The present invention relates to the technical field of telecommunications.
The present invention relates in particular to a method and a device for determining a pilot sequence, as well as an associated method of channel estimation and an associated computer program.
In order to optimize the transmission of data in a communication channel, it is known to implement beforehand a channel estimation method comprising the transmission of pilot sequences in the communication channel.
By processing the received pilot sequences, it is possible to have a better knowledge of the current state of the communication channel and thus for example to adapt the way in which the data are transmitted in order to obtain an optimal transmission.
In this context, the present invention provides a method of determining a pilot sequence comprising a plurality of pilot vectors to be transmitted in a communication channel modeled by a model vector comprising at least one complex-valued function which is variable as a function of a plurality of real parameters and is descriptive of a transmission from a transmitting antenna to a receiving antenna through the communication channel, the method being characterized in that it comprises the following steps:
As explained below, the pilot vectors thus obtained are optimal for any unbiased estimator and can thus be advantageously used for estimating the communication channel.
In certain embodiments, the method may comprise a step of determining at least one of the elements of said matrix on the basis of at least one previously determined value of one of said parameters and representing the current state of the communication channel.
According to the embodiment described below, said matrix comprises a number of rows equal to the number of elements forming the model vector, and a number of columns equal to the number of parameters in the plurality of parameters, and any element in row p and in column q in said matrix is equal to the value taken, for values of parameters representing the current state of the communication channel, by the partial derivative, with respect to the qth parameter of the plurality of parameters, of the function situated in the pth position in the model vector.
In practice, the step of determining said orthogonal basis may for example comprise a step of factoring said matrix in the form of the product of an R-orthogonal matrix U and an upper triangular matrix with real values.
The step of determining said orthogonal basis can then comprise the construction of a matrix Q whose columns form a basis of eigenvectors for the matrix −Im{UHU}2, and the calculation of the product (noted for example V) of the matrix U and the matrix Q.
The matrix V thus obtained then presents in columns vectors forming the desired orthogonal basis.
The step of determining said orthogonal basis may also comprise the determination of at least one coefficient equal to the square root of an eigenvalue of the matrix −Im{UHU}2; the step of constructing said pilot vectors can then use said coefficient to produce one of said pilot vectors; this coefficient is used here in the calculation of the scalar (or real number) to be applied (by multiplication) to the aforementioned summation to obtain the concerned pilot vector.
Provision can also be made for the step of constructing the pilot vectors to include, if the number of orthogonal vectors in said orthogonal basis is odd, the production of a pilot vector collinear with one of said orthogonal vectors.
In certain embodiments, said function is non-linear with respect to at least one parameter among said real parameters.
In an exemplary implementation described below, the model vector is the product of a complex gain and a steering vector that is variable as a function of an angle identifying the position of the receiving antenna relative to the transmitting antenna; in this example, said real parameters are the real part of the complex gain, the imaginary part of the complex gain and said angle.
Provision can also be made for the different elements of the model vector to be different complex-valued functions that are variable as a function of the plurality of real parameters and that are descriptive respectively of transmissions between distinct transmitting antenna-receiving antenna pairs.
The invention also provides a channel estimation method between a transmitter and a receiver, comprising:
The receiver can then receive the transmitted pilot vectors and determine channel state data based on the received pilot vectors.
This channel state data can then be transmitted from the receiver to the transmitter; the transmitter can then estimate at least one value of a parameter of the channel model based on the channel state data.
Precoding modules of the transmitter can be configured accordingly, that is to say according to said at least one estimated value of the parameter of the channel model.
The invention also provides a device for determining a pilot sequence comprising a plurality of pilot vectors to be transmitted in a communication channel modeled by a model vector comprising at least one complex-valued function which is variable as a function of a plurality of real parameters and is descriptive of a transmission from a transmitting antenna to a receiving antenna through the communication channel, characterized in that it is programmed for:
The invention finally provides a computer program comprising instructions for implementing a pilot sequence determination and/or channel estimation method as proposed above when these instructions are executed by a processor.
