The present invention relates to a method for detecting a position and movement of a sound producing unit of a woofer. The invention also relates to a system comprising a detector for detecting a position and movement of a sound producing unit of a woofer. The invention further relates to a computer program product having a computer program stored therewith, said computer program comprising computer code for detecting a position and movement of a sound producing unit of a woofer.
A loudspeaker is an electromechanical transducer that converts electrical signals to sound. Such an electromechanical transducer is also called as a driver or a woofer. The term loudspeaker has also been used of loudspeaker systems which comprise one or more electromechanical transducers, an enclosure (a housing), and optionally additional electronics. In this application the term woofer is mainly used to refer to the electromechanical transducer which comprises inter alia a coil or some other element which converts an electric signal to a mechanical force, and a sound producing unit (usually called as a cone) which is affected by the mechanical force to produce sound on the basis of the electric signal. It should be noted here that the term cone is not restricted to cone-like membranes but also other physical appearances of the sound producing unit can be implemented with the present invention.
The international patent application WO 2004/082330 discloses a woofer equipped with measurement of the movement of the cone of the woofer unit. The measurement is based on detecting a change in a measurement capacitance. The measurement capacitance is formed by adding a cylindrical, conducting plate around the vibrating coil of the woofer. When the coil and the membrane attached with the coil move, the capacitance of the measurement capacitor changes. This change of the capacitance is measured to determine how far the coil and the membrane have moved from the rest position.
The European patent application EP 0 213 319 discloses a woofer having a membrane coupling arrangement to measure the movement of membrane of the woofer. The arrangement comprises a sensor unit and a metal plate. The metal plate is fixed to the membrane of the woofer. The sensor unit is positioned near the membrane of the woofer. Hence, the sensor unit senses the movements of the metal plate when the membrane vibrates along with audio signals.
Both of these system require that the woofer is modified by adding either a conducting plate e.g. a metal plate to the membrane or to the coil of the woofer.
The Chinese patent application publication CN 1173105 discloses a pseudo-zero impedance loudspeaking technique and a sound system. The system uses the feature that the physical quantities relative to the moving speed of vibration membrane in woofer are real-time measured and the physical quantities along with audio signals picked up by sound system can control the movements of vibration membrane. The measurement of the movements of the membrane is based on measuring the changes of the impedance in the woofer driving circuit. The measurement is not based on the real movements of the membrane.
One aim of the present invention is to provide an improved system for measuring the position of the sound producing unit of the woofer without a need to add any additional parts to the woofer. The invention is based on using acoustic signal measurement. The system comprises an ultrasonic transmitter for producing audio signals which are directed towards the membrane. The sound producing unit reflects the signal and the position of the sound producing unit modulates the phase of the transmitted signal. Therefore, by measuring the phase difference between the transmitted and received signal the position of the cone of the woofer can be measured. Further, by differentiating the displacement with respect to time, the velocity and the acceleration of the cone of the woofer can be measured based on the position data. The first differential will give the velocity, and the second differential will give the acceleration. There are many possibilities to measure the phase differences. For example, by converting an analog signal to a digital signal and performing signal processing on the basis of the digital signal.
According to a first aspect of the present invention there is provided a system comprising
The system is primarily characterised in that the system comprises:
According to a second aspect of the present invention there is provided a method for adjusting a response of a loudspeaker system comprising a woofer installed in a housing, said woofer comprising a sound producing unit, the method comprising
The method of the present invention is primarily characterised in that the method comprises
According to a third aspect of the present invention there is provided a module to be used in a system comprising
The module is primarily characterised in that the module comprises a control unit for adjusting a spring constant effecting to the sound producing unit of the woofer on the basis of the determined position.
According to a fourth aspect of the present invention there is provided a computer program product comprising computer code for adjusting a response of a loudspeaker system comprising a woofer installed in a housing, said woofer comprising a sound producing unit, the computer program product comprising computer code for
The computer program product is primarily characterised in that the computer program product comprises computer code for adjusting a spring constant effecting to the sound producing unit of the woofer on the basis of the determined position.
