The potential for severe complications caused by persistent high analyte levels and analyte fluctuations has provided the impetus to develop data monitoring and management systems. In this regard, attempts have been made to detect and monitor certain analyte levels, e.g., glucose, with the use of analyte monitoring systems designed to continuously or semi-continuously monitor analyte data from a subject. The analyte monitoring systems often include a sensor configured to detect analyte levels and generate signals corresponding to the detected analyte signals. In some analyte monitoring systems, the sensor is inserted in the body of the subject. Typically, such sensors have a sensor life of about a week. Thus, the sensor must be replaced periodically for continuous analyte detection and monitoring.
Occasionally, data monitoring systems undergo a fault condition, such as for example a power loss, power shut-down, Watchdog reset, or various other system or component failures. During these fault conditions, the system often loses data and time so there is no way for the system to recognize the amount of time elapsed during the fault condition. Thus, after fault conditions, it was necessary for the user to replace the sensor even if the fault condition occurred on day 2 of a 5-day or a 7-day sensor. In addition to the financial costs of replacing a sensor that had remaining life expectancy, the new sensor must be calibrated, requiring multiple finger sticks of the user and time. In view of the foregoing, it would be desirable to have a method and apparatus for determining the elapsed sensor life and/or remaining sensor life subsequent to a fault condition in a medical communication system, so that the same sensor can be used after the fault condition.
The purpose and advantages of the present invention will be set forth in and apparent from the description that follows, as well as will be learned by practice of the invention. Additional advantages of the invention will be realized and attained by the methods and systems particularly pointed out in the written description and claims hereof, as well as from the appended drawings.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied herein and broadly described, the invention includes devices and methods for analyte monitoring, for example but not limited to, glucose monitoring. In accordance with one aspect of the invention, a method is provided for operating an analyte monitoring system. The method includes providing a signal associated with initiation of an analyte sensor and providing a count from an incrementing counter. The method further includes storing a count that is temporally associated with the signal associated with initiation of the analyte sensor. In one embodiment, initiation of the sensor and signal occurs after placement of the sensor, e.g., transcutaneous implantation or insertion of the sensor to a user. In this regard, the first count commensurate with sensor initiation is saved, for example, in a memory unit, such as a non-volatile memory. After the first count is stored, the counter continues to incrementally count. The incremental count can be based on a periodic cycle associated with calculation of an analyte measurement by the analyte sensor. The periodic cycle can be based on a time interval, e.g., every 30 or 60 seconds, and/or provided in data packets. The periodic calculations of analyte can be transmitted via the data packets to a receiver or transceiver, as rolling data every period.
In accordance with the invention, the method provides a way to determine elapsed (or remaining) sensor life for a particular sensor, for example, by a comparison between the stored first count and the incremental count based on periodic cycles. Further, the elapsed time can be used to restart a sensor life timer and/or calibration timer, if desired.
In a further aspect of the invention, a second signal can be provided, wherein the second signal temporally associated with a second initiation of an analyte is stored, if a fault conditions occurs. In this regard, the elapsed time of the sensor can be determined by a comparison of the stored counts for the first and second signals that are temporally associated with initiation of the sensor and re-initiation of the sensor after the occurrence of a fault condition. For example, but not limitation, a system failure includes a battery drain, power shut-down (voluntary or involuntary), system reset.
In another aspect of the invention, the method includes providing a second counter that incrementally counts each time a new sensor is initialized. Thus, the method includes a first counter that incrementally counts and a second counter that only incrementally counts when a sensor is initialized. In this regard, the second counter can provide information regarding how many sensors have been employed (or initialized) in the data monitoring system.
In one embodiment, the second counter can be used in conjunction with the first counter to determine the elapsed time for a particular sensor. In this regard, the incremental count of the first counter, such as a Hobbs counter provides an indication of time duration, while the second counter, such as a sensor counter, can provide information regarding the occurrence of sensor initiation. In this regard, the count of the Hobbs counter is saved when the sensor counter indicates initiation of a sensor. Thus, the two counters, i.e., a comparison of information derived from both the first counter and the second counter, can be used to determine the elapsed time of an employed sensor.
In another aspect of the invention, a data processing device configured to determine elapsed life of a sensor is provided. The data processing device includes a data processing section coupled to a data communication unit and at least one counter, e.g., Hobbs counter. In accordance with one aspect of the invention, the elapsed life of a sensor is determined by comparing the stored count with the incremented count. In another embodiment, the data processing device includes two counters, e.g., a Hobbs counter and a sensor counter. Elapsed life can be determined by comparing the counts of both counters in conjunction with each other.
The data processing device can further include a storage unit such as a non-volatile memory unit to store the count. The non-volatile memory unit can be disposed in a transmitter or a receiver unit. Further, the data processing device can include an output unit for outputting a message, such as date and time of sensor expiration, data and time for next calibration, or a value derived from the count information, such as remaining life of the sensor. A method further includes displaying a value derived or otherwise associated with the stored count, and/or the incremented count on a display unit. Further, the output unit can be configured to display an alarm when a calibration is needed, and/or when the sensor is close to expiration. The output unit includes one or more of a visual, audible or tactile output. In accordance with one embodiment, the display unit can be a receiver or, if desired, a transmitter. In one embodiment, the display is an OLED color display.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are intended to provide further explanation of the invention claimed. The accompanying drawings are included to illustrate and provide a further understanding of the method and device of the invention. Together with the description, the drawings serve to explain the principles of the invention.
As summarized above and as described in further detail below, in accordance with various embodiments of the invention, there are provided a method and system for operating an analyte monitoring device.
The analyte monitoring system 100 includes a sensor 101, a transmitter unit 102 coupleable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the transmitter unit 102 via a bi-directional communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal 105 in one embodiment may be configured to receive data directly from the transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication. Accordingly, transmitter unit 102 and/or receiver unit 104 may include a transceiver.
Also shown in
In one aspect, sensor 101 may include two or more sensors, each configured to communicate with transmitter unit 102. Furthermore, while only one transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
In one embodiment of the present invention, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In certain embodiments, the transmitter unit 102 may be physically coupled to the sensor 101 so that both devices are integrated in a single housing and positioned on the user's body. The transmitter unit 102 may perform data processing such as filtering and encoding on data signals and/or other functions, each of which corresponds to a sampled analyte level of the user, and in any event transmitter unit 102 transmits analyte information to the primary receiver unit 104 via the communication link 103.
In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the primary receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the transmitter unit 102 and the primary receiver unit 104.
Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.
In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 and/or predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.
Referring again to
Within the scope of the present invention, the data processing terminal 105 may include an infusion device such as an insulin infusion pump (external or implantable) or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate or otherwise couple to an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the transmitter unit 102.
Additionally, the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bidirectional wireless communication such that each of the transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via the wireless communication link 103. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the transmitter unit 102 via a communication link, where the communication link, as described above, may be configured for bi-directional communication.
In this embodiment, the data processing terminal 105 which may include an insulin pump, may be configured to receive the analyte signals from the transmitter unit 102, and thus, incorporate the functions of the receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.
Further shown in
Additionally, as can be seen from the Figure, clock 208 is provided to, among others, supply real time information to the transmitter processor 204.
In one embodiment, a unidirectional input path is established from the sensor 101 (
As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the transmitter unit 102 during the operation of the transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the transmitter unit 102, as well as the data signals received from the sensor 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery, which may be a rechargeable battery.
In certain embodiments, the transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation, e.g., after having been stored for about eighteen months such as stored in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, a step during the manufacturing process of the transmitter unit 102 may place the transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the transmitter unit 102 may be significantly improved. Moreover, as shown in
Referring back to
Referring yet again to
Referring yet again to
In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose may be used to calibrate the sensor 101 or otherwise. The RF receiver 302 is configured to communicate, via the communication link 103 (
Each of the various components of the primary receiver unit 104 shown in
The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 309 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.
Referring back to
Additional description of the RF communication between the transmitter unit 102 and the primary receiver unit 104 (or with the secondary receiver unit 106) that may be employed in embodiments of the subject invention is disclosed in U.S. application Ser. No. 11/060,365 filed Feb. 16, 2005, now U.S. Pat. No. 8,771,183, entitled “Method and System for Providing Data Communication in Continuous Glucose Monitoring and Management System” the disclosure of which is incorporated herein by reference for all purposes.
Referring to the Figures, in one embodiment, the transmitter unit 102 (
That is, the non-urgent data is transmitted at a timed interval so as to maintain the integrity of the analyte monitoring system without being transmitted over the RF communication link with each data transmission packet from the transmitter unit 102. In this manner, the non-urgent data, for example that are not time sensitive, may be periodically transmitted (and not with each data packet transmission) or broken up into predetermined number of segments and sent or transmitted over multiple packets, while the urgent data is transmitted substantially in its entirety with each data transmission.
Referring again to the Figures, upon receiving the data packets from the transmitter unit 102, the one or more receiver units 104, 106 may be configured to parse the received data packet to separate the urgent data from the non-urgent data, and also, may be configured to store the urgent data and the non-urgent data, e.g., in a hierarchical manner. In accordance with the particular configuration of the data packet or the data transmission protocol, more or less data may be transmitted as part of the urgent data, or the non-urgent rolling data. That is, within the scope of the present disclosure, the specific data packet implementation such as the number of bits per packet, and the like, may vary based on, among others, the communication protocol, data transmission time window, and so on.