Of course, the different characteristics, variants and embodiments of the invention can be associated with each other in various combinations insofar as they are not incompatible or exclusive of each other.
In addition, various other characteristics of the invention emerge from the appended description made with reference to the drawings which illustrate non-limiting implementation forms of the invention and where:
Each one of the transmission antennas T1, . . . , TNt transmits electromagnetic signals (generally representing data to be transmitted, coded by symbols) in a communication channel C, where these signals are received by the various reception antennas R1, . . . , RNr.
This situation corresponds in particular to the case of so-called “MIMO” systems (for “Multiple-Input Multiple-Output”) which comprise a plurality of transmission antennas T1, . . . , TNt and a plurality of reception antennas R1, . . . , RNt.
In certain applications, the various antennas (whether in transmission or in reception) are connected to the same electronic device.
In other applications, on the other hand, the antennas of one of the sets of antennas correspond respectively to different electronic devices, i.e. to different users: this is the case, for example, of MU-MIMO systems (for “Multi User-Multiple-Input Multiple-Output”).
Here we consider the case where the transmission antennas T1, . . . , TNt are connected to a control unit U equipped in particular with a processor P and a memory M′.
The communication channel C is modeled by a model vector h comprising Nd elements, each element being a complex-valued function hi,j,k having Np real parameters and descriptive of the transmission from the jth transmitting antenna Tj to the ith reception antenna Ri on the kth sub-carrier (the system using Nf sub-carriers). We therefore have: Nd=Nt·Nr·Nf.
We note θ1, . . . , θNp the Np real parameters and θ the Np-tuple formed of these real parameters.
It is considered here that the model vector h is differentiable with respect to its Np parameters (that is to say that each one of the functions hi,j,k is differentiable with respect to the Np parameters).
We can thus define a matrix Δ(θ) (a priori variable as a function of the parameters θ) as follows:
In other words, in this matrix Δ(θ), an element Δ(θ)p,q in row p and in column q is equal to the value taken, for the values of parameters θ representing the current state of the communication channel C, by the partial derivative, with respect to the qth parameter θq of the plurality of parameters, of the function hp situated in the pth position in the model vector h.
In the following, we are interested in the real vector space vθ defined as follows:
v
θ={Δ(θ)X,X∈Np}
That is, vθ is the real vector space that is the image of the matrix Δ(θ).
We recall that a real vector space is a vector space over the field of real numbers (that means a vector space constructed by means of real-valued scalars).
By definition, the vector space vθ corresponds to all potential directions of variation of the model of the communication channel C due to infinitesimal variations of the values of parameters θ.
A description will now be given with reference to
This method is for example implemented in the context of
In this context, the memory M′ stores computer program instructions designed to implement the method of
The various handled values and data (in particular the matrix Δ(θ) already mentioned and the other matrices handled during the process of
The method of
Indeed, when at least one of the functions hi,j,k is non-linear with respect to at least one of the parameters θ, at least one of the elements of the matrix Δ(θ) is not constant, but variable depending on the operating conditions (that means depending on the parameters θ), and must therefore be determined according to these operating conditions.
Thus, if a function hp located in the pth position in the model vector h is not linear with respect to the qth real parameter θq, the element Δ(θ)p,q of the matrix is determined at the step E2, for example on the basis of an estimate of the parameters θ (or of a subset of the parameters θ) representing the current state of the communication channel C. Such an estimate can be determined beforehand according to measurements carried out in communication channel C and/or previous exchanges in communication channel C.
At least in this case, the element Δ(θ)p,q is determined as follows:
The method of
Δ(θ)=UR.
We recall that the matrix U is R-orthogonal if and only if Re{UHU} is a diagonal matrix, where Re{.} is the real part operator and .H is the conjugate transposed operator.
In the example described here, a R-orthonormal matrix U is used, that is to say such that: Re{UHU}=IdNp, where IdNp is the identity matrix with Np rows and Np columns.