The present invention has advantages compared to the prior art systems. When utilizing an advantageous embodiment of the present invention there is no need to make any changes to the woofer or add any additional elements to the membrane or to the coil of the woofer. Therefore, the properties of the woofer are not affected by the apparatus measuring the position and movements of the woofer and the woofer cone.
In the following the present invention will be described in more detail with reference to the appended drawings in which
a illustrates another example embodiment of the position measurement unit, and
b and 6c illustrate the use of both the rising and the falling edge of a clock signal to double the measurement precision, and
Measurement of the Position of the Woofer Cone
In the following, the invention will be described in more detail with reference to the system of
A control unit 5 operates as a measurement and adjustment block for adjusting the operation of the woofer 4 on the basis of measurements performed by a measurement unit 6. The measurement unit 6 is for measuring the position of the sound producing unit 4.2 of the woofer 4 as will be explained below. The sound producing unit 4.2 of the woofer 4 is e.g. a cone but the invention is not limited to woofers having a cone but the invention is also applicable to woofers having other kinds of sound producing units.
The system may also comprise a memory 27 for storing data and computer code, when necessary. The memory 27 can be internal to the control unit 5 or it can be external memory or both internal and external memory. It is also possible that there are several memory units for different blocks of the system, e.g. a memory for the control unit 5 and a memory for the position measurement unit 9.
The measurement unit 6 comprises an ultrasonic signal transmitter 6.1 to transmit the ultrasonic audio signals. It is obvious that the ultrasonic transmitter 6.1 converts the electrical ultrasonic frequency signal to ultrasonic acoustic sound. The ultrasonic transmitter 6.1 is preferably fixed to the frame of the woofer 4 so that the ultrasonic audio signals transmitted by the ultrasonic transmitter 6.1 are directed towards the woofer cone 4.2. Ultrasonic audio signals are at least partly reflected by the woofer cone 4.2. These reflected ultrasonic audio signals are received by an ultrasonic receiver 6.2 of the measurement unit. An example embodiment of the arrangement of the ultrasonic transmitter 6.1 and the ultrasonic receiver 6.2 is depicted in
Now, an example embodiment of the method of measuring the position of the cone 4.2 is disclosed in more detail. The ultrasonic transmitter 6.1 produces a constant frequency ultrasonic acoustic signal having a frequency which is preferably at the ultrasonic frequency range, i.e. the signal frequency is higher than the highest frequency a human ear can usually hear. For example, the frequency is in the range of 20 000 to 100 000 Hz, preferably about 40 000 Hz. In other words, the pulse rate is in the range of 20 000 to 100 000 pulses/s, preferably about 40 000 pulses/s. However, the frequency as such is not very important when implementing the present invention.
The system 1 of
The output of the divider 10 is also connected to a start input 9.1 of the position measurement unit 9. The signal in the start input 9.1 controls the position measurement unit to start counting of pulses. For example, a rising edge of the signal at the start input 9.1 affects the position measurement unit 9 to start counting. The position measurement unit 9 counts the pulses of the clock signal at the clock input 9.2 of the position measurement unit 9.
The ultrasonic receiver 6.2 receives the ultrasonic audio signal reflected from the woofer cone 4.2. The received signal is amplified by the receiver amplifier 11 to produce an amplified received signal. In an example embodiment the amplified received signal varies between about 0 V and 3 V but also other voltage levels can be used depending on e.g. the technology with which the position measurement unit 9 is implemented.
The edge which initiates the counting can be called as an activating edge, and the edge which stops the counting can be called as a deactivating edge. The activating edge can be a rising edge or a falling edge or both. Respectively, the deactivating edge can be a rising edge or a falling edge or both. The activating edge need not be the same edge as the deactivating edge.
The amplified received signal is connected to the stop input 9.3 of the position measurement unit 9. The signal in the stop input 9.3 controls the position measurement unit 9 to stop counting of pulses. For example, a rising edge of the signal at the stop input 9.3 affects the position measurement unit 9 to stop counting. Hence, the position measurement unit 9 counts the pulses of the clock signal from the rising edge of the signal at the start input 9.1 to the subsequent rising edge of the amplified received signal.
As was mentioned above, the frequency of the clock signal in this embodiment is about 197 MHz. Therefore, the number of pulses in the clock signal between two consecutive rising edges of the 40 000 Hz signal at the start input 9.1 is about 4928. This means that the signal travels about 8.58 mm during the time between two consecutive rising edges of the 40 000 Hz signal. This is based on the fact that audio signal traverses about 343 m/s and the time between two consecutive edges is 1/40 000 s i.e. about 25 us. The audio signal traverses from the ultrasonic transmitter 6.1 to the cone and further to the ultrasonic receiver 6.2. In this example embodiment the ultrasonic transmitter 6.1 and the ultrasonic receiver 6.2 are fixed near each other. Therefore, the distance between the ultrasonic transmitter 6.1 and the cone 4.2 is approximately the same than the distance between the ultrasonic receiver 6.2 and the cone 4.2. This means that the real distance between the ultrasonic transmitter 6.1 and the cone is approximately half the distance which is calculated on the basis of the measurement results. Therefore, in the first embodiment of the measurement method the detectable range of change in the position of the cone 4.2 is about 4.29 mm, if overflow/underflow detection and 40 000 Hz cycle counting information is not used to extend measurement range over the 40 000 Hz i.e. 25 μs pulse boundaries. In other words, when the cone moves 4.29 mm the phase difference between the transmitted signal and the received signal changes 360 degrees. It should be noted here that the distance between the ultrasonic transmitter 6.1/the ultrasonic receiver 6.2 and the cone 4.2 can be longer than the above mentioned 4.29 mm.
The measurement method according to the first embodiment of the present invention operates as follows. The ultrasonic transmitter 6.1 transmits the ultrasonic signal. At the rising edge of the pulse at time t0 the position measurement unit 9 starts to count the clock pulses. When the cone 4.2 is in the rest position the corresponding part of the reflected signal arrives at the receiver at time t2.
The phase counter 9.4 (
The frequency of the measurement clock i.e. the clock 9.2 to the phase counter 9.4 is in this example embodiment approximately 197 MHz (=12.299 MHz*16). The frequency of the square wave transmitted by the ultrasonic transmitter 6.1 is in this example embodiment the frequency of the measurement clock divided by 4927 i.e. approximately 40 kHz. This means that the maximum counting value of the phase counter 9.4 is 4927 before the next reset will occur. The maximum value will only be achieved when the stop signal 9.3 is not activated between two consecutive start signals 9.1.
The value of the phase counter 9.4 will be loaded to a first register 9.5 always when the start signal 9.1 is activated. Hence, the value of the register 9.5 corresponds with the phase difference between the transmitted ultrasonic signal and the received ultrasonic signal, which is dependent on the distance between the ultrasonic transmitter 6.1 and the cone 4.2 of the woofer and the distance between the ultrasonic receiver 6.2 and the cone 4.2 of the woofer. In other words, i.e. the phase difference is dependent on the length of the signal path of the ultrasonic signal.
By the above disclosed arrangement one measurement sample is obtained for each ultrasonic pulse. In the example embodiment this means that measurement samples are obtained at a frequency of about 40 kHz.
The accuracy of the measurement is determined by the ratio between the frequency of the measurement clock and the frequency of the ultrasonic signal. The greater is the frequency of the measurement clock compared to the frequency of the ultrasonic signal the more accurately the phase difference and, therefore, the position of the cone 4.2 of the woofer can be measured. In the example embodiment the characteristic frequency of the ultrasonic transmitter and the ultrasonic receiver is about 40 kHz to which the frequency of the square wave to be transmitted by the ultrasonic transducer should be adapted.
Overflow/Underflow
The overflow occurs when the phase difference between the transmitted ultrasonic signal and the received ultrasonic signal is greater than one whole phase (360 degrees). In the example embodiment the phase difference between the transmitted ultrasonic signal and the received ultrasonic signal increases to one whole phase when the movement of the cone 4.2 of the woofer is about 4.29 mm (the crossover point). Several crossovers may occur depending on the range of movement of the cone 4.2 of the woofer. For example, if the maximum amplitude of the movement of the cone 4.2 of the woofer is appr. 20 mm (i.e. the range of the movement of the cone 4.2 of the woofer is appr. 40 mm), three overflows can occur (=20 mm/4.29 mm−1). This means that there exist six crossover points in the range of movement of the cone 4.2 of the woofer. Respectively, in an underflow situation the phase difference shifts to a previous whole phase.
The overflow and the underflow can be detected on the basis of a rapid change between two successive counter values. If a new value of the phase counter 9.4 is much smaller than the previous value of the phase counter 9.4, it is indicative of an overflow situation. Hence, the value of the phase counter 9.4 has to be increased by the value which corresponds with one whole phase. In the example embodiment the offset value O to be added to the counter value is 4298. Respectively, if a new value of the phase counter 9.4 is much larger than the previous value of the phase counter 9.4, it is indicative of an underflow situation. Hence, the value of the phase counter 9.4 has to be decreased by the offset value O which corresponds with one whole phase i.e. in the example embodiment the offset value 4298 have to be subtracted from the value of the phase counter 9.4.
As it was mentioned above, depending on the range of movement of the cone 4.2 of the woofer there can exist a plurality of overflows/underflows. Hence, a multiple of the offset value have to be added to/subtracted from the counter value. In the example embodiment of
The value of the first register 9.5 will be loaded to the second register 9.6 at the activation of the start signal. Hence, the second register 9.6 contains the previous measurement value to be used in the detection of a possible overflow or underflow situation. In an initial state and when the cone 4.2 of the woofer is in a rest position the cycle count value N is zero. In the above mentioned example in which the maximum amplitude of movement of the cone 4.2 of the woofer is 20 mm, the cycle count value is 3 when the cone 4.2 of the woofer is at one end of the range of movement (+20 mm from the rest position) and the cycle count value is −3 when the cone 4.2 of the woofer is in the opposite end of the range of movement (−20 mm from the rest position).
In an overflow situation the edge of the pulse of the received ultrasonic signal moves to the next phase, wherein the stop signal 9.3 will not be activated between two consecutive rising edges of the transmitted signal. This means that the value of the phase counter is the value corresponding to one whole phase which in the example embodiment is 4298. This value will be loaded to the first register 9.5 at the rising edge of the start signal 9.1 which also resets and starts the phase counter 9.4. The next rising edge in the received ultrasonic signal will stop the phase counter 9.4 relatively soon after the phase counter 9.4 has started counting. Hence, the value of the phase counter 9.4 is much smaller than the previous value stored to the first register 9.5. This information can be used to detect the overflow situation for example as using the arrangement of
The decision to increment or decrement the cycle counter value N by one may be based on e.g. how large is the difference between two successive counter values. For example, if the difference between the previous value of the phase counter 9.4 and the new value of the phase counter 9.4 is greater than half of the offset value (>½*4928 in this example embodiment), the cycle counter value N is decremented by one. Respectively, if the difference between the previous value of the phase counter 9.4 and the new value of the phase counter 9.4 is smaller than half of the negation of offset value (<½*4928 in this example embodiment), the cycle counter value N is incremented by one.
In
The missing stop signal 9.10 can be used as an indication of an exceptional situation (overflow/underflow).
If the rising edges in the start 9.1 and stop signals 9.3 appear after each other (i.e. no missing stop signals 9.10), the third register 9.7 will always be in a reset state because the set/reset register 9.8 is in a reset state at the rising edge of the start signal 9.1.
The Rest Position of the Cone of the Woofer
When the cone 4.2 of the woofer is in a rest position the phase difference between the transmitted ultrasonic signal and the received ultrasonic signal can have any value, depending on the mutual positions of the ultrasonic transmitter 6.1 and the ultrasonic receiver 6.2. In practise, the phase difference can be different in different devices. If it is desired that a position measurement value will be zero when the cone 4.2 of the woofer is in the rest position, the measured value can be corrected by adding or subtracting a certain rest position offset value from a measurement result. The rest position offset value is the value corresponding to the measured phase difference when the cone 4.2 of the woofer is in the rest position. For example in the embodiment of
The corrected measured value contains the displacement data 9.13 i.e. indicates the displacement of the cone 4.2 of the woofer from the rest position.
There can also be more than one phase counters 9.4 in the phase measurement units 9 to increase the accuracy of the measurement. For example when two phase counters 9.4, 9.4′ are used (
There can also be more than one phase measurement unit to increase the accuracy of the measurement. For example when two phase measurement units 9, 18 are used (
Adjusting the Woofer
When the position of the woofer cone 4.2 is measured the position data can be used in adjusting the properties of the woofer. The position data enables to adjust the parameters of the movement equation of a simple harmonic motion (SHM). When the woofer 4 is assembled in a housing 22 (
The characteristic frequency of a woofer can be derived from differential equations. The characteristic frequency of a woofer for an under-critically damped system is of the form
in which
The simple harmonic motion model is illustrated in
The characteristic frequency is the frequency in which the system will oscillate when continuous stimulus is not present. The spring constant can be calculated by adding spring constants of all springs connected in parallel. The spring constants of two springs connected in series can be obtained by the formula
The spring constants of N springs connected in series can be obtained by the formula
The moving average mass is the mass of a solid object in a vacuum added with the mass of air stuck with the object and weighed impulse. The mechanical viscous total loss means the loss of energy which is directly proportional to the velocity in the direction of movement of the vibration.
The resonance is unfavourable for the quality of sound wherein there is usually a certain lower limit to the size of the housing 22 of the woofer. The parameters typically change due to aging and use of the woofer. Therefore, controlling the resonance without a feedback can be inaccurate.
A definition for a spring can be expressed as follows: A force being dependant to the displacement. The spring constant can be defined by:
K=−F/x,in which (3)
K=spring constant,
F=force,
x=displacement from the rest position of the spring.
The force is always opposite to the direction of the displacement. In other words, the force tries to return the spring to the rest position. The energy Ek stored by the spring is
Further, some energy is also stored in the mass m of the woofer. This energy Em is
The characteristic frequency of the harmonic oscillator system is strongly affected by the spring constant of the total spring system. When the position of the woofer is known, a negative spring constant Kθ=−K can be calculated to compensate the spring force caused by the displacement. However, there are also other springs connected in parallel in the system comprising the woofer 4 and the housing 22. The total spring constant of the system is as follows.
Ktot=Kd+Kb+Ke (6)
in which
Kd=the spring of the woofer cone 4.2, and
Kb=the acoustic spring of the housing 22,
The spring of the woofer is caused by the fastenings of the cone 4.2 to the frame 4.1 of the woofer and by the concentrating ring 4.5 of the cone. This spring is not linearly time dependent system (LTI) but it is strongly unlinear in large amplitudes (large displacements) and also depends on aging.
The acoustic spring Kb of the housing 22 is approximately constant but is somewhat dependent on temperature.
As a part of the springs connected in parallel, the total spring constant can be adjusted by using the electrical spring constant Ke of Equation (6). Therefore, the characteristic frequency of Equation (1) becomes controllable. However, to maintain the characteristic frequency in a real value range i.e. to maintain a stable oscillation the total spring constant Ktot should remain positive. In
The generation of the compensating force F2 is dependent on the measured position of the cone 4.2. The force to be generated may be dependent on the woofer in question. Therefore, a compensation table or a compensation curve should be generated for different types of woofers. This may be obtained by measuring the properties of the woofer (e.g. the frequency response) without compensation and forming a compensation table on the basis of the measurement.
Now, the adjustment on the basis of the position of the cone 4.2 will be shortly described with reference to the system of
When the adjustment circuit is in operation the measurement system 1 measures the position of the cone 4.2. The position measurement unit 9 generates an interrupt signal 26 and outputs the position data (counter value) to the control unit 5 which calculates the correct strength for the compensation force F2 and, using the equations described above, forms a corresponding feedback voltage to be summed with the audio signal in the adder 21.
When the position of the woofer cone 4.2 has been measured the operation of the woofer 4 can be linearized e.g. by software so that the operation of the woofer is practically linear or almost linear even with high sound pressures i.e. when the woofer cone 4.2 has large range of movement. Therefore, the parameters such as the BI parameter (the Transduction Constant), compliance and other unlinear properties which depend on the position, the velocity and/or the acceleration, can be corrected at low frequencies of the input audio signal.
Although it was mentioned above that mainly rising edges are used in the control of the counting of pulses, it is obvious that also falling edges can be used instead, or in addition to. This may require some minor changes to the details of the system. For example, the rising edge detectors may need to be replaced with falling edge detectors.
In yet another embodiment of the present system either the ultrasonic transmitter 6.1 or the ultrasonic receiver 6.2 can be fixed to the woofer cone 4.2. Hence, the signal traverses directly from the ultrasonic transmitter 6.1 to the ultrasonic receiver 6.2 without reflecting from the woofer cone 4.2. Therefore, the length of the signal path is the distance between the ultrasonic transmitter 6.1 and the ultrasonic receiver 6.2.
The present invention can be implemented by using hardware components for the operations and/or as a computer code which can be run by a processor or by a number of processors. Such processors can include, for example, one or more digital signal processors, microprocessors etc. The computer code can be stored to a storage medium so that the computer code can be run by a processor from the storage medium, and/or the computer code may be downloaded from the storage medium to the memory 27, for example. The computer code stored to a storage medium can also be called as a computer program product.
Number | Date | Country | Kind |
---|---|---|---|
08150346 | Jan 2008 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4451928 | Murayama | May 1984 | A |
4497981 | House | Feb 1985 | A |
4545249 | Matay | Oct 1985 | A |
4619342 | Buck | Oct 1986 | A |
4720867 | Imai et al. | Jan 1988 | A |
4860370 | Grosbard | Aug 1989 | A |
5295194 | Christensen | Mar 1994 | A |
5325439 | Smiley | Jun 1994 | A |
5444194 | Reinke | Aug 1995 | A |
5635686 | Fenton | Jun 1997 | A |
5673329 | Wiener | Sep 1997 | A |
5952619 | Kantor et al. | Sep 1999 | A |
6077224 | Lang et al. | Jun 2000 | A |
7121756 | Wright et al. | Oct 2006 | B2 |
7219873 | Harwood | May 2007 | B2 |
7315627 | Cox et al. | Jan 2008 | B1 |
7483338 | Drouin et al. | Jan 2009 | B2 |
7529376 | Konagai | May 2009 | B2 |
7551749 | Rosen et al. | Jun 2009 | B2 |
7899201 | Foletta | Mar 2011 | B2 |
8014555 | Hyde et al. | Sep 2011 | B2 |
20060023903 | Hayashi et al. | Feb 2006 | A1 |
20060078144 | Stiles et al. | Apr 2006 | A1 |
20060180371 | Breed et al. | Aug 2006 | A1 |
20070084286 | Ajay et al. | Apr 2007 | A1 |
20070208390 | Von Arx et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
1173105 | Feb 1998 | CN |
0 213 319 | Mar 1987 | EP |
2 196 815 | May 1988 | GB |
2004 205346 | Jul 2004 | JP |
2005 323204 | Nov 2005 | JP |
WO 2004082330 | Sep 2004 | WO |
WO 2006043219 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20090190789 A1 | Jul 2009 | US |