In an exemplary embodiment, different types of data packets may be identified accordingly. For example, identification in certain exemplary embodiments may include—(1) single sensor, one minute of data, (2) two or multiple sensors, (3) dual sensor, alternate one minute data, and (4) response packet. For single sensor one minute data packet, in one embodiment, the transmitter unit 102 may be configured to generate the data packet in the manner, or similar to the manner, shown in Table 1 below.
As shown in Table 1 above, the transmitter data packet in one embodiment may include 8 bits of transmit time data, 14 bits of current sensor data, 14 bits of preceding sensor data, 8 bits of transmitter status data, 12 bits of auxiliary counter data, 12 bits of auxiliary thermistor 1 data, 12 bits of auxiliary thermistor 1 data and 8 bits of rolling data. In one embodiment of the present invention, the data packet generated by the transmitter for transmission over the RF communication link may include all or some of the data shown above in Table 1.
Referring back, the 14 bits of the current sensor data provides the real time or current sensor data associated with the detected analyte level, while the 14 bits of the sensor historic or preceding sensor data includes the sensor data associated with the detected analyte level one minute ago. In this manner, in the case where the receiver unit 104, 106 drops or fails to successfully receive the data packet from the transmitter unit 102 in the minute by minute transmission, the receiver unit 104, 106 may be able to capture the sensor data of a prior minute transmission from a subsequent minute transmission.
Referring again to Table 1, the Auxiliary data in one embodiment may include one or more of the patient's skin temperature data, a temperature gradient data, reference data, and counter electrode voltage. The transmitter status field may include status data that is configured to indicate corrupt data for the current transmission (for example, if shown as BAD status (as opposed to GOOD status which indicates that the data in the current transmission is not corrupt)). Furthermore, the rolling data field is configured to include the non-urgent data, and in one embodiment, may be associated with the time-hop sequence number. In addition, the Transmitter Time field in one embodiment includes a protocol value that is configured to start at zero and is incremented by one with each data packet. In one aspect, the transmitter time data may be used to synchronize the data transmission window with the receiver unit 104, 106, and also, provide an index for the Rolling data field.
In a further embodiment, the transmitter data packet may be configured to provide or transmit analyte sensor data from two or more independent analyte sensors. The sensors may relate to the same or different analyte or property. In such a case, the data packet from the transmitter unit 102 may be configured to include 14 bits of the current sensor data from both sensors in the embodiment in which 2 sensors are employed. In this case, the data packet does not include the immediately preceding sensor data in the current data packet transmission. Instead, a second analyte sensor data is transmitted with a first analyte sensor data.
In a further embodiment, the transmitter data packet may be alternated with each transmission between two analyte sensors, for example, alternating between the data packet shown in Table 3 and Table 4 below.
As shown above in reference to Tables 3 and 4, the minute by minute data packet transmission from the transmitter unit 102 (
In one embodiment, the rolling data transmitted with each data packet may include a sequence of various predetermined types of data that are considered not-urgent or not time sensitive. That is, in one embodiment, the following list of data shown in Table 5 may be sequentially included in the 8 bits of transmitter data packet, and not transmitted with each data packet transmission of the transmitter (for example, with each 60 second data transmission from the transmitter unit 102).
As can be seen from Table 5 above, in one embodiment, a sequence of rolling data are appended or added to the transmitter data packet with each data transmission time slot. In one embodiment, there may be 256 time slots for data transmission by the transmitter unit 102 (
Referring again to Table 5, each rolling data field is described in further detail for various embodiments. For example, the Mode data may include information related to the different operating modes such as, but not limited to, the data packet type, the type of battery used, diagnostic routines, single sensor or multiple sensor input, or type of data transmission (RF communication link or other data link such as serial connection). Further, the Glucose 1-slope data may include an 8-bit scaling factor or calibration data for first sensor (scaling factor for sensor 1 data), while Glucose 2-slope data may include an 8-bit scaling factor or calibration data for the second analyte sensor (in the embodiment including more than one analyte sensors).
In addition, the Ref-R data may include 12 bits of on-board reference resistor used to calibrate the temperature measurement in the thermistor circuit (where 8 bits are transmitted in time slot 3, and the remaining 4 bits are transmitted in time slot 4), and the 20-bit Hobbs counter data may be separately transmitted in three time slots (for example, in time slot 4, time slot 5 and time slot 6) to add up to 20 bits. In one embodiment, the Hobbs counter may be configured to count each occurrence of the data transmission (for example, a packet transmission at approximately 60 second intervals) and may be incremented by a count of one (1).
In one aspect, the Hobbs counter is stored in a nonvolatile memory of the transmitter unit 102 (
That is, in one embodiment, the 20 bit Hobbs counter is incremented by one each time the transmitter unit 102 transmits a data packet (for example, approximately each 60 seconds), and based on the count information in the Hobbs counter, in one aspect, the battery life of the transmitter unit 102 may be estimated. In this manner, in configurations of the transmitter unit 620 (see
Referring to Table 5 above, the transmitted rolling data may also include 8 bits of sensor count information (for example, transmitted in time slot 7). The 8 bit sensor counter is incremented by one each time a new sensor is connected to the transmitter unit. The ASIC configuration of the transmitter unit (or a microprocessor based transmitter configuration or with discrete components) may be configured to store in a nonvolatile memory unit the sensor count information and transmit it to the primary receiver unit 104 (for example). In turn, the primary receiver unit 104 (and/or the secondary receiver unit 106) may be configured to determine whether it is receiving data from the transmitter unit that is associated with the same sensor (based on the sensor count information), or from a new or replaced sensor (which will have a sensor count incremented by one from the prior sensor count). In this manner, in one aspect, the receiver unit (primary or secondary) may be configured to prevent reuse of the same sensor by the user based on verifying the sensor count information associated with the data transmission received from the transmitter unit 102. In addition, in a further aspect, user notification may be associated with one or more of these parameters. Further, the receiver unit (primary or secondary) may be configured to detect when a new sensor has been inserted, and thus prevent erroneous application of one or more calibration parameters determined in conjunction with a prior sensor, that may potentially result in false or inaccurate analyte level determination based on the sensor data.
Referring back to
In the manner described above, in accordance with one embodiment of the present invention, there is provided method and apparatus for separating non-urgent type data (for example, data associated with calibration) from urgent type data (for example, monitored analyte related data) to be transmitted over the communication link to minimize the potential burden or constraint on the available transmission time. More specifically, in one embodiment, non-urgent data may be separated from data that is required by the communication system to be transmitted immediately, and transmitted over the communication link together while maintaining a minimum transmission time window. In one embodiment, the non-urgent data may be parsed or broken up in to a number of data segments, and transmitted over multiple data packets. The time sensitive immediate data (for example, the analyte sensor data, temperature data, etc.), may be transmitted over the communication link substantially in its entirety with each data packet or transmission.
That is, during manufacturing of the transmitter unit 620, in one aspect, the transmitter unit 620 is configured to include a power supply such as battery 621. Further, during the initial non-use period (e.g., post manufacturing sleep mode), the transmitter unit 620 is configured such that it is not used and thus drained by the components of the transmitter unit 620. During the sleep mode, and prior to establishing electrical contact with the sensor 610 via the conductivity bar/trace 611, the transmitter unit 620 is provided with a low power signal from, for example, a low power voltage comparator 622, via an electronic switch 623 to maintain the low power state of, for example, the transmitter unit 620 components. Thereafter, upon connection with the sensor 610, and establishing electrical contact via the conductivity bar/trace 611, the embedded power supply 621 of the transmitter unit 620 is activated or powered up so that some of all of the components of the transmitter unit 620 are configured to receive the necessary power signals for operations related to, for example, data communication, processing and/or storage.
In one aspect, since the transmitter unit 620 is configured to a sealed housing without a separate replaceable battery compartment, in this manner, the power supply of the battery 621 is preserved during the post manufacturing sleep mode prior to use.
In a further aspect, the transmitter unit 620 may be disposed or positioned on a separate on-body mounting unit that may include, for example, an adhesive layer (on its bottom surface) to firmly retain the mounting unit on the skin of the user, and which is configured to receive or firmly position the transmitter unit 620 on the mounting unit during use. In one aspect, the mounting unit may be configured to at least partially retain the position of the sensor 610 in a transcutaneous manner so that at least a portion of the sensor is in fluid contact with the analyte of the user. Example embodiments of the mounting or base unit and its cooperation or coupling with the transmitter unit are provided, for example, in U.S. Pat. No. 6,175,752, incorporated herein by reference for all purposes.
In such a configuration, the power supply for the transmitter unit 620 may be provided within the housing of the mounting unit such that, the transmitter unit 620 may be configured to be powered on or activated upon placement of the transmitter unit 620 on the mounting unit and in electrical contact with the sensor 610. For example, the sensor 610 may be provided pre-configured or integrated with the mounting unit and the insertion device such that, the user may position the sensor 610 on the skin layer of the user using the insertion device coupled to the mounting unit. Thereafter, upon transcutaneous positioning of the sensor 610, the insertion device may be discarded or removed from the mounting unit, leaving behind the transcutaneously positioned sensor 610 and the mounting unit on the skin surface of the user.
Thereafter, when the transmitter unit 620 is positioned on, over or within the mounting unit, the battery or power supply provided within the mounting unit is configured to electrically couple to the transmitter unit 620 and/or the sensor 610.