The method of
The method of
By construction, the columns of the matrix V form an R-orthogonal basis (here an R-orthonormal basis) of the vector space vθ, within which the vectors can be grouped by two such that two vectors of two different groups are C-orthogonal.
Indeed, using the theorem referenced 8.16 in the book “Linear Algebra”, by W H Greub, Springer Science & Business Media, 1975, vol. 23, the matrix Im{UHU} being antisymmetric (because UHU is Hermitian) we can write:
where c12, c22, . . . , ck2 are the eigenvalues (of multiplicity 2) of the matrix −Im{UHU}2 (determined in step E6 during the construction of the matrix Q) and we therefore have:
V
H
V=Q
T
U
H
UQ=Id
Np
+jΓ (.T being the transposed operator).
In other words, if Np is even, by writing the matrix V in the form:
V=(v1,w1, . . . ,vNp/2,wNp/2),
we have: vmHvn=δm,n,wmHwn=δm,n and vmHwn=−δm,njcm,
where δm,n=0 if m≠n, δm,n=1 if m=n, and cm is a coefficient equal to the square root of the mth eigenvalue of the matrix −Im{UHU}2 (see above in step E6).
If Np is odd, the matrix V can be written in the form:
V=(v1,w1, . . . ,vε,wε,vε+1),
where ε is the integer part of Np/2,
and in this case we also have: vmHvn=δm,n, wmHwn=δm,n and vmHwn=−δm,njcm.
As a reminder, two vectors x and y are R-orthogonal if Re{xHy}=0 and C-orthogonal if xHy=0.
The method of
where P is the power of the transmitted pilot sequence and where
When Np is odd, step E10 further comprises the production of an additional pilot vector πε+1 collinear with a vector vε+1 (not grouped with another vector of the orthogonal basis). We take for example:
πε+1=vε+1.
The method of
These pilot vectors πi are optimal in the sense that they minimize the variance of any unbiased estimator (expressed for example by the Cramér-Rao bound) and where the pilot sequence formed of these pilot vectors πi is of minimum length.
A demonstration of the optimal character of these vectors πi is given below in the appendix.
This is a particular case of the context illustrated in
Here, the set of transmitting antennas T1, . . . , TNt and of the control unit U form a base station BS of a cellular telecommunications network.
In the example described here, the set of transmitting antennas T1, . . . , TNt is a uniform linear antenna array (or ULA for “Uniform Linear Array”).
A mobile terminal M is equipped with the reception antenna R1.
As illustrated in
By modeling the communication channel C by a single physical path between the mobile terminal M and the base station BS, the model vector h(θ) can be written:
h(θ)=βe(ϕ),
where β is a complex gain and e(ϕ) a steering vector linked to the antenna array T1, . . . , TNt, the real parameters θ of the model vector being thus: (Re{β}, Im{β}, ϕ).
If we note ai the vector designating the position of the antenna i with respect to the center of mass of the antenna array and u(ϕ) the unit vector oriented along the above-mentioned direction d, the steering vector e(ϕ) is:
where λ is the wavelength of the electromagnetic wave used and where (ai)y is the component of the vector ai along the y axis (vertical axis in
We will now describe with reference to
It is also considered that the communication system used (here comprising the base station BS and the mobile terminal M) uses a duplex communication technique with distinct frequencies (or FDD for “Frequency Division Duplex”) according to which the uplink and the downlink use carriers of different frequencies.
In this case, a channel estimation for the uplink and a channel estimation for the downlink are carried out, as now explained.
The method of
Note that, in the embodiment described here, the pilot sequence transmitted in step E20 is not determined in accordance with the teachings of the invention, but according to standard techniques in the literature.
As a variant, the predetermined pilot sequence could be sent in step E20 by a telecommunications device other than the mobile terminal M (for example by a device dedicated to channel estimation).
The base station BS thus receives a series of symbols corresponding to the predetermined pilot sequence and can then perform in step E22 an estimation of the uplink channel.
By using a channel model for the uplink, this channel estimation step E22 comprises the determination of parameter values of this channel model which best correspond to the symbols received (on the basis of a maximum likelihood criterion), that is to say which maximize the probability of obtaining the symbols received after transmission of the predetermined pilot sequence.
If the uplink channel is modeled using a model of the type:
g(ϕ,a)=ae(ϕ)*
in the case of
where a is a complex gain, e(ϕ) the steering vector already mentioned and .* the conjugate operator, the channel estimation step E22 makes it possible to determine an estimate of the parameters a and ϕ.
The method of
The base station BS (playing in the following the role of transmitter) thus determines in step E24 an orthogonal basis of the real vector space ve which is the image of the matrix Δ(θ).
The model vector being written here: h(θ)=βe(ϕ) as already indicated, with the real parameters: Re{β}, Im{β} and ϕ, we have in the present case:
Due to the use of the center of mass of the antenna array as a reference, we have:
(that is to say that these vectors are C-orthogonal between them and therefore a fortiori R-orthogonal between them).
The orthogonal basis of the R-vector space ye determined by the base station BS can therefore be of the form
is the vector of norm 1 and collinear with
These vectors v1, w1, v2 can be determined in practice by means of the value of the parameter ϕ estimated in step E22 thanks to the channel estimation in the uplink.
The base station BS can then construct pilot vectors in step E26 by grouping the vectors v1 and w1, and by producing:
where P is as already indicated the total power of the pilot sequence formed of these pilot vectors π1, π2.
As already indicated, the pilot sequence formed of these pilot vectors π1, π2 is optimal in terms of estimation (minimum variance) and length (minimum length).
The pilot vectors π1, π2 can then be transmitted in the communication channel C, here by the transmission antennas T1, . . . , TNt, as described now.
For each transmitting antenna Tk, the control unit U of the base station BS performs in step E28 a modulation of the pilot symbols π1,k, π2,k (that is to say the elements respectively located in the kth position in the pilot vectors π1, π2) in order to obtain signals Sk to be transmitted. In practice, such a modulation is for example obtained, for each pilot symbol π1,k, π2,k, by applying the pilot symbol concerned to a carrier, precisely by applying to this carrier a gain corresponding (or equal) to the modulus of the pilot symbol concerned and a phase shift corresponds to (or equal to) the argument of the pilot symbol concerned.
In certain embodiments, data symbols (representing data to be transmitted) can be multiplexed with the pilot symbols before the modulation step E28.
The control unit U then controls the transmission, by each communication antenna Tk, of the corresponding signals Sk determined in step E30.
The transmitted signals Sk are received (with modifications due to the transmission in the communication channel C) by the mobile terminal M (playing the role of receiver here) via the reception antenna R1 in step E32.
The mobile terminal M then transmits in return (that is to say to the base station BS, here at step E34) channel state data D (or CSI for “Channel State Information”) determined (by processing within the mobile terminal M) on the basis of the signals received (in practice: on the basis of the pilot symbols received, obtained by demodulation of the signals received).
The base station BS receives the channel state data D and can thus perform in step E36 an estimation of the downlink channel, that is to say determine the values of the parameters of the channel model (shown here by the model vector h(θ)) that best fit the channel state data D (based on a maximum likelihood criterion), that means that maximize the probability of obtaining the D-channel status data after transmission of the pilot sequence in step E30. For example, use can be made of an algorithm based on a sparse representation of the channel, as described for example in the article “Compressed channel sensing: A new approach to estimating sparse multipath channels”, by Bajwa, W. U., Haupt, J., Sayeed, A. M., & Nowak, R. in Proceedings of the IEEE, 98(6), 1058-1076 (2010).
In the case described here, the current values of the parameters β and ϕ are thus obtained. Note that the current value of the parameter ϕ is an update of the value of the same parameter determined in step E22. This update makes it possible to follow the evolution of this parameter in real time and thus to obtain a more relevant estimate of this parameter.
The control unit U of the base station BS can then configure in step E38 a precoding module (equipping the base station BS) according to the values of the parameters determined in step E36. On this subject, reference can be made to the article “Spatially sparse precoding in millimeter wave MIMO systems”, by El Ayach, O., Rajagopal, S., Abu-Surra, S., Pi, Z., & Heath, R. W. in IEEE transactions on wireless communications, 13(3), 1499-1513 (2014).
The base station BS thus transmits data to the mobile terminal M (by means of its transmission antennas T1, . . . , TNt) after processing these data by the precoding module (configured at step E38). This transmission is optimized thanks to the channel estimation carried out as explained above.
We demonstrate below the optimal character of the pilot sequence π1, . . . , πNp/2 proposed above in the case where the number Np of parameters is even (the demonstration in the case where the number Np is odd being similar).
We use the Fisher information matrix I(θ,M) given (in the presence of Gaussian noise of variance σ2) by the Slepian-Bangs formula:
where M is the observation matrix whose columns correspond to the vectors emitted in the communication channel C (the second formulation using only the form Δ(θ) given above for the matrix concerned).
The Fisher information matrix I(θ,M) quantifies the amount of information about the parameters θ that can be obtained upon receipt of the vectors defined by the columns of the observation matrix M.
On this subject, reference can be made to the article “On the Fisher information matrix for multivariate elliptically contoured distributions”, by O. Besson and Y. I. Abramovich, in IEEE Signal Processing Letters, vol. 20, no. 11, pp. 1130-1133, 2013.
The matrix R defined above being with real values, we can write:
The Cramér-Rao bound then has the expression (see for example the article “A Cramér-Rao lower bound for complex parameters”, by A. Van den Bos in IEEE Transactions on Signal Processing, 42(10), 1994):
CRB(θ,M)=Tr[Δ(θ)I(θ,M)−1Δ(θ)H]
or, by replacing the expression of the Fisher information matrix I(θ,M) given above and simplifying:
Since the Q matrix defined above is real-valued and R-orthogonal and V=UQ, the Cramér-Rao bound can be expressed as:
Since, for any positive semi-definite symmetric matrix Δ, we have:
(A−1)ii≥1/ai,i (where ai,i is the diagonal element in row i and column i of the matrix A),
we can write:
with an equality if and only if the matrix Re{VHMMHV} is diagonal.
To continue, we define:
which are unit vectors and, for a given k, C-orthogonal to each other.
These vectors make it possible to write:
To simplify the expressions, we further define:
P
k
+
∥M
H
ũ
k
+∥22
P
k
−
∥M
H
ũ
k
−∥22
d
k
√{square root over (1−ck2)}{(ũk+)HMMHũk−}
which allows to write:
(the last inequality coming from the fact that 1/(a+b)+1/(a−b)≥2/a by convexity of the inverse function on the set of positive reals).
The last inequality becomes an equality if and only if the value dk (defined above) is zero.
As a summary we have:
if and only if Re{VHMMHV} is diagonal and, for all k,
{(ũk+)HMMHũk−}=0
We have moreover
with an equality if and only if the complex vector space image of the matrix M is included in the complex vector space generated by the set of vectors
The optimization problem that we seek to solve is therefore bounded from below by the following simpler problem
respecting the power condition:
Given the form of the terms of the sum to be minimized, the optimum is reached when, for all k, P−k is zero. We are therefore in fact trying to solve the above problem with, for all k,
P
k
−=0.
By using the method of Lagrange multipliers, we obtain the following optimal powers:
and the optimal value of the optimization problem is:
It is reached for the observation matrix Mopt defined by:
for which we have:
dk is null for all k
Re{VHMoptMoptHV} is diagonal
P
k
+=(Pk+)opt for all k
∥Mopt∥F2=P
Number | Date | Country | Kind |
---|---|---|---|
2001219 | Feb 2020 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/052368 | 2/2/2021 | WO |