beam.
These and other features, aspects and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying figures where:
According to one embodiment of the present invention, there is provided a device for aligning a patient for delivering a plurality of radiation beams, such as proton beams, from a radiation beam delivery device at a plurality of device positions that allows a patient to be aligned in less time than using conventional aligning devices. According to another embodiment of the present invention, there is provided a method of aligning a patient for delivering a plurality of radiation beams, such as proton beams, from a radiation beam delivery device at a plurality of device positions. The method allows a patient to be aligned in less time than using conventional methods. By reducing the amount of time for alignment, both the device and the method allow an increased number of patients to be treated, decrease the cost of treatment per patient, and reduce the amount of radiation exposure to non-target tissues resulting from the alignment process. According to another embodiment of the present invention, there is provided a method of performing teletherapy. The method of performing teletherapy comprises aligning a patient using the method of aligning of the present invention and delivering a plurality of radiation beams from two or more than two directions. Though disclosed in connection with teletherapy, and especially teletherapy utilizing proton beams, the device and method can also be used for aligning a patient for delivering other kinds of radiation accurately and rapidly to a circumscribed area, for purposes other than teletherapy, as will be understood by those with skill in the art with reference to this disclosure.
In one embodiment, the present invention is a device for aligning a patient for delivering a plurality of radiation beams that takes less time to align the patient between each beam delivery than using conventional devices. The device can be used with the method of the present invention.
The device comprises a two-stage patient positioner. One stage comprises a coarse alignment subsystem capable of providing large traversals (defined as greater than about 2 m) and large rotations (defined as greater than about 5°) within the treatment room to place target tissue within the patient near the isocenter. The second stage comprises a fine alignment subsystem capable of submillimeter translations and subdegree size rotations to correct for any initial misalignments near isocenter, and to compensate for any deflections in the beam delivery device when a plurality of radiation beams is applied to the target tissue from a plurality of delivery directions.
Referring now to
The coarse alignment subsystem 14 induces coarse movements of the patient support surface 12 around the treatment room. In a preferred embodiment, the coarse alignment subsystem 14 can induce coarse movements of the patient support surface 12 that comprise traversals as large as about 4 m and rotations as large as about 200°. In another preferred embodiment, the coarse alignment subsystem 14 can induce coarse movements of the patient support surface 12 that comprise traversals as large as about 2 m and rotations as large as about 60°. In a particularly preferred embodiment, the coarse alignment subsystem 14 can induce coarse movements of the patient support surface 12 that comprise traversals as large as about 1 m and rotations as large as about 10°.
As shown in
With further reference to
With reference to
With further reference to
With further reference to
With further reference to
With further reference to
With further reference to
With further reference to
With further reference to
Referring now to
In a preferred embodiment, the device 10 has interfaces 31 for affixing one or more than one registration and immobilization devices, such as whole body pods, foam cradles, face masks, cranial halos and bite blocks. In another preferred embodiment, as shown, the patient support surface 12 comprises an opposing pair of C-shaped arms 28 that link one part of the patient support surface 12 to another part along its longitudinal length and that allow the distal end of the patient support surface 12 to extend distally, creating an open area that allows a radiation beam to pass into the target tissue unimpeded while the patient remains supported by one or more than one registration device. Preferably, the C-shaped arms 28 can be rotated away from the beam path while the patient is registered and immobilized on the patient support surface 12.
The device 10 further comprises a fine alignment subsystem 16 connected to the patient support surface 12 and to the coarse alignment subsystem 14. The fine alignment subsystem 16 induces fine movements of the patient support surface 12 with respect to the treatment room. In one embodiment, the fine movements comprise translation motions of as large as about ±20 mm with between about 0.04 mm and 0.1 mm resolution in three perpendicular axes, and pitch and roll rotations of as large as about ±5° with a resolution of between about 0.1° and 0.2°. In a preferred embodiment, the fine movements comprise translation motions of as large as about ±20 mm with about 0.05 mm resolution in three perpendicular axes, and pitch and roll rotations of as large as about ±5° with a resolution of about 0.1°.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
In another embodiment of the present invention, there is provided a method of aligning a patient for delivering a plurality of radiation beams, such as proton beams, from a radiation beam delivery device at a plurality of device positions. Referring now to
The present method of aligning a patient for delivering a plurality of radiation beams from a plurality of device positions comprises the following steps. First, a set of data describing the flexion behavior of a radiation beam delivery device during repositioning is derived. Next, a suitable patient is selected, where the patient has one or more than one target tissue suitable for receiving a plurality of radiation beams. Then, a treatment plan is produced. Next, the patient is aligned with respect to a reference set-up position to place the target tissue within the patient at the isocenter. Then, the radiation beam delivery device is moved to a first device position. Next, flexion of the radiation beam delivery device produced by the move to the first device position is compensated for using the set of predetermined data describing the flexion behavior of the radiation beam delivery device to place the target tissue within the patient at the beamline center for the radiation beam delivery device at the first device position. Then, a first radiation beam from the radiation beam delivery device at the first device position is delivered to the target tissue within the patient. Next, the radiation beam delivery device is moved to a second device position. Then, flexion of the radiation beam delivery device produced by the move to the second device position is compensated for using the set of predetermined data describing the flexion behavior of the radiation beam delivery device to place the target tissue within the patient at the beamline center for the radiation beam delivery device at the second device position. Next, a second radiation beam from the radiation beam delivery device at the second device position is delivered to the target tissue within the patient.
In one embodiment, the radiation beam delivery device is moved to a third device position. Then, flexion of the radiation beam delivery device produced by the move to the third device position is compensated for using the set of predetermined data describing the flexion behavior of a radiation beam delivery device derived previously. Next, a third radiation beam from the radiation beam delivery device at the third device position is delivered to the target tissue within the patient. As will be understood by those with skill in the art with reference to this disclosure, additional radiation beams from additional device positions can be delivered to the target tissue within the patient by compensating for flexion of the radiation beam delivery device produced by the move to the additional device positions using the set of predetermined data describing the flexion behavior of a radiation beam delivery device. Each of these steps will now be disclosed in greater detail. First, a set of data describing the flexion behavior of a radiation beam delivery device is derived. Referring now to
Measurement of the mechanical isocenter was divided into two perpendicular components. The first component was used to describe the radial deviation as the gantry rotates, while the second component describes the axial runout. The radial component was measured by first inserting a milled block into the end of the beam delivery device closest to where the patient would be located during a treatment. The milled block extended from the delivery device to beyond the estimated virtual center of the gantry. A theodolite with a 32× magnification telescope was placed in the room approximately three meters from the presumed isocenter and coaxially with it. A grid on the block was observed through the theodolite telescope while the gantry was rotated in increments of 10°. After each movement, the coordinate of the cross in the theodolite sight relative to the grid was recorded. After the data were measured, they were transformed from the gantry coordinate system to the room coordinate system and plotted. The axial runout was measured with a dial indicator that was rigidly affixed to the end of the patient positioner with its sensitive point touching the milled block at the previously determined radial isocenter. Again, the gantry was rotated in increments of 10°, stopping to record the measurements. Both radial and axial tests were performed in the clockwise and counterclockwise directions. Circles represent the path of the beamline center during a clockwise rotation while crosses represent the path of the beamline center during a counter clockwise rotation.
Next, a suitable patient is selected, where the patient has one or more than one target tissue suitable for receiving a plurality of radiation beams. A suitable patient will be one having one or more than one target tissue having a disease or condition amenable to teletherapy, such as a solid tissue neoplasm, an arterio-venous malformations or Parkinson's disease. In a preferred embodiment, the patient will have a solid tissue neoplasm susceptible to radiation therapy, such as a neoplasm selected from the group consisting of acoustic neuroma, adenocarcinoma, astrocytoma, chordoma, meningioma, nasopharyngeal carcinoma and pituitary adenoma.
Then, a treatment plan is produced using conventional methods. For example, the patient is registered and immobilized to a patient positioner of a scanner, such as an XCT scanner or other suitable device, using appropriate registration and immobilization procedures, and the patient is scanned. The information from the scan is then transferred to a treatment planning system, and the treatment plan is produced.
Next, the patient is aligned such that the target tissue within the patient is at the beamline center of the radiation beam delivery device for delivering a first beam of radiation to the target tissue. In one embodiment, the patient is aligned using a two-stage patient positioner device for aligning a patient for delivering a plurality of radiation beams according to the present invention. This can be accomplished, for example as follows.
In some embodiments, a method of aligning a patient for delivering multiple beams of radiation comprises the following steps. First, the patient is registered and immobilized to the patient positioner of an XCT scanner, or other suitable device, using an appropriate registration device and an appropriate immobilization device. Then, an XCT scan of the patient is performed. The XCT images are transferred to a treatment planning system and a treatment plan is developed.
Next, the target location for the isocenter within the patient is determined relative to a reference point of the patient positioner. Then, calculations are made of the room co-ordinates of the treatment gantry patient positioner base sub-system that are required to place the gantry isocenter at the target location within the patient. These co-ordinates are entered into a patient positioner database to generate a position file.
Then, the patient is taken to the treatment room. The gantry snout is preferably retracted to avoid a possible collision with the patient or equipment and the gantry is rotated to a beam delivery angle of 0°. The patient is registered and immobilized to the patient positioner using the identical registration and immobilization devices used for performing the XCT scan.
Next, an operator commands the patient positioner to center the fine alignment subsystem using an automatic zeroing command. Then, the operator manually drives the patient positioner base sub-system to place the location of the target within the patient within a few centimeters of the virtual isocenter of the gantry. The orientation of the patient positioner at this time approximately matches the prescribed orientation.
Next, the patient's position file that was previously generated is loaded and the operator commands the patient positioner base sub-system to “go to” the loaded position, thereby placing the target within the patient within a few millimeters of the virtual isocenter. The operator then commands the patient positioner base sub-system to move to the next radiation field, either by “turn wheels for yaw” or “turn wheels to isocenter” as needed.
Then, a localization image, such as an x-ray, is taken with either an electronic imaging device or film. The gantry is rotated to 90° and another localization image is taken orthogonally to the first localization image.
Next, a patient alignment algorithm uses the two localization images to compute the discrepancy between the patient's current location and orientation and the prescribed location and orientation. The therapist verifies the miss-alignment and suggested move and activates an enable switch on the patient positioner. The patient positioner fine alignment sub-system automatically rotates and translates the patient to correct for the difference in location and orientation.
After the initial miss-alignment has been corrected, the therapist commands the patient positioner to “set reference isocenter.” This command determines the gantry arrival direction and queries sensors that measure the gantry rotation angle, snout extension, snout delta (skewness), and all patient positioner positions. Then, the aperture and bolus for the field are installed into the snout, the gantry rotated to the treatment angle, and the snout extended to its treatment position.
The operator then commands the patient positioner fine alignment sub-system to “compensate isocenter.” This command queries the gantry rotation angle, gantry arrival direction, snout extension, snout delta, and all patient positioner positions. The system then automatically compares the projection of the beam central axis at the reference gantry angle and the current gantry angle based on pre-measured data sets. Referring now to
The therapist activates the enable switch and the fine alignment sub-system automatically translates the patient in all three directions to compensate for the gantry sag, gantry arrival direction, snout sag, and snout skewness. Then, the operator delivers the treatment beam. The snout is retracted and the gantry rotated to 90°. The steps disclosed in this paragraph are then repeated for each additional treatment field until the treatment has been completed.
After the patient is aligned, a first radiation beam from the first device position is delivered to the target tissue within the patient. Next, the radiation beam delivery device is moved to a second device position. Then, flexion of the radiation beam delivery device produced by the move to the second device position is compensated for using the set of predetermined data describing the flexion behavior of the radiation beam delivery device so that the target tissue within the patient is placed at the beamline center for the radiation beam delivery device at the second device position. In a preferred embodiment, compensation is accomplished by moving the patient and patient positioner as a unit, such as by using a two-stage patient positioner device according to the present invention. In another preferred embodiment, compensation is accomplished by one or more than one action selected from the group consisting of shifting an aperture or block holding cone with respect to the center of the beam delivery apparatus, shifting the position of the defining collimators of the beam delivery apparatus (such as the leaves of a multi-leaf collimator), and offsetting the scan pattern of a magnetically scanned beam, where each of these actions can be combined with rotation of the gantry as necessary to maintain the direction and the aiming point of the beam, as will be understood by those with skill in the art with reference to this disclosure. Next, a second radiation beam from the second device position is delivered to the target tissue within the patient.
The present method can also be used with other therapy delivery techniques, including serial (fan beam) tomotherapy, spiral (helical) tomotherapy, intensity modulated arc therapy (IMAT), cone beam dynamic therapy (sliding window), or cone beam segmental therapy (step and shoot), as well as being used for diagnostic radiation exposures, as will be understood by those with skill in the art with reference to this disclosure.
Although the present invention has been discussed in considerable detail with reference to certain preferred embodiments, other embodiments are possible. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure.
The present Application is a continuation of U.S. patent application Ser. No. 12/877,019, filed Sep. 7, 2010, which is a continuation of U.S. patent application Ser. No. 12/033,843, filed Feb. 19, 2008, now U.S. Pat. No. 7,789,560, which is a continuation of U.S. patent application Ser. No. 11/314,138, filed Dec. 21, 2005, now U.S. Pat. No. 7,331,713, which is a continuation of U.S. patent application Ser. No. 10/887,507, filed Jul. 7, 2004, now U.S. Pat. No. 7,011,447, which is a continuation of U.S. patent application Ser. No. 10/393,836, filed Mar. 20, 2003, now U.S. Pat. No. 6,769,806, which claims priority from International Patent Application PCT/US02/34556, titled “Method and Device for Delivering Radiotherapy,” filed Oct. 28, 2002, which claims the benefit of U.S. Provisional Patent Application 60/340,430, filed Oct. 30, 2001, titled “Method and Device for Delivering Radiotherapy.” The entire disclosure of each of the foregoing is incorporated herein by reference.
This invention was made with United States Government support under Cooperative Agreement Number DAMD17-97-2-7016 with the National Medical Technology Testbed, Inc., United States Department of the Army. The United States Government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
2469084 | Schenker | May 1949 | A |
2675564 | Hughes | Apr 1954 | A |
3397411 | Rossi | Aug 1968 | A |
3449570 | Kok | Jun 1969 | A |
3545739 | D'Avignon | Dec 1970 | A |
3556455 | Storm | Jan 1971 | A |
3604931 | Kastner et al. | Sep 1971 | A |
3640787 | Heller | Feb 1972 | A |
3689949 | Weinstein et al. | Sep 1972 | A |
3745998 | Rose | Jul 1973 | A |
3762404 | Sakita | Oct 1973 | A |
3778049 | Viamonte, Jr. | Dec 1973 | A |
3848132 | Foderaro | Nov 1974 | A |
3851644 | Slagle | Dec 1974 | A |
3885258 | Regan | May 1975 | A |
3893198 | Blair | Jul 1975 | A |
3897345 | Foster | Jul 1975 | A |
3897777 | Morrison | Aug 1975 | A |
3901588 | Longhenry | Aug 1975 | A |
3905054 | Windsor et al. | Sep 1975 | A |
3947686 | Cooper et al. | Mar 1976 | A |
3986697 | Amor, Jr. et al. | Oct 1976 | A |
4034224 | Heavens et al. | Jul 1977 | A |
4064401 | Marden | Dec 1977 | A |
4190772 | Dinwiddie et al. | Feb 1980 | A |
4230129 | LeVeen | Oct 1980 | A |
4252594 | Cooper | Feb 1981 | A |
4256112 | Kopf et al. | Mar 1981 | A |
4262204 | Mirabella | Apr 1981 | A |
4269512 | Nosler | May 1981 | A |
4287425 | Elliot, Jr. | Sep 1981 | A |
4327046 | Davis et al. | Apr 1982 | A |
4347213 | Rogers, Jr. | Aug 1982 | A |
4365341 | Lam | Dec 1982 | A |
4392239 | Wilkens | Jul 1983 | A |
4400820 | O'Dell et al. | Aug 1983 | A |
4450122 | Gallina | May 1984 | A |
4484571 | Velasquez | Nov 1984 | A |
4504050 | Osborne | Mar 1985 | A |
4552508 | Reid | Nov 1985 | A |
4578757 | Stark | Mar 1986 | A |
4591341 | Andrews | May 1986 | A |
4616814 | Harwood-Nash et al. | Oct 1986 | A |
4666304 | Davies | May 1987 | A |
4671284 | Wilson et al. | Jun 1987 | A |
4682818 | Morell | Jul 1987 | A |
4688780 | Hanz | Aug 1987 | A |
4705955 | Mileikowsky | Nov 1987 | A |
4711578 | Chaimowicz | Dec 1987 | A |
4752064 | Voss | Jun 1988 | A |
4779858 | Saussereau | Oct 1988 | A |
4796613 | Heumann et al. | Jan 1989 | A |
4819257 | Grasser et al. | Apr 1989 | A |
4841965 | Jacobs | Jun 1989 | A |
4905267 | Miller et al. | Feb 1990 | A |
4917344 | Prechter et al. | Apr 1990 | A |
4926457 | Poehner et al. | May 1990 | A |
4979519 | Chavarria et al. | Dec 1990 | A |
5014290 | Moore et al. | May 1991 | A |
5017789 | Young et al. | May 1991 | A |
5046708 | Schaefer | Sep 1991 | A |
5048071 | Van Steenburg | Sep 1991 | A |
5049147 | Danon | Sep 1991 | A |
5054049 | Manabe | Oct 1991 | A |
5081665 | Kostich | Jan 1992 | A |
5090047 | Angotti et al. | Feb 1992 | A |
5117829 | Miller et al. | Jun 1992 | A |
5156166 | Sebring | Oct 1992 | A |
5168514 | Horton, Jr. et al. | Dec 1992 | A |
5207688 | Carol | May 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5240218 | Dye | Aug 1993 | A |
5242455 | Skeens et al. | Sep 1993 | A |
5269305 | Corol | Dec 1993 | A |
5276927 | Day | Jan 1994 | A |
5278886 | Kobiki et al. | Jan 1994 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5281232 | Hamilton et al. | Jan 1994 | A |
5287576 | Fraser | Feb 1994 | A |
5297262 | Cox et al. | Mar 1994 | A |
5361765 | Herlihy et al. | Nov 1994 | A |
5370117 | McLaurin, Jr. | Dec 1994 | A |
5370118 | Vij et al. | Dec 1994 | A |
5380336 | Misko et al. | Jan 1995 | A |
5388580 | Sullivan et al. | Feb 1995 | A |
5427097 | Depp | Jun 1995 | A |
5446548 | Gerig et al. | Aug 1995 | A |
5454993 | Kostich | Oct 1995 | A |
5464411 | Schulte et al. | Nov 1995 | A |
5485833 | Dietz | Jan 1996 | A |
5531229 | Dean et al. | Jul 1996 | A |
5538494 | Matsuda | Jul 1996 | A |
5549616 | Schulte | Aug 1996 | A |
5553112 | Hardy et al. | Sep 1996 | A |
5566681 | Manwaring et al. | Oct 1996 | A |
5570409 | Yamaguchi et al. | Oct 1996 | A |
5588430 | Bova et al. | Dec 1996 | A |
5595191 | Kirk | Jan 1997 | A |
5622187 | Carol | Apr 1997 | A |
5675851 | Feathers | Oct 1997 | A |
5676673 | Ferre et al. | Oct 1997 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5745545 | Hughes | Apr 1998 | A |
5751781 | Brown et al. | May 1998 | A |
5771512 | Kurakake et al. | Jun 1998 | A |
5775337 | Hauger et al. | Jul 1998 | A |
5797924 | Schulte et al. | Aug 1998 | A |
5800352 | Ferre et al. | Sep 1998 | A |
5806116 | Oliver et al. | Sep 1998 | A |
5820444 | McGaughey | Oct 1998 | A |
5820553 | Hughes | Oct 1998 | A |
5823192 | Kalend et al. | Oct 1998 | A |
5832550 | Hauger et al. | Nov 1998 | A |
5848449 | Hauger et al. | Dec 1998 | A |
5851182 | Sahadevan | Dec 1998 | A |
5865832 | Knopp et al. | Feb 1999 | A |
5911655 | Brenneisen | Jun 1999 | A |
5947981 | Cosman | Sep 1999 | A |
5983424 | Näslund | Nov 1999 | A |
6003174 | Kantrowitz et al. | Dec 1999 | A |
6023694 | Kouchi et al. | Feb 2000 | A |
6026392 | Kouchi et al. | Feb 2000 | A |
6085227 | Edlund et al. | Jul 2000 | A |
6094760 | Nonaka et al. | Aug 2000 | A |
6118848 | Reiffel | Sep 2000 | A |
6144875 | Schweikard et al. | Nov 2000 | A |
6144993 | Fukunaga et al. | Nov 2000 | A |
6148272 | Bergstrom et al. | Nov 2000 | A |
6161237 | Tang et al. | Dec 2000 | A |
6178430 | Cohen et al. | Jan 2001 | B1 |
6180942 | Tracy et al. | Jan 2001 | B1 |
6182060 | Hedgcock et al. | Jan 2001 | B1 |
6195578 | Distler et al. | Feb 2001 | B1 |
6200025 | Rich | Mar 2001 | B1 |
6244745 | Mattern | Jun 2001 | B1 |
6275564 | Ein-Gal | Aug 2001 | B1 |
6279579 | Riaziat et al. | Aug 2001 | B1 |
6282739 | Livingston | Sep 2001 | B1 |
6308353 | Van Steenburg | Oct 2001 | B1 |
6313915 | Yanagisawa et al. | Nov 2001 | B1 |
6325758 | Carol et al. | Dec 2001 | B1 |
6345114 | Mackie et al. | Feb 2002 | B1 |
6375355 | Fortin | Apr 2002 | B1 |
6376846 | Livingston | Apr 2002 | B2 |
6405072 | Cosman | Jun 2002 | B1 |
6446286 | Karmalawy | Sep 2002 | B1 |
6452999 | Maida | Sep 2002 | B1 |
6460206 | Blasche et al. | Oct 2002 | B1 |
6462553 | Badura | Oct 2002 | B1 |
6473490 | Siochi | Oct 2002 | B1 |
6476403 | Dolinskii et al. | Nov 2002 | B1 |
6505245 | North et al. | Jan 2003 | B1 |
6509573 | Badura et al. | Jan 2003 | B1 |
6565577 | Cosman | May 2003 | B2 |
6598275 | Kolody et al. | Jul 2003 | B1 |
6614038 | Brand et al. | Sep 2003 | B1 |
6621889 | Mostafavi | Sep 2003 | B1 |
6650930 | Ding | Nov 2003 | B2 |
6662036 | Cosman | Dec 2003 | B2 |
6670618 | Hartmann et al. | Dec 2003 | B1 |
6677597 | Haberer et al. | Jan 2004 | B1 |
6690965 | Riaziat et al. | Feb 2004 | B1 |
6693283 | Eickhoff et al. | Feb 2004 | B2 |
6698045 | Coppens et al. | Mar 2004 | B1 |
6704957 | Rhodes | Mar 2004 | B2 |
6725078 | Bucholz et al. | Apr 2004 | B2 |
6754299 | Patch | Jun 2004 | B2 |
6769806 | Moyers | Aug 2004 | B2 |
6780149 | Schulte | Aug 2004 | B1 |
6795523 | Steinberg | Sep 2004 | B2 |
6799068 | Hartmann et al. | Sep 2004 | B1 |
6804548 | Takahashi et al. | Oct 2004 | B2 |
6813788 | Dinkler et al. | Nov 2004 | B2 |
6814694 | Pedroni | Nov 2004 | B1 |
6822244 | Beloussov et al. | Nov 2004 | B2 |
6839404 | Clark et al. | Jan 2005 | B2 |
6891177 | Kraft et al. | May 2005 | B1 |
6977987 | Yamashita et al. | Dec 2005 | B2 |
7011447 | Moyers | Mar 2006 | B2 |
7076821 | DeMooy | Jul 2006 | B2 |
7084410 | Beloussov et al. | Aug 2006 | B2 |
7120223 | Nafstadius | Oct 2006 | B2 |
7142634 | Engler et al. | Nov 2006 | B2 |
7154108 | Tadokoro et al. | Dec 2006 | B2 |
7154991 | Earnst et al. | Dec 2006 | B2 |
7173265 | Miller et al. | Feb 2007 | B2 |
7199382 | Rigney et al. | Apr 2007 | B2 |
7207715 | Yue | Apr 2007 | B2 |
7280633 | Cheng et al. | Oct 2007 | B2 |
7301162 | Matsuda et al. | Nov 2007 | B2 |
7331713 | Moyers | Feb 2008 | B2 |
7348579 | Pedroni | Mar 2008 | B2 |
7368740 | Beloussov et al. | May 2008 | B2 |
7372053 | Yamashita et al. | May 2008 | B2 |
7398309 | Baumann et al. | Jul 2008 | B2 |
7446328 | Rigney et al. | Nov 2008 | B2 |
7560717 | Matsuda et al. | Jul 2009 | B2 |
7789560 | Moyers | Sep 2010 | B2 |
20020032378 | Henderson et al. | Mar 2002 | A1 |
20020051513 | Pugachev et al. | May 2002 | A1 |
20020065461 | Cosman | May 2002 | A1 |
20020077545 | Takahashi et al. | Jun 2002 | A1 |
20020095730 | Al-Kassim et al. | Jul 2002 | A1 |
20020120986 | Erbel et al. | Sep 2002 | A1 |
20020188194 | Cosman | Dec 2002 | A1 |
20020193685 | Mate et al. | Dec 2002 | A1 |
20030007601 | Jaffray et al. | Jan 2003 | A1 |
20030031301 | Longton et al. | Feb 2003 | A1 |
20030164459 | Schardt et al. | Sep 2003 | A1 |
20040013414 | Karger et al. | Jan 2004 | A1 |
20040028188 | Amann et al. | Feb 2004 | A1 |
20040034438 | Uematsu | Feb 2004 | A1 |
20040034932 | Zacharopoulos et al. | Feb 2004 | A1 |
20040042583 | Wackerle et al. | Mar 2004 | A1 |
20040082856 | Marmarelis | Apr 2004 | A1 |
20040098445 | Baumann et al. | May 2004 | A1 |
20040123388 | Coppens et al. | Jul 2004 | A1 |
20040155206 | Marchand et al. | Aug 2004 | A1 |
20040158145 | Ghelmansarai et al. | Aug 2004 | A1 |
20040164254 | Beloussov et al. | Aug 2004 | A1 |
20040174958 | Moriyama et al. | Sep 2004 | A1 |
20040184583 | Nagamine et al. | Sep 2004 | A1 |
20050054910 | Tremblay et al. | Mar 2005 | A1 |
20050072940 | Beloussov et al. | Apr 2005 | A1 |
20050116175 | Haberer | Jun 2005 | A1 |
20050161618 | Pedroni | Jul 2005 | A1 |
20050226377 | Wong et al. | Oct 2005 | A1 |
20050281374 | Cheng et al. | Dec 2005 | A1 |
20060002511 | Miller et al. | Jan 2006 | A1 |
20060017022 | Rigney et al. | Jan 2006 | A1 |
20060183960 | Sioshansi et al. | Aug 2006 | A1 |
20070018120 | Beloussov et al. | Jan 2007 | A1 |
20070018121 | Leyman et al. | Jan 2007 | A1 |
20070025524 | Yue | Feb 2007 | A1 |
20070031337 | Schulte | Feb 2007 | A1 |
20070039621 | Moyers | Feb 2007 | A1 |
20070093100 | Sommer | Apr 2007 | A1 |
20070108922 | Amaldi | May 2007 | A1 |
20070158592 | Hiramoto et al. | Jul 2007 | A1 |
20070164230 | Rigney et al. | Jul 2007 | A1 |
20070262269 | Trbojevic | Nov 2007 | A1 |
20080005643 | Park et al. | Jan 2008 | A1 |
20080031414 | Coppens | Feb 2008 | A1 |
20080042076 | Miller et al. | Feb 2008 | A1 |
20080056434 | Grozinger et al. | Mar 2008 | A1 |
20080187097 | Cheng et al. | Aug 2008 | A1 |
20080189859 | Sloan et al. | Aug 2008 | A1 |
20080191142 | Pedroni | Aug 2008 | A1 |
20080192892 | Dilmanian et al. | Aug 2008 | A1 |
20080237494 | Beloussov et al. | Oct 2008 | A1 |
20080292053 | Marash et al. | Nov 2008 | A1 |
20080317216 | Lifshitz et al. | Dec 2008 | A1 |
20090067577 | Rigney et al. | Mar 2009 | A1 |
20090154645 | Lifshitz et al. | Jun 2009 | A1 |
20090202045 | Guertin et al. | Aug 2009 | A1 |
20090217456 | Lempen et al. | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
2513896 | Oct 1975 | DE |
2833800 | Dec 1979 | DE |
3643893 | Jun 1988 | DE |
44 18 216 | Nov 1995 | DE |
19612091 | Mar 1997 | DE |
102005034912 | Feb 2007 | DE |
019136 | Nov 1980 | EP |
247449 | Dec 1987 | EP |
0 283 082 | Sep 1988 | EP |
465590 | Jan 1992 | EP |
480035 | Apr 1992 | EP |
809525 | Dec 1997 | EP |
986070 | Mar 2000 | EP |
986071 | Mar 2000 | EP |
1064881 | Jan 2001 | EP |
1454653 | Sep 2004 | EP |
1584353 | Oct 2005 | EP |
1585578 | Oct 2005 | EP |
1709994 | Oct 2006 | EP |
1792595 | Jun 2007 | EP |
1795229 | Jun 2007 | EP |
1900392 | Mar 2008 | EP |
1935453 | Jun 2008 | EP |
2701391 | Aug 1994 | FR |
0870225 | Jun 1961 | GB |
1362678 | Aug 1974 | GB |
2213066 | Aug 1989 | GB |
2254691 | Oct 1992 | GB |
61-194400 | Aug 1986 | JP |
63-206261 | Aug 1988 | JP |
H03-094736 | Apr 1991 | JP |
H04-339282 | Nov 1992 | JP |
H07-204184 | Aug 1995 | JP |
2003-527763 | Sep 2003 | JP |
7309246 | Oct 1974 | NL |
WO 8801848 | Mar 1988 | WO |
WO 9011721 | Oct 1990 | WO |
WO 9011723 | Oct 1990 | WO |
WO 9625200 | Aug 1996 | WO |
WO 9852646 | Nov 1998 | WO |
WO 9910137 | Mar 1999 | WO |
WO 0059575 | Oct 2000 | WO |
WO 0100276 | Jan 2001 | WO |
WO 0189625 | Nov 2001 | WO |
WO 0245793 | Jun 2002 | WO |
WO 03039212 | May 2003 | WO |
WO 03053520 | Jul 2003 | WO |
WO 03076016 | Sep 2003 | WO |
WO 2004026401 | Apr 2004 | WO |
WO 2004032781 | Apr 2004 | WO |
WO 2004060486 | Jul 2004 | WO |
WO 2005018734 | Mar 2005 | WO |
WO 2005018735 | Mar 2005 | WO |
WO 2005037167 | Apr 2005 | WO |
WO 2005102453 | Nov 2005 | WO |
WO 2006060886 | Jun 2006 | WO |
WO 2006076545 | Jul 2006 | WO |
WO 2006094533 | Sep 2006 | WO |
WO 2007012646 | Feb 2007 | WO |
WO 2007016022 | Feb 2007 | WO |
WO 2007054140 | May 2007 | WO |
WO 2007061426 | May 2007 | WO |
WO 2007062788 | Jun 2007 | WO |
WO 2007068066 | Jun 2007 | WO |
WO 2007127970 | Nov 2007 | WO |
WO 2008003526 | Jan 2008 | WO |
WO 2008051358 | May 2008 | WO |
WO 2008064271 | May 2008 | WO |
WO 2008081480 | Jul 2008 | WO |
WO 2008142695 | Nov 2008 | WO |
Entry |
---|
“Dedicated Medical Ion Accelerator Design Study” by Lawrence Berkeley Laboratory, et al., Dec. 1977, PCTA008295-PCTA008455. |
“Design of a Proton Therapy Synchrotron” by Fermilab National Accelerator Laboratory, Jun. 1986, LL467-LL574. |
“Proceedings of a Medical Workshop on Accelerators for Charged-Particle Beam Therapy” by Fermilab, Jan. 1985, LL33170-LL33313. |
“Product Overview” by BrainLAB Radiotherapy Solutions, Copyright 2004 BrainLAB AG. |
“Proton Therapy Facility: Engineering Design Report” by Fermi National Accelerator Laboratory, Feb. 1987, LL45441-LL45570. |
“Proton Therapy System” by Brobeck Corporation, Nov. 1985, LL54413-LL54459. |
Matsu'ura, Jun, “Systems for Overall Control and Beam Transport of the HIMAC,” Mitsubishi Electric Advance, Mitsubishi Electric Corporation, Tokyo, JP, vol. 72, Sep. 1995, pp. 5-7. |
European Search Report for Application No. 02789303.1, filed Oct. 28, 2002. |
International Search Report for PCT/US02/34556, filed Oct. 28, 2002. |
Number | Date | Country | |
---|---|---|---|
20120045038 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
60340430 | Oct 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12877019 | Sep 2010 | US |
Child | 13284701 | US | |
Parent | 12033843 | Feb 2008 | US |
Child | 12877019 | US | |
Parent | 11314138 | Dec 2005 | US |
Child | 12033843 | US | |
Parent | 10887507 | Jul 2004 | US |
Child | 11314138 | US | |
Parent | 10393836 | Mar 2003 | US |
Child | 10887507 | US | |
Parent | PCT/US02/34556 | Oct 2002 | US |
Child | 10393836 | US |