The present invention is concerned with determining a level of ventilatory assist to be delivered a patient.
In practice, an adequate level of ventilatory assist to be delivered to a patient under mechanical ventilation is difficult to determine since unloading of the patient involves compensation for increased respiratory demand in terms of metabolic drive, resistive and elastic loads imposed by the patient's respiratory system, as well as weakness of the inspiratory muscles. There is therefore a need for a technique that facilitates such determination.
The present invention relates to a method for determining a level of ventilatory assist to be delivered to a patient by a mechanical ventilator in response to a measure of a patient's neural respiratory drive multiplied by an amplification factor, comprising: calculating an existing predicted ventilatory assist pressure; measuring an existing resulting pressure delivered to the patient by the mechanical ventilator; changing the amplification factor from an existing amplification factor to a new amplification factor; calculating a new predicted ventilatory assist pressure using the new amplification factor; measuring a new resulting pressure delivered to the patient by the mechanical ventilator after the amplification factor has been changed from the existing amplification factor to the new amplification factor; comparing the new predicted ventilatory assist pressure and the existing predicted ventilatory assist pressure to determine an anticipated change in pressure that will be delivered to the patient by the mechanical ventilator; comparing the new resulting pressure and the existing resulting pressure to determine an actual change in pressure delivered to the patient by the mechanical ventilator; comparing the anticipated change in pressure with the actual change in pressure; and delivering a decision to increase, maintain or decrease the amplification factor in response to the comparison between the anticipated change and the actual change in pressure.
The present invention is also concerned with a device for determining a level of ventilatory assist to be delivered to a patient by a mechanical ventilator in response to a measure of a patient's neural respiratory drive multiplied by an amplification factor, comprising: a first calculator of an existing predicted ventilatory assist pressure; a first sensor of an existing resulting pressure delivered to the patient by the mechanical ventilator; a modifier of the amplification factor from an existing amplification factor to a new amplification factor; a second calculator of a new predicted ventilatory assist pressure using the new amplification factor; a second sensor of a new resulting pressure delivered to the patient by the mechanical ventilator after the amplification factor has been changed from the existing amplification factor to the new amplification factor; a first comparator of the new predicted ventilatory assist pressure and the existing predicted ventilatory assist pressure to determine an anticipated change in pressure that will be delivered to the patient by the mechanical ventilator; a second comparator of the new resulting pressure and the existing resulting pressure to determine an actual change in pressure delivered to the patient by the mechanical ventilator; a third comparator of the anticipated change in pressure and the actual change in pressure; and a third calculator of a decision to increase, maintain or decrease the amplification factor in response to the comparison between the anticipated change and the actual change in pressure.
The foregoing and other features of the method and device for determining a level of ventilatory assist will become more apparent from reading of the following non restrictive description of illustrative embodiments thereof, given by way of example only with reference to the accompanying drawings in which:
The method and device for determining the level of ventilatory assist to be delivered to the patient by the mechanical ventilator in response to the measure of the patient's neural respiratory drive multiplied by the amplification factor will now be described.
The level of ventilatory assist to the patient may be controlled by applying to the mechanical ventilator a control signal representative of a predicted ventilatory assist pressure Ptarget determined as a function of the patient's neural respiratory drive and an amplification factor AF. For example, the electrical activity of the patient's diaphragm EAdi may be measured as the patient's neural respiratory drive and may be multiplied by the amplification factor AF to describe the predicted ventilatory assist pressure Ptarget.
An example of technique for measuring the electrical activity of the patient's diaphragm EAdi is described in U.S. Pat. No. 5,671,752 (Sinderby et al.) issued on Sep. 30, 1997. Although in the herein described embodiment the electrical activity of the patient's diaphragm EAdi is used as a representation of the patient's neural respiratory drive, it should be kept in mind that any other signal, for example the electrical activity of another respiratory related muscle can be used as the representation of the patient's neural respiratory drive.
The method and device for determining the level of ventilatory assist to be delivered to the patient uses a prediction (predicted ventilatory assist pressure Ptarget) of the pressure to be delivered to the patient by the mechanical ventilator in response to a given change of the amplification factor AF and a comparison between the predicted ventilatory assist pressure Ptarget and a resulting pressure Presult actually delivered to the patient by the mechanical ventilator in response to the given change of the amplification factor AF. For example, if the measured electrical activity of the patient's diaphragm EAdi is 10 μV and the amplification factor AF is increased from 0 cm H2O/μV to 1 cm H2O/μV, it can be expected that the predicted ventilatory assist pressure Ptarget will be 10 cm H2O. If the resulting pressure Presult turns out to be 10 cm H2O, this means that the patient has absorbed/accepted the whole ventilatory assist with no reduction of the patient's neural respiratory drive since the electrical activity of the patient's diaphragm EAdi remained unchanged. If, on the other hand, the electrical activity of the patient's diaphragm EAdi reduced from 10 μV to 1 μV, the resulting pressure Presult becomes 1 cm H2O although the predicted ventilatory assist pressure Ptarget was 10 cm H2O, showing that the patient does not require the increase of ventilatory assist and rather down regulates his/her neural respiratory drive (EAdi).
If the patient already receives ventilatory assist and, for example, the amplification factor AF is 1 and the electrical activity of the patient's diaphragm EAdi is 10 μV, it is possible to calculate an expected increase of the predicted pressure Ptarget if, for example, the amplification factor AF is increased to 1.5. The predicted ventilatory assist pressure will then be Ptarget=1.5 cm H2O/μV×10 μV=15 cm H2O. If the increase of the amplification factor AF from 1.0 cm H2O/μV to 1.5 cm H2O/μV increases the resulting pressure Presult from 10 cm H2O to 15 cm H2O, this indicates that the patient welcome the increase of ventilatory assist (increase in pressure) and maintains his/her neural respiratory drive (EAdi).
If, on the other hand, the amplification factor AF is increased from 1.0 cm H2O/μV to 1.5 cm H2O/μV but the resulting pressure Presult increases from 10 cm H2O to 12 cm H2O while the predicted ventilatory assist pressure Ptarget indicates a 5 cm H2O increase, the patient does not welcome the whole increase in ventilatory assist and rather down regulates his/her neural respiratory drive (EAdi).
The method 100 and device 200 for determining the level of ventilatory assist to be delivered to the patient by the mechanical ventilator in response to the measure of a patient's neural respiratory drive multiplied by the amplification factor will now be described with reference to
Operation 101 (
At a stable level of ventilatory assist, a calculator 201 (
Ptarget old=AFold·EAdiold (1)
Operation 102 (
At a stable level of ventilatory assist, a pressure sensor 202 (
When the neurally controlled ventilator system has been operated at a given amplification factor for a certain time, the existing predicted pressure Ptarget old and the existing resulting pressure Presult old will assume very similar if not the same values.
Operation 103 (
A modifier 203 (
Alternatively, the modifier 203 can be implemented by an automatic computerized modifier requiring no intervention from the medical personnel.
Operation 104 (
A calculator 204 (
Ptarget new=AFnew·EAdiold (2)
Operation 105 (
A comparator 205 (
ΔPtarget new-old=Ptarget new−Ptarget old (3)
to show an anticipated change (increase or decrease) in pressure (ΔPtarget new-old) that will be delivered to the patient by the mechanical ventilator.
Operation 106 (
A pressure sensor 206 (
Operation 107 (
A comparator 207 (
ΔPresult new-old=Presult new−Presult old (4)
to show an actual change (increase or decrease) in pressure (ΔPresult new-old) delivered to the patient by the mechanical ventilator.
Operation 108 (
A comparator 208 (
ΔPresult new-old/ΔPtarget new-old (5)
to express a relation between the anticipated change and actual change in the level of pressure delivered to the patient by the mechanical ventilator. The ratio ΔPresult new-old/ΔPtarget new-old will range between 0 and 1, such that the response to change (increase or decrease) of the amplification factor AF can be divided into classes as described hereinafter.
When the amplification factor is increased in operation 103 (
Operation 109 (
A calculator 209 (
When the amplification factor AF is increased in operation 103 (
When the amplification factor AF is decreased in operation 103 (
If the decision algorithm of the calculator 209 (
In operation 103 (
The calculator 201, calculator 204, comparator 205, comparator 207, comparator 208 and calculator 209 can be implemented by a computer or computers, for example a single, suitably programmed general purpose computer.
The present application claims the benefit of U.S. Provisional Application No. 61/193,987, filed Jan. 15, 2009, and is a U.S. national phase of PCT International Application No. PCT/CA2010/000043, filed on Jan. 14, 2010, both applications are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2010/000043 | 1/14/2010 | WO | 00 | 9/27/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/081223 | 7/22/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3890967 | Elam et al. | Jun 1975 | A |
3961627 | Ernst et al. | Jun 1976 | A |
5671752 | Sinderby et al. | Sep 1997 | A |
5820560 | Sinderby et al. | Oct 1998 | A |
6609517 | Estes et al. | Aug 2003 | B1 |
6668824 | Isaza et al. | Dec 2003 | B1 |
6739336 | Jalde et al. | May 2004 | B1 |
7021310 | Sinderby et al. | Apr 2006 | B1 |
20030226565 | Sinderby et al. | Dec 2003 | A1 |
20090159082 | Eger | Jun 2009 | A1 |
Entry |
---|
The International Search Report and Written Opinion as mailed on Apr. 13, 2010 for International Application No. PCT/CA2010/000043. |
Brander, L., et al., “Titration and Implementation of Neurally Adjusted Ventilatory Assist in Critically Ill Patients,” PubMed, U.S. National Library of Medicine and the National Institutes of Health, Jan. 14, 2009, (Web Article). |
Number | Date | Country | |
---|---|---|---|
20120006327 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
61193987 | Jan 2009 | US |