Given that the sensor 610 and the mounting unit are provided as replaceable components for replacement every 3, 5, 7 days or other predetermined time periods, the user is conveniently not burdened with verifying the status of the power supply providing power to the transmitter unit 620 during use. That is, with the power supply or battery replaced with each replacement of the sensor 610, a new power supply or battery will be provided with the new mounting unit for use with the transmitter unit 620.
Referring to
In this manner, in one aspect, the processor 624 of the transmitter unit 620 may be configured to generate the appropriate one or more data or signals associated with the detection of sensor 610 disconnection for transmission to the receiver unit 104 (
Referring again to
In one embodiment, to maintain secure communication between the transmitter unit and the data receiver unit, the transmitter unit ASIC may be configured to generate a unique close proximity key at power on or initialization. In one aspect, the 4 or 8 bit key may be generated based on, for example, the transmitter unit identification information, and which may be used to prevent undesirable or unintended communication. In a further aspect, the close proximity key may be generated by the receiver unit based on, for example, the transmitter identification information received by the transmitter unit during the initial synchronization or pairing procedure of the transmitter and the receiver units.
Referring again to
In one embodiment, the initial sensor initiation command does not require the use of the close proximity key. However, other predefined or preconfigured close-proximity commands may be configured to require the use of the 8 bit key (or a key of a different number of bits). For example, in one embodiment, the receiver unit may be configured to transmit a RF on/off command to turn on/off the RF communication module or unit in the transmitter unit 102. Such RF on/off command in one embodiment includes the close proximity key as part of the transmitted command for reception by the transmitter unit.
During the period that the RF communication module or unit is turned off based on the received close proximity command, the transmitter unit does not transmit any data, including any glucose related data. In one embodiment, the glucose related data from the sensor which are not transmitted by the transmitter unit during the time period when the RF communication module or unit of the transmitter unit is turned off may be stored in a memory or storage unit of the transmitter unit for subsequent transmission to the receiver unit when the transmitter unit RF communication module or unit is turned back on based on the RF-on command from the receiver unit. In this manner, in one embodiment, the transmitter unit may be powered down (temporarily, for example, during air travel) without removing the transmitter unit from the on-body position.
Referring back to
In one aspect, the data communication including the generated key may allow the recipient of the data communication to recognize the sender of the data communication and confirm that the sender of the data communication is the intended data sending device, and thus, including data which is desired or anticipated by the recipient of the data communication. In this manner, in one embodiment, one or more close proximity commands may be configured to include the generated key as part of the transmitted data packet. Moreover, the generated key may be based on the transmitter ID or other suitable unique information so that the receiver unit 104 may use such information for purposes of generating the unique key for the bidirectional communication between the devices.
While the description above includes generating the key based on the transmitter unit 102 identification information, within the scope of the present disclosure, the key may be generated based on one or more other information associated with the transmitter unit 102, and/or the receiver unit combination. In a further embodiment, the key may be encrypted and stored in a memory unit or storage device in the transmitter unit 102 for transmission to the receiver unit 104.
In this manner, as discussed above, in one aspect, the transmitter unit 102 may be configured to include a power supply such as a battery 621 integrally provided within the sealed housing of the transmitter unit 102. When the transmitter unit 102 is connected or coupled to the respective electrodes of the analyte sensor that is positioned in a transcutaneous manner under the skin layer of the patient, the transmitter unit 102 is configured to wake up from its low power or sleep state (820), and power up the various components of the transmitter unit 102. In the active state, the transmitter unit 102 may be further configured to receive and process sensor signals received from the analyte sensor 101 (
Accordingly, in one aspect, the sensor 610 (
In this manner, in one aspect, when the transmitter unit 102 is disconnected from an active sensor 101, the transmitter unit 102 is configured to notify the receiver unit 104 that the sensor 101 has been disconnected or otherwise, signals from the sensor 101 are no longer received by the transmitter unit 102. After transmitting the one or more signals to notify the receiver unit 104, the transmitter unit 102 in one embodiment is configured to enter sleep mode or low power state during which no data related to the monitored analyte level is transmitted to the receiver unit 104.
Referring back to
Referring now to
In the manner described above, in one embodiment, a simplified pairing or synchronization between the transmitter unit 102 and the receiver unit 104 may be established using, for example, close proximity commands between the devices. As described above, in one aspect, upon pairing or synchronization, the transmitter unit 102 may be configured to periodically transmit analyte level information to the receiver unit 104 for further processing.
Referring to
Moreover, in one aspect, the incremented count in the Hobbs counter is stored in a persistent nonvolatile memory such that, the counter is not reset or otherwise restarted with each sensor replacement.
That is, in one aspect, using one or more close proximity commands, the receiver unit 104 may be configured to control the RF communication of the transmitter unit 102 to, for example, disable or turn off the RF communication functionality for a predetermined time period. This may be particularly useful when used in air travel or other locations such as hospital settings, where RF communication devices need to be disabled. In one aspect, the close proximity command may be used to either turn on or turn off the RF communication module of the transmitter unit 102, such that, when the receiver unit 104 is positioned in close proximity to the transmitter unit 102, and the RF command is transmitted, the transmitter unit 102 is configured, in one embodiment, to either turn off or turn on the RF communication capability of the transmitter unit 102.
Moreover, the method may also include generating a signal associated with the stored count, and/or include outputting the generated signal, where outputting the generated signal may include one or more of visually displaying the generated signal, audibly outputting the generated signal, or vibratory outputting the generated signal.
In yet another aspect, the method may include transmitting the count with the data transmission, where the count may be transmitted periodically with the data transmission.
In still another aspect, the method may include associating a power supply status with the count.
A data processing device in another embodiment may include a counter, a data communication unit, and a data processing section coupled to the data communication unit and the counter, the data processing section configured to increment a count stored in the counter based on data transmission by the data communication unit.
In one aspect, the counter may include a nonvolatile memory unit. The counter may include an EEPROM. The data communication unit may include an RF transceiver. The count stored in the counter may be incremented by one with each data transmission by the data communication unit.
The device may include a power supply coupled to the data processing unit, the data communication unit and the counter, where the count stored in the counter is not erased when the power supply is disabled or in low power state.
The data processing unit may be configured to estimate the power supply life based on the stored count in the counter. The device in a further aspect may include an output section for outputting one or more signals associated with the count information, where the output section may include one or more of a display unit, an audible output section, or a vibratory output section.
In accordance with another aspect of the invention, elapsed sensor life and/or remaining sensor life is determinable. In this regard the sensor life is tracked by a counter. Advantageously, after a system failure such as power shut-down, power loss, reset (e.g., Watchdog reset), battery drain, battery failure, the user of the data monitoring and management system of
In one embodiment of the invention, as shown in
In accordance with one embodiment of the method, a signal associated with initiation of an analyte sensor is provided. For example, but not limitation, upon initiation of the sensor 101 a signal is generated which contains analyte measurement information. The signal can be at least part of the data which forms a data packet that is encoded by the transmitter unit 102 and/or transmitted via a communication link to a receiver unit 104. The receiver unit 104 can be configured to expect receipt of a data packet at predetermined time intervals and/or at periodic calculations of analyte. In one embodiment, the data packets are transmitted by a transmitter unit 102 to receiver unit 104 every minute. After the count temporally associated with initiation of the sensor is stored, the counter is configured to continually count by increments. The increments can be for example, based on a periodic cycle, such as a measurement cycle. Alternatively, the increment can be based on other factors, such as scheduled time interval. Additionally, the incremental count can be commensurate with the transmission of each (or a predetermined limited number) data packets and/or measurement cycles. Thus, for example, the measurement cycle can be a periodic calculation of measured analyte (regardless of whether it is transmitted), or it can be based on a selected time interval, such as for example 30 or 60 seconds, if desired. In some embodiments, the count information incrementally counted by the counter is transmitted to the receiver unit 104 as part of the data packet. Further, the receiver is configured to extract the count from the data packet.
In one embodiment, the count information transmitted in the data packet upon sensor initiation is transmitted to receiver unit 104 where it is stored. Preferably, the count information is stored in nonvolatile memory such that it is not lost during a system failure. Preferably, the nonvolatile memory device is disposed in the receiver unit 104. However, transmitter unit 102 can be configured to store the count. The counter which can be part of the transmitter device 102, for example, is a Hobbs counter.
In accordance with one embodiment of the invention, elapsed life of an analyte sensor (or remaining life expectancy of a sensor) can be determined by comparing the stored count which is based on sensor initiation with an incremented count. As described above, the incremental count is based on a known measurement cycle, and/or time interval. Thus, the comparison of the count information can be used to calculate the duration or elapsed time of the sensor use.
Further, the determined elapsed time can be used to restart operating system timers, such as a sensor life timer and/or calibration timer.
The term system failure as used herein means a fault condition such as any condition by which the analyte monitoring system loses power. Some non-limiting examples of fault conditions include a reset (e.g., receiver reset), battery drain, battery replacement, power loss, power shut-down, or a fatal error. Typically, after such fault conditions, analyte monitoring systems prompt the user to replace the sensor because information about the life of the sensor was lost at the time of the fault condition. This aspect of the invention, allows the use of the same sensor after a fault condition occurs (provided that the sensor life has not expired), thereby saving the user costs associated with using a new sensor and the hardship of undergoing another calibration schedule.
In another embodiment of the invention, the analyte monitoring and management system includes a first counter to incrementally count based on a time interval, or calculation of an analyte, and a second counter to incrementally count by one only if a new sensor is initiated. In this regard, the incremental count of the second sensor can indicate how many or which sensor is being employed. For example, if the second counter has an incremental count of one, then the first sensor is being employed, if the second counter has an incremental count of 2, then the second sensor is being employed. Thus, the second counter can track how many sensors have been employed. In a further aspect of the invention, if the receiver connects to the transmitter and in response the receiver receives a count change compared to the sensor count before the system failure, the receiver acknowledges that a different sensor was implanted or otherwise employed during the receiver shut down. In this regard, the previous sensor life time is terminated, and a new count begins for the new sensor. Additionally, when the second counter increments by one because a new sensor is used then the count of the first counter is stored.
Referring to another embodiment of the invention, as described in
In one embodiment, the first counter is a 20-bit counter, and the second counter is an 8-bit counter. However, other types of counters can be utilized.
In another aspect of the invention, an output unit is provided. The output unit can be configured to display a value derived from the count information. In this regard, the output unit can be a display device. The display device can be an Organic Light Emitting Diode (OLED) display device, for example, a small molecule or polymer OLED. The OLED display device can provide wide viewing angles, high brightness, colors, and contrast levels.
It will be apparent to those skilled in the art that various modifications and alterations in the methods and systems of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 14/195,449 filed Mar. 3, 2014, now U.S. Pat. No. 9,574,914, which is a continuation of U.S. patent application Ser. No. 12/495,219 filed Jun. 30, 2009, now U.S. Pat. No. 8,665,091, which is a continuation-in-part application of U.S. patent application Ser. No. 12/117,681, filed May 8, 2008, now U.S. Pat. No. 8,461,985, entitled “Analyte Monitoring System and Methods,” which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application No. 60/916,744 filed May 8, 2007, entitled “Analyte Monitoring System and Methods”, the disclosures of each of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2755036 | Mikko | Jul 1956 | A |
3260656 | Ross, Jr. | Jul 1966 | A |
3304413 | Lehmann et al. | Feb 1967 | A |
3581062 | Aston | May 1971 | A |
3651318 | Czekajewski | Mar 1972 | A |
3653841 | Klein | Apr 1972 | A |
3698386 | Fried | Oct 1972 | A |
3719564 | Lilly, Jr. et al. | Mar 1973 | A |
3768014 | Smith et al. | Oct 1973 | A |
3776832 | Oswin et al. | Dec 1973 | A |
3837339 | Aisenberg et al. | Sep 1974 | A |
3919051 | Koch et al. | Nov 1975 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
3972320 | Kalman | Aug 1976 | A |
3979274 | Newman | Sep 1976 | A |
4003379 | Ellinwood, Jr. | Jan 1977 | A |
4008717 | Kowarski | Feb 1977 | A |
4016866 | Lawton | Apr 1977 | A |
4021718 | Konrad | May 1977 | A |
4031449 | Trombly | Jun 1977 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4059406 | Fleet | Nov 1977 | A |
4076596 | Connery et al. | Feb 1978 | A |
4098574 | Dappen | Jul 1978 | A |
4100048 | Pompei et al. | Jul 1978 | A |
4129128 | McFarlane | Dec 1978 | A |
4151845 | Clemens | May 1979 | A |
4154231 | Russell | May 1979 | A |
4168205 | Danniger et al. | Sep 1979 | A |
4172770 | Semersky et al. | Oct 1979 | A |
4178916 | McNamara | Dec 1979 | A |
4193026 | Finger et al. | Mar 1980 | A |
4206755 | Klein | Jun 1980 | A |
4224125 | Nakamura et al. | Sep 1980 | A |
4240438 | Updike et al. | Dec 1980 | A |
4240889 | Yoda et al. | Dec 1980 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4247297 | Berti et al. | Jan 1981 | A |
4271449 | Grogan | Jun 1981 | A |
4318784 | Higgins et al. | Mar 1982 | A |
4327725 | Cortese et al. | May 1982 | A |
4331869 | Rollo | May 1982 | A |
4340458 | Lerner et al. | Jul 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4356074 | Johnson | Oct 1982 | A |
4365637 | Johnson | Dec 1982 | A |
4366033 | Richter et al. | Dec 1982 | A |
4375399 | Havas et al. | Mar 1983 | A |
4384586 | Christiansen | May 1983 | A |
4390621 | Bauer | Jun 1983 | A |
4392933 | Nakamura et al. | Jul 1983 | A |
4401122 | Clark, Jr. | Aug 1983 | A |
4404066 | Johnson | Sep 1983 | A |
4407959 | Tsuji et al. | Oct 1983 | A |
4417588 | Houghton et al. | Nov 1983 | A |
4418148 | Oberhardt | Nov 1983 | A |
4420564 | Tsuji et al. | Dec 1983 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4427004 | Miller et al. | Jan 1984 | A |
4427770 | Chen et al. | Jan 1984 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4436094 | Cerami | Mar 1984 | A |
4440175 | Wilkins | Apr 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4444892 | Malmros | Apr 1984 | A |
4445090 | Melocik et al. | Apr 1984 | A |
4450842 | Zick et al. | May 1984 | A |
4458686 | Clark, Jr. | Jul 1984 | A |
4461691 | Frank | Jul 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4467811 | Clark, Jr. | Aug 1984 | A |
4469110 | Slama | Sep 1984 | A |
4475901 | Kraegen et al. | Oct 1984 | A |
4477314 | Richter et al. | Oct 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4483924 | Tsuji et al. | Nov 1984 | A |
4484987 | Gough | Nov 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4512348 | Uchigaki et al. | Apr 1985 | A |
4522690 | Venkatsetty | Jun 1985 | A |
4524114 | Samuels et al. | Jun 1985 | A |
4526661 | Steckhan et al. | Jul 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4534356 | Papadakis | Aug 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4543955 | Schroeppel | Oct 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4552840 | Riffer | Nov 1985 | A |
4560534 | Kung et al. | Dec 1985 | A |
4569589 | Neufeld | Feb 1986 | A |
4571292 | Liu et al. | Feb 1986 | A |
4573994 | Fischell et al. | Mar 1986 | A |
4581336 | Malloy et al. | Apr 1986 | A |
4583035 | Sloan | Apr 1986 | A |
4595011 | Phillips | Jun 1986 | A |
4595479 | Kimura et al. | Jun 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4619754 | Niki et al. | Oct 1986 | A |
4619793 | Lee | Oct 1986 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4627908 | Miller | Dec 1986 | A |
4633878 | Bombardien | Jan 1987 | A |
4633881 | Moore et al. | Jan 1987 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4648408 | Hutcheson et al. | Mar 1987 | A |
4650547 | Gough | Mar 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4654197 | Lilja et al. | Mar 1987 | A |
4655880 | Liu | Apr 1987 | A |
4655885 | Hill et al. | Apr 1987 | A |
4658463 | Sugita et al. | Apr 1987 | A |
4671288 | Gough | Jun 1987 | A |
4674652 | Aten et al. | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4680268 | Clark, Jr. | Jul 1987 | A |
4682602 | Prohaska | Jul 1987 | A |
4684537 | Graetzel et al. | Aug 1987 | A |
4685463 | Williams | Aug 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4686624 | Blum et al. | Aug 1987 | A |
4703324 | White | Oct 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4711245 | Higgins et al. | Dec 1987 | A |
4717673 | Wrighton et al. | Jan 1988 | A |
4721601 | Wrighton et al. | Jan 1988 | A |
4721677 | Clark, Jr. | Jan 1988 | A |
4726378 | Kaplan | Feb 1988 | A |
4726716 | McGuire | Feb 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4750496 | Reinhardt | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4758323 | Davis et al. | Jul 1988 | A |
4759371 | Franetzki | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4764416 | Ueyama et al. | Aug 1988 | A |
4776944 | Janata et al. | Oct 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4781798 | Gough | Nov 1988 | A |
4784736 | Lonsdale et al. | Nov 1988 | A |
4795707 | Niiyama et al. | Jan 1989 | A |
4796634 | Huntsman et al. | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4805624 | Yao et al. | Feb 1989 | A |
4813424 | Wilkins | Mar 1989 | A |
4815469 | Cohen et al. | Mar 1989 | A |
4820399 | Senda et al. | Apr 1989 | A |
4822337 | Newhouse et al. | Apr 1989 | A |
4830959 | McNeil et al. | May 1989 | A |
4832797 | Vadgama et al. | May 1989 | A |
4835372 | Gombrich et al. | May 1989 | A |
RE32947 | Dormer et al. | Jun 1989 | E |
4837049 | Byers et al. | Jun 1989 | A |
4840893 | Hill et al. | Jun 1989 | A |
RE32974 | Porat et al. | Jul 1989 | E |
4844076 | Lesho et al. | Jul 1989 | A |
4845035 | Fanta et al. | Jul 1989 | A |
4847785 | Stephens | Jul 1989 | A |
4848351 | Finch | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4856340 | Garrison | Aug 1989 | A |
4857713 | Brown | Aug 1989 | A |
4858617 | Sanders | Aug 1989 | A |
4870561 | Love et al. | Sep 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4871440 | Nagata et al. | Oct 1989 | A |
4874499 | Smith et al. | Oct 1989 | A |
4874500 | Madou et al. | Oct 1989 | A |
4890620 | Gough | Jan 1990 | A |
4890621 | Hakky | Jan 1990 | A |
4894137 | Takizawa et al. | Jan 1990 | A |
4897162 | Lewandowski et al. | Jan 1990 | A |
4897173 | Nankai et al. | Jan 1990 | A |
4899839 | Dessertine et al. | Feb 1990 | A |
4909908 | Ross et al. | Mar 1990 | A |
4911794 | Parce et al. | Mar 1990 | A |
4917800 | Lonsdale et al. | Apr 1990 | A |
4919141 | Zier et al. | Apr 1990 | A |
4919767 | Vadgama et al. | Apr 1990 | A |
4920969 | Suzuki | May 1990 | A |
4920977 | Haynes | May 1990 | A |
4923586 | Katayama et al. | May 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4927516 | Yamaguchi et al. | May 1990 | A |
4931795 | Gord | Jun 1990 | A |
4934369 | Maxwell | Jun 1990 | A |
4935105 | Churchouse | Jun 1990 | A |
4935345 | Guibeau et al. | Jun 1990 | A |
4936956 | Wrighton | Jun 1990 | A |
4938860 | Wogoman | Jul 1990 | A |
4942127 | Wada et al. | Jul 1990 | A |
4944299 | Silvian | Jul 1990 | A |
4945045 | Forrest et al. | Jul 1990 | A |
4950378 | Nagata | Aug 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4954129 | Giuliani et al. | Sep 1990 | A |
4957115 | Selker | Sep 1990 | A |
4958632 | Duggan | Sep 1990 | A |
4968400 | Shimomura et al. | Nov 1990 | A |
4969468 | Byers et al. | Nov 1990 | A |
4970145 | Bennetto et al. | Nov 1990 | A |
4974929 | Curry | Dec 1990 | A |
4979509 | Hakky | Dec 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4990845 | Gord | Feb 1991 | A |
4991582 | Byers et al. | Feb 1991 | A |
4994068 | Hufnagie | Feb 1991 | A |
4994167 | Shults et al. | Feb 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5001054 | Wagner | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5007427 | Suzuki et al. | Apr 1991 | A |
5016172 | Dessertine | May 1991 | A |
5016201 | Bryan et al. | May 1991 | A |
5019974 | Beckers | May 1991 | A |
5034192 | Wrighton et al. | Jul 1991 | A |
5035860 | Kleingeld et al. | Jul 1991 | A |
5036860 | Leigh et al. | Aug 1991 | A |
5036861 | Sembrowich et al. | Aug 1991 | A |
5037527 | Hayashi et al. | Aug 1991 | A |
5049487 | Phillips et al. | Sep 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5058592 | Whisler | Oct 1991 | A |
5061941 | Lizzi et al. | Oct 1991 | A |
5063081 | Cozzette et al. | Nov 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5070535 | Hochmair et al. | Dec 1991 | A |
5073500 | Saito et al. | Dec 1991 | A |
5077476 | Rosenthal | Dec 1991 | A |
5078854 | Burgess et al. | Jan 1992 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5082786 | Nakamoto | Jan 1992 | A |
5084828 | Kaufman et al. | Jan 1992 | A |
5089112 | Skotheim et al. | Feb 1992 | A |
5094951 | Rosenberg | Mar 1992 | A |
5095904 | Seligman et al. | Mar 1992 | A |
5096560 | Takai et al. | Mar 1992 | A |
5096836 | Macho et al. | Mar 1992 | A |
5097834 | Skrabal | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5108564 | Szuminsky et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5111539 | Hiruta et al. | May 1992 | A |
5111818 | Suzuji et al. | May 1992 | A |
5112455 | Cozzette et al. | May 1992 | A |
5114678 | Crawford et al. | May 1992 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5120421 | Glass et al. | Jun 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5124661 | Zellin et al. | Jun 1992 | A |
5126034 | Carter et al. | Jun 1992 | A |
5126247 | Palmer et al. | Jun 1992 | A |
5130009 | Marsoner et al. | Jul 1992 | A |
5133856 | Yamaguchi et al. | Jul 1992 | A |
5134391 | Okada | Jul 1992 | A |
5135003 | Souma | Aug 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5139023 | Stanley et al. | Aug 1992 | A |
5140393 | Hijikihigawa et al. | Aug 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5161532 | Joseph | Nov 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5168046 | Hamamoto et al. | Dec 1992 | A |
5174291 | Schoonen et al. | Dec 1992 | A |
5176644 | Srisathapat et al. | Jan 1993 | A |
5176662 | Bartholomew et al. | Jan 1993 | A |
5182707 | Cooper et al. | Jan 1993 | A |
5184359 | Tsukamura et al. | Feb 1993 | A |
5185256 | Nankai et al. | Feb 1993 | A |
5190041 | Palti | Mar 1993 | A |
5192415 | Yoshioka et al. | Mar 1993 | A |
5192416 | Wang et al. | Mar 1993 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5193540 | Schulman et al. | Mar 1993 | A |
5197322 | Indravudh | Mar 1993 | A |
5198367 | Aizawa et al. | Mar 1993 | A |
5200051 | Cozzette et al. | Apr 1993 | A |
5202261 | Musho et al. | Apr 1993 | A |
5205920 | Oyama et al. | Apr 1993 | A |
5206145 | Cattell | Apr 1993 | A |
5208154 | Weaver et al. | May 1993 | A |
5209229 | Gilli | May 1993 | A |
5215887 | Saito | Jun 1993 | A |
5216597 | Beckers | Jun 1993 | A |
5217442 | Davis | Jun 1993 | A |
5217595 | Smith et al. | Jun 1993 | A |
5227042 | Zawodzinski et al. | Jul 1993 | A |
5229282 | Yoshioka et al. | Jul 1993 | A |
5236143 | Dragon | Aug 1993 | A |
5237993 | Skrabal | Aug 1993 | A |
5245314 | Kah et al. | Sep 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5250439 | Musho et al. | Oct 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5257971 | Lord et al. | Nov 1993 | A |
5257980 | Van Antwerp et al. | Nov 1993 | A |
5261401 | Baker et al. | Nov 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264103 | Yoshioka et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5264106 | McAleer et al. | Nov 1993 | A |
5265888 | Yamamoto et al. | Nov 1993 | A |
5266179 | Nankai et al. | Nov 1993 | A |
5269212 | Peters et al. | Dec 1993 | A |
5271815 | Wong | Dec 1993 | A |
5272060 | Hamamoto et al. | Dec 1993 | A |
5275159 | Griebel | Jan 1994 | A |
5278079 | Gubinski et al. | Jan 1994 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5282950 | Dietze et al. | Feb 1994 | A |
5284156 | Schramm et al. | Feb 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5286362 | Hoenes et al. | Feb 1994 | A |
5286364 | Yacynych et al. | Feb 1994 | A |
5288636 | Pollmann et al. | Feb 1994 | A |
5289497 | Jackobson et al. | Feb 1994 | A |
5291887 | Stanley et al. | Mar 1994 | A |
5293546 | Tadros et al. | Mar 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5309919 | Snell et al. | May 1994 | A |
5310885 | Maier et al. | May 1994 | A |
5320098 | Davidson | Jun 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5324303 | Strong et al. | Jun 1994 | A |
5324316 | Schulman et al. | Jun 1994 | A |
5326449 | Cunningham | Jul 1994 | A |
5333615 | Craelius et al. | Aug 1994 | A |
5337258 | Dennis | Aug 1994 | A |
5337747 | Neftei | Aug 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5352348 | Young et al. | Oct 1994 | A |
5356348 | Bellio et al. | Oct 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5358135 | Robbins et al. | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5364797 | Olson et al. | Nov 1994 | A |
5366609 | White et al. | Nov 1994 | A |
5368028 | Palti | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5371734 | Fischer | Dec 1994 | A |
5371787 | Hamilton | Dec 1994 | A |
5372133 | Hogen Esch | Dec 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5376070 | Purvis et al. | Dec 1994 | A |
5376251 | Kaneko et al. | Dec 1994 | A |
5377258 | Bro | Dec 1994 | A |
5378628 | Gratzel et al. | Jan 1995 | A |
5379238 | Stark | Jan 1995 | A |
5379764 | Barnes et al. | Jan 1995 | A |
5380422 | Negishi et al. | Jan 1995 | A |
5382346 | Uenoyama et al. | Jan 1995 | A |
5387327 | Khan | Feb 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5393903 | Gratzel et al. | Feb 1995 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5399823 | McCusker | Mar 1995 | A |
5400782 | Beaubiah | Mar 1995 | A |
5400794 | Gorman | Mar 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5410471 | Alyfuku et al. | Apr 1995 | A |
5410474 | Fox | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5413690 | Kost et al. | May 1995 | A |
5422246 | Koopal et al. | Jun 1995 | A |
5425868 | Pedersen | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431691 | Snell et al. | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5433710 | Van Antwerp et al. | Jul 1995 | A |
5437973 | Vadgama et al. | Aug 1995 | A |
5437999 | Dieboid et al. | Aug 1995 | A |
5438271 | White et al. | Aug 1995 | A |
5438983 | Falcone | Aug 1995 | A |
5445611 | Eppstein et al. | Aug 1995 | A |
5445920 | Saito | Aug 1995 | A |
5456692 | Smith, Jr. et al. | Oct 1995 | A |
5456940 | Funderburk | Oct 1995 | A |
5458140 | Eppstein et al. | Oct 1995 | A |
5460618 | Harreld | Oct 1995 | A |
5462051 | Oka et al. | Oct 1995 | A |
5462525 | Srisathapat et al. | Oct 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5466218 | Srisathapat et al. | Nov 1995 | A |
5467778 | Catt et al. | Nov 1995 | A |
5469846 | Khan | Nov 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5476460 | Montalvo | Dec 1995 | A |
5477855 | Schindler et al. | Dec 1995 | A |
5482473 | Lord et al. | Jan 1996 | A |
5484404 | Schulman et al. | Jan 1996 | A |
5487751 | Radons et al. | Jan 1996 | A |
5491474 | Suni et al. | Feb 1996 | A |
5494562 | Maley et al. | Feb 1996 | A |
5496453 | Uenoyama et al. | Mar 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5499243 | Hall | Mar 1996 | A |
5501956 | Wada et al. | Mar 1996 | A |
5505709 | Funderburk | Apr 1996 | A |
5505713 | Van Antwerp et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5508171 | Walling et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514103 | Srisathapat et al. | May 1996 | A |
5514253 | Davis et al. | May 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5518006 | Mawhirt et al. | May 1996 | A |
5520787 | Hanagan et al. | May 1996 | A |
5522865 | Schulman et al. | Jun 1996 | A |
5525511 | D'Costa | Jun 1996 | A |
5526120 | Jina et al. | Jun 1996 | A |
5527307 | Srisathapat et al. | Jun 1996 | A |
5529676 | Maley et al. | Jun 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5538511 | Van Antwerp et al. | Jul 1996 | A |
5544196 | Tiedmann, Jr. et al. | Aug 1996 | A |
5545152 | Funderburk et al. | Aug 1996 | A |
5545191 | Mann et al. | Aug 1996 | A |
5549113 | Halleck et al. | Aug 1996 | A |
5549115 | Morgan et al. | Aug 1996 | A |
5552027 | Birkle et al. | Sep 1996 | A |
5554166 | Lange et al. | Sep 1996 | A |
5556524 | Albers | Sep 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5560357 | Faupei et al. | Oct 1996 | A |
5562713 | Silvian | Oct 1996 | A |
5565085 | Ikeda et al. | Oct 1996 | A |
5567302 | Song et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569212 | Brown | Oct 1996 | A |
5573647 | Maley et al. | Nov 1996 | A |
5575895 | Ikeda et al. | Nov 1996 | A |
5580527 | Bell et al. | Dec 1996 | A |
5580794 | Allen | Dec 1996 | A |
5581206 | Chevallier et al. | Dec 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5582697 | Ikeda et al. | Dec 1996 | A |
5582698 | Flaherty et al. | Dec 1996 | A |
5584813 | Livingston et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5589326 | Deng et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594906 | Holmes, II et al. | Jan 1997 | A |
5596150 | Arndy et al. | Jan 1997 | A |
5596994 | Bro | Jan 1997 | A |
5600301 | Robinson, III | Feb 1997 | A |
5601435 | Quy | Feb 1997 | A |
5601694 | Maley et al. | Feb 1997 | A |
5605152 | Slate et al. | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5611900 | Worden et al. | Mar 1997 | A |
5615135 | Waclawsky et al. | Mar 1997 | A |
5615671 | Schoonen et al. | Apr 1997 | A |
5616222 | Maley et al. | Apr 1997 | A |
5617851 | Lipkovker | Apr 1997 | A |
5623925 | Swenson et al. | Apr 1997 | A |
5623933 | Amano et al. | Apr 1997 | A |
5628309 | Brown | May 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5629981 | Nerlikar | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5640764 | Strojnik | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5647853 | Feldmann et al. | Jul 1997 | A |
5650062 | Ikeda et al. | Jul 1997 | A |
5651767 | Schulman et al. | Jul 1997 | A |
5651869 | Yoshioka et al. | Jul 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5659454 | Vermesse | Aug 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5667983 | Abel et al. | Sep 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5678571 | Brown | Oct 1997 | A |
5679690 | Andre et al. | Oct 1997 | A |
5680858 | Hansen et al. | Oct 1997 | A |
5682233 | Brinda | Oct 1997 | A |
5686717 | Knowles et al. | Nov 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5695949 | Galen et al. | Dec 1997 | A |
5701894 | Cherry et al. | Dec 1997 | A |
5704922 | Brown | Jan 1998 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5708247 | McAleer et al. | Jan 1998 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711297 | Iliff et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5711862 | Sakoda et al. | Jan 1998 | A |
5711868 | Maley et al. | Jan 1998 | A |
5718234 | Warden et al. | Feb 1998 | A |
5720733 | Brown | Feb 1998 | A |
5720862 | Hamamoto et al. | Feb 1998 | A |
5721783 | Anderson | Feb 1998 | A |
5722397 | Eppstein | Mar 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5727548 | Hill et al. | Mar 1998 | A |
5729225 | Ledzius | Mar 1998 | A |
5730124 | Yamauchi | Mar 1998 | A |
5730654 | Brown | Mar 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5735273 | Kurnik et al. | Apr 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5741211 | Renirie et al. | Apr 1998 | A |
5741688 | Oxenboll et al. | Apr 1998 | A |
5746217 | Erickson et al. | May 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5758290 | Nealon et al. | May 1998 | A |
5769873 | Zadeh | Jun 1998 | A |
5770028 | Maley et al. | Jun 1998 | A |
5771001 | Cobb | Jun 1998 | A |
5771890 | Tamada | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5777060 | Van Antwerp | Jul 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5781024 | Blomberg et al. | Jul 1998 | A |
5782814 | Brown et al. | Jul 1998 | A |
5785681 | Indravudh | Jul 1998 | A |
5786439 | Van Antwerp et al. | Jul 1998 | A |
5786584 | Button et al. | Jul 1998 | A |
5788678 | Van Antwerp | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5792117 | Brown | Aug 1998 | A |
5793292 | Ivey | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5804048 | Wong et al. | Sep 1998 | A |
5807315 | Van Antwerp et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5820551 | Hill et al. | Oct 1998 | A |
5820570 | Erickson et al. | Oct 1998 | A |
5820622 | Gross et al. | Oct 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5825488 | Kohl et al. | Oct 1998 | A |
5827179 | Lichter et al. | Oct 1998 | A |
5827183 | Kurnik et al. | Oct 1998 | A |
5827184 | Netherly et al. | Oct 1998 | A |
5828943 | Brown | Oct 1998 | A |
5830064 | Bradish et al. | Nov 1998 | A |
5830129 | Baer et al. | Nov 1998 | A |
5830132 | Robinson | Nov 1998 | A |
5830341 | Gilmartin | Nov 1998 | A |
5832448 | Brown | Nov 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5834224 | Ruger et al. | Nov 1998 | A |
5837454 | Cozzette et al. | Nov 1998 | A |
5837546 | Allen et al. | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5842983 | Abel et al. | Dec 1998 | A |
5843140 | Strojnik | Dec 1998 | A |
5846702 | Deng et al. | Dec 1998 | A |
5846744 | Athey et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5854078 | Asher et al. | Dec 1998 | A |
5854189 | Kruse et al. | Dec 1998 | A |
5856758 | Joffe et al. | Jan 1999 | A |
5857967 | Frid et al. | Jan 1999 | A |
5857983 | Douglas et al. | Jan 1999 | A |
5860917 | Comanor et al. | Jan 1999 | A |
5872713 | Douglas et al. | Feb 1999 | A |
5876484 | Raskin et al. | Mar 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5879311 | Duchon et al. | Mar 1999 | A |
5880829 | Kauhaniemi et al. | Mar 1999 | A |
5882494 | Van Antwerp | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5887133 | Brown et al. | Mar 1999 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5897493 | Brown | Apr 1999 | A |
5898025 | Burg et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5919141 | Money et al. | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5931791 | Saltzstein et al. | Aug 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Petterson | Aug 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5939609 | Knapp et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5945345 | Blatt et al. | Aug 1999 | A |
5947921 | Johnson et al. | Sep 1999 | A |
5948512 | Kubota et al. | Sep 1999 | A |
5950632 | Reber et al. | Sep 1999 | A |
5951300 | Brown | Sep 1999 | A |
5951485 | Cyrus et al. | Sep 1999 | A |
5951492 | Douglas et al. | Sep 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5951836 | McAleer et al. | Sep 1999 | A |
5954643 | Van Antwerp | Sep 1999 | A |
5954685 | Tierny | Sep 1999 | A |
5954700 | Kovelman | Sep 1999 | A |
5956501 | Brown | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5957958 | Schulman et al. | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5968839 | Blatt et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5974124 | Schlueter, Jr. et al. | Oct 1999 | A |
5977476 | Guha et al. | Nov 1999 | A |
5981294 | Blatt et al. | Nov 1999 | A |
5989409 | Kurnik et al. | Nov 1999 | A |
5994476 | Shin et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6002954 | Van Antwerp et al. | Dec 1999 | A |
6002961 | Mitragotri et al. | Dec 1999 | A |
6004441 | Fujiwara et al. | Dec 1999 | A |
6011984 | Van Antwerp et al. | Jan 2000 | A |
6014577 | Henning et al. | Jan 2000 | A |
6018678 | Mitragotri et al. | Jan 2000 | A |
6023629 | Tamada | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6026320 | Carlson et al. | Feb 2000 | A |
6027459 | Shain et al. | Feb 2000 | A |
6027692 | Galen et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6032059 | Henning et al. | Feb 2000 | A |
6032199 | Lim et al. | Feb 2000 | A |
6033866 | Guo et al. | Mar 2000 | A |
6035237 | Schulman et al. | Mar 2000 | A |
6040194 | Chick et al. | Mar 2000 | A |
6041253 | Kost et al. | Mar 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6055316 | Perlman et al. | Apr 2000 | A |
6056718 | Funderburk et al. | May 2000 | A |
6063459 | Velte | May 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6066448 | Wohlstadter et al. | May 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6068615 | Brown et al. | May 2000 | A |
6071249 | Cunningham et al. | Jun 2000 | A |
6071251 | Cunningham et al. | Jun 2000 | A |
6071294 | Simons et al. | Jun 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6073031 | Helstab et al. | Jun 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6093156 | Cunningham et al. | Jul 2000 | A |
6093167 | Houben et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6097480 | Kaplan | Aug 2000 | A |
6097831 | Wieck et al. | Aug 2000 | A |
6099484 | Douglas et al. | Aug 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6106780 | Douglas et al. | Aug 2000 | A |
6110148 | Brown et al. | Aug 2000 | A |
6110152 | Kovelman | Aug 2000 | A |
6113578 | Brown | Sep 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6125978 | Ando et al. | Oct 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6134504 | Douglas et al. | Oct 2000 | A |
6139718 | Kurnik et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6142939 | Eppstein et al. | Nov 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144837 | Quy | Nov 2000 | A |
6144869 | Berner et al. | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6144922 | Douglas et al. | Nov 2000 | A |
6148094 | Kinsella | Nov 2000 | A |
6150128 | Uretsky | Nov 2000 | A |
6151517 | Honigs et al. | Nov 2000 | A |
6151586 | Brown | Nov 2000 | A |
6153062 | Saito et al. | Nov 2000 | A |
6153069 | Pottgen et al. | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6161095 | Brown | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6167362 | Brown et al. | Dec 2000 | A |
6168563 | Brown | Jan 2001 | B1 |
6170318 | Lewis | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6180416 | Kurnik et al. | Jan 2001 | B1 |
6186145 | Brown | Feb 2001 | B1 |
6192891 | Gravel et al. | Feb 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6196970 | Brown | Mar 2001 | B1 |
6198957 | Green | Mar 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6201979 | Kurnik et al. | Mar 2001 | B1 |
6201980 | Darrow et al. | Mar 2001 | B1 |
6203495 | Bardy et al. | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6207400 | Kwon | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6210272 | Brown | Apr 2001 | B1 |
6210976 | Sabbadini | Apr 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6218809 | Downs et al. | Apr 2001 | B1 |
6219565 | Cupp et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6224745 | Baltruschat | May 2001 | B1 |
6232130 | Wolf | May 2001 | B1 |
6232370 | Kubota et al. | May 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6233539 | Brown | May 2001 | B1 |
6239925 | Ardrey et al. | May 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6246330 | Nielsen | Jun 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248065 | Brown | Jun 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6252032 | Van Antwerp et al. | Jun 2001 | B1 |
6253804 | Safabash | Jul 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6256643 | Cork et al. | Jul 2001 | B1 |
6259587 | Sheldon et al. | Jul 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6260022 | Brown | Jul 2001 | B1 |
6266645 | Simpson | Jul 2001 | B1 |
6267724 | Taylor | Jul 2001 | B1 |
6268161 | Han et al. | Jul 2001 | B1 |
6270445 | Dean, Jr. et al. | Aug 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6272364 | Kurnik | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6280416 | Van Antwerp et al. | Aug 2001 | B1 |
6280587 | Matsumoto | Aug 2001 | B1 |
6281006 | Heller et al. | Aug 2001 | B1 |
6283943 | Dy et al. | Sep 2001 | B1 |
6284126 | Kurnik et al. | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294281 | Heller | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6295463 | Stenzler | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6298254 | Tamada | Oct 2001 | B2 |
6299347 | Pompei | Oct 2001 | B1 |
6299578 | Kurnik et al. | Oct 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6301499 | Carlson et al. | Oct 2001 | B1 |
6304766 | Colvin, Jr. et al. | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6307867 | Roobol et al. | Oct 2001 | B1 |
6309351 | Kurnik et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6313749 | Horne et al. | Nov 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6319540 | Van Antwerp et al. | Nov 2001 | B1 |
6326160 | Dunn et al. | Dec 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6329929 | Weijand et al. | Dec 2001 | B1 |
6330426 | Brown et al. | Dec 2001 | B2 |
6330464 | Colvin, Jr. et al. | Dec 2001 | B1 |
6331518 | Hemm et al. | Dec 2001 | B2 |
6334778 | Brown | Jan 2002 | B1 |
6336900 | Alleckson et al. | Jan 2002 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6340421 | Vachon et al. | Jan 2002 | B1 |
6341232 | Conn et al. | Jan 2002 | B1 |
6356776 | Berner et al. | Mar 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359594 | Junod | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366793 | Bell et al. | Apr 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368141 | Van Antwerp et al. | Apr 2002 | B1 |
6368274 | Van Antwerp et al. | Apr 2002 | B1 |
6370410 | Kurnik et al. | Apr 2002 | B2 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6383767 | Polak | May 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6387048 | Schulman et al. | May 2002 | B1 |
6391643 | Chen et al. | May 2002 | B1 |
6393318 | Conn et al. | May 2002 | B1 |
6398562 | Butler et al. | Jun 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6434409 | Pfeiffer et al. | Aug 2002 | B1 |
6438414 | Conn et al. | Aug 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6442637 | Hawkins et al. | Aug 2002 | B1 |
6442672 | Ganapathy | Aug 2002 | B1 |
6443942 | Van Antwerp et al. | Sep 2002 | B2 |
6449255 | Waclawsky et al. | Sep 2002 | B1 |
6454710 | Ballerstadt et al. | Sep 2002 | B1 |
6462162 | Van Antwerp et al. | Oct 2002 | B2 |
6464848 | Matsumoto | Oct 2002 | B1 |
6466810 | Ward et al. | Oct 2002 | B1 |
6468222 | Mault et al. | Oct 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6475750 | Han et al. | Nov 2002 | B1 |
6477395 | Schulman et al. | Nov 2002 | B2 |
6478736 | Mault | Nov 2002 | B1 |
6480730 | Darrow et al. | Nov 2002 | B2 |
6480744 | Ferek-Petric | Nov 2002 | B2 |
6482156 | Iliff | Nov 2002 | B2 |
6482158 | Mault | Nov 2002 | B2 |
6482604 | Kwon | Nov 2002 | B2 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6485138 | Kubota et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6494830 | Wessel | Dec 2002 | B1 |
6496728 | Li et al. | Dec 2002 | B2 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6505059 | Kollias et al. | Jan 2003 | B1 |
6505121 | Russel | Jan 2003 | B1 |
6512939 | Colvin et al. | Jan 2003 | B1 |
6513532 | Mault et al. | Feb 2003 | B2 |
6514718 | Heller et al. | Feb 2003 | B2 |
6515593 | Stark et al. | Feb 2003 | B1 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6529755 | Kurnik et al. | Mar 2003 | B2 |
6529772 | Carlson et al. | Mar 2003 | B2 |
6530915 | Eppstein et al. | Mar 2003 | B1 |
6533733 | Ericson et al. | Mar 2003 | B1 |
6534322 | Sabbadini | Mar 2003 | B1 |
6534323 | Sabbadini | Mar 2003 | B1 |
6535753 | Raskas | Mar 2003 | B1 |
6537243 | Henning et al. | Mar 2003 | B1 |
6540675 | Aceti et al. | Apr 2003 | B2 |
6541266 | Modzelweskei et al. | Apr 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6546269 | Kurnik | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551276 | Mann et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6553244 | Lesho et al. | Apr 2003 | B2 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561975 | Pool et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6564807 | Schulman et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6571200 | Mault | May 2003 | B1 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6574510 | Von Arx et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6576117 | Iketaki et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6579498 | Eglise | Jun 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6580364 | Munch et al. | Jun 2003 | B1 |
6584335 | Haar et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6587705 | Kim et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6591126 | Roeper et al. | Jul 2003 | B2 |
6594514 | Berner et al. | Jul 2003 | B2 |
6595919 | Berner et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6599243 | Woltermann et al. | Jul 2003 | B2 |
6602678 | Kwon et al. | Aug 2003 | B2 |
6602909 | Jarowski | Aug 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6608562 | Kimura et al. | Aug 2003 | B1 |
6610012 | Mault | Aug 2003 | B2 |
6611206 | Eshelman et al. | Aug 2003 | B2 |
6612306 | Mault | Sep 2003 | B1 |
6615078 | Burson et al. | Sep 2003 | B1 |
6616613 | Goodman | Sep 2003 | B1 |
6618603 | Varalli et al. | Sep 2003 | B2 |
6620106 | Mault | Sep 2003 | B2 |
6627058 | Chan | Sep 2003 | B1 |
6627154 | Goodman et al. | Sep 2003 | B1 |
6629934 | Mault et al. | Oct 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6635167 | Batman et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6642015 | Vachon et al. | Nov 2003 | B2 |
6645142 | Braig et al. | Nov 2003 | B2 |
6645368 | Beaty et al. | Nov 2003 | B1 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6653091 | Dunn et al. | Nov 2003 | B1 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulson et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6673625 | Satcher, Jr. et al. | Jan 2004 | B2 |
6682938 | Satcher, Jr. et al. | Jan 2004 | B1 |
6683040 | Bragulla et al. | Jan 2004 | B2 |
6687522 | Tamada | Feb 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6690276 | Marino | Feb 2004 | B1 |
6692446 | Hoek | Feb 2004 | B2 |
6693069 | Korber et al. | Feb 2004 | B2 |
6694158 | Polak | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6698269 | Baber et al. | Mar 2004 | B2 |
6701270 | Miller et al. | Mar 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6704587 | Kumar et al. | Mar 2004 | B1 |
6708057 | Marganroth | Mar 2004 | B2 |
6711423 | Colvin, Jr. | Mar 2004 | B2 |
6723046 | Lichtenstein et al. | Apr 2004 | B2 |
6728560 | Kollias et al. | Apr 2004 | B2 |
6730025 | Platt | May 2004 | B1 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6734162 | Van Antwerp et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6735479 | Fabian et al. | May 2004 | B2 |
6736777 | Kim et al. | May 2004 | B2 |
6736797 | Larsen et al. | May 2004 | B1 |
6737401 | Kim et al. | May 2004 | B2 |
6738654 | Sohrab | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741163 | Roberts | May 2004 | B1 |
6741876 | Scecina et al. | May 2004 | B1 |
6741877 | Shults et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6748445 | Darcey et al. | Jun 2004 | B1 |
6749587 | Flaherty | Jun 2004 | B2 |
6750311 | Van Antwerp et al. | Jun 2004 | B1 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6766183 | Walsh et al. | Jul 2004 | B2 |
6766201 | Von Arx et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6770729 | Van Antwerp et al. | Aug 2004 | B2 |
6771995 | Kurnik et al. | Aug 2004 | B2 |
6773563 | Matsumoto | Aug 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6780297 | Matsumoto et al. | Aug 2004 | B2 |
6780871 | Glick et al. | Aug 2004 | B2 |
6784274 | Van Antwerp et al. | Aug 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6794195 | Colvin, Jr. | Sep 2004 | B2 |
6800451 | Daniloff et al. | Oct 2004 | B2 |
6804544 | Van Antwerp et al. | Oct 2004 | B2 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809507 | Morgan et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6810309 | Sadler et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6811659 | Vachon | Nov 2004 | B2 |
6812031 | Carlsson | Nov 2004 | B1 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6816742 | Kim et al. | Nov 2004 | B2 |
6835553 | Han et al. | Dec 2004 | B2 |
RE38681 | Kurnik et al. | Jan 2005 | E |
6840912 | Kloepfer et al. | Jan 2005 | B2 |
6844023 | Schulman et al. | Jan 2005 | B2 |
6849237 | Housefield et al. | Feb 2005 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6852500 | Hoss et al. | Feb 2005 | B1 |
6852694 | Van Antwerp et al. | Feb 2005 | B2 |
6853854 | Proniewicz et al. | Feb 2005 | B1 |
6856928 | Harmon | Feb 2005 | B2 |
6858403 | Han et al. | Feb 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6862466 | Ackerman | Mar 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6885883 | Parris et al. | Apr 2005 | B2 |
6889331 | Soerensen et al. | May 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6899683 | Mault et al. | May 2005 | B2 |
6899684 | Mault et al. | May 2005 | B2 |
6902207 | Lickliter | Jun 2005 | B2 |
6902905 | Burson et al. | Jun 2005 | B2 |
6904301 | Raskas | Jun 2005 | B2 |
6907127 | Kravitz et al. | Jun 2005 | B1 |
6915147 | Lebel et al. | Jul 2005 | B2 |
6918874 | Hatch et al. | Jul 2005 | B1 |
6922578 | Eppstein et al. | Jul 2005 | B2 |
RE38775 | Kurnik et al. | Aug 2005 | E |
6923764 | Aceti et al. | Aug 2005 | B2 |
6923936 | Swanson et al. | Aug 2005 | B2 |
6926670 | Rich et al. | Aug 2005 | B2 |
6927246 | Noronha et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6937222 | Numao | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6940590 | Colvin, Jr. et al. | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6952603 | Gerber et al. | Oct 2005 | B2 |
6954673 | Von Arx et al. | Oct 2005 | B2 |
6955650 | Mault et al. | Oct 2005 | B2 |
6957102 | Silver et al. | Oct 2005 | B2 |
6957107 | Rogers et al. | Oct 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6968375 | Brown | Nov 2005 | B1 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6978182 | Mazar et al. | Dec 2005 | B2 |
6979326 | Mann et al. | Dec 2005 | B2 |
6983176 | Gardner et al. | Jan 2006 | B2 |
6985870 | Martucci et al. | Jan 2006 | B2 |
6987474 | Freeman et al. | Jan 2006 | B2 |
6990317 | Arnold | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6991096 | Gottlieb et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999810 | Berner et al. | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7004901 | Fish | Feb 2006 | B2 |
7005857 | Stiene et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7011630 | Desai et al. | Mar 2006 | B2 |
7018366 | Easter | Mar 2006 | B2 |
7018568 | Tierney | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7022072 | Fox et al. | Apr 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025743 | Mann et al. | Apr 2006 | B2 |
7027621 | Prokoski | Apr 2006 | B1 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7039810 | Nichols | May 2006 | B1 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7049277 | Bagulla et al. | May 2006 | B2 |
7052251 | Nason et al. | May 2006 | B2 |
7052472 | Miller et al. | May 2006 | B1 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7060030 | Von Arx et al. | Jun 2006 | B2 |
7060031 | Webb et al. | Jun 2006 | B2 |
7068227 | Ying | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7082334 | Boute et al. | Jul 2006 | B2 |
7089780 | Sunshine et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7114502 | Schulman et al. | Oct 2006 | B2 |
7124027 | Ernst et al. | Oct 2006 | B1 |
7125382 | Zhou et al. | Oct 2006 | B2 |
7133710 | Acosta et al. | Nov 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7150975 | Tamada et al. | Dec 2006 | B2 |
7154398 | Chen et al. | Dec 2006 | B2 |
7155112 | Uno et al. | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7163511 | Conn et al. | Jan 2007 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7181505 | Haller et al. | Feb 2007 | B2 |
7183068 | Burson et al. | Feb 2007 | B2 |
7183102 | Monfre et al. | Feb 2007 | B2 |
7189341 | Li et al. | Mar 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7221977 | Weaver et al. | May 2007 | B1 |
7222054 | Geva | May 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228162 | Ward et al. | Jun 2007 | B2 |
7228163 | Ackerman | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7233817 | Yen | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7241266 | Zhou et al. | Jul 2007 | B2 |
7258665 | Kohls et al. | Aug 2007 | B2 |
7261691 | Asomani | Aug 2007 | B1 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7291107 | Hellwig et al. | Nov 2007 | B2 |
7295867 | Berner et al. | Nov 2007 | B2 |
7297112 | Zhou et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7354420 | Steil et al. | Apr 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7384397 | Zhang et al. | Jun 2008 | B2 |
7387010 | Sunshine et al. | Jun 2008 | B2 |
7398183 | Holland et al. | Jul 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7408132 | Wambsganss et al. | Aug 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7506046 | Rhodes | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7618369 | Hayter et al. | Nov 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7701052 | Borland et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7741734 | Joannopoulos et al. | Jun 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7774145 | Brauker et al. | Aug 2010 | B2 |
7778680 | Goode, Jr. et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7783333 | Brister et al. | Aug 2010 | B2 |
7791467 | Mazar et al. | Sep 2010 | B2 |
7792562 | Shults et al. | Sep 2010 | B2 |
7804197 | Iisaka et al. | Sep 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7826382 | Sicurello et al. | Nov 2010 | B2 |
7826981 | Goode, Jr. et al. | Nov 2010 | B2 |
7831310 | Lebel et al. | Nov 2010 | B2 |
7833151 | Khait et al. | Nov 2010 | B2 |
7860574 | Von Arx et al. | Dec 2010 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7905833 | Brister et al. | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7914450 | Goode, Jr. et al. | Mar 2011 | B2 |
7916013 | Stevenson | Mar 2011 | B2 |
7948369 | Fennell et al. | May 2011 | B2 |
7955258 | Goscha et al. | Jun 2011 | B2 |
7970448 | Shults et al. | Jun 2011 | B2 |
7974672 | Shults et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
7999674 | Kamen | Aug 2011 | B2 |
8000918 | Fjield et al. | Aug 2011 | B2 |
8010174 | Goode et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8072310 | Everhart | Dec 2011 | B1 |
8090445 | Ginggen | Jan 2012 | B2 |
8093991 | Stevenson et al. | Jan 2012 | B2 |
8094009 | Allen et al. | Jan 2012 | B2 |
8098159 | Batra et al. | Jan 2012 | B2 |
8098160 | Howarth et al. | Jan 2012 | B2 |
8098161 | Lavedas | Jan 2012 | B2 |
8098201 | Choi et al. | Jan 2012 | B2 |
8098208 | Ficker et al. | Jan 2012 | B2 |
8102021 | Degani | Jan 2012 | B2 |
8102154 | Bishop et al. | Jan 2012 | B2 |
8102263 | Yeo et al. | Jan 2012 | B2 |
8102789 | Rosar et al. | Jan 2012 | B2 |
8103241 | Young et al. | Jan 2012 | B2 |
8103325 | Swedlow et al. | Jan 2012 | B2 |
8111042 | Bennett | Feb 2012 | B2 |
8115488 | McDowell | Feb 2012 | B2 |
8116681 | Baarman | Feb 2012 | B2 |
8116683 | Baarman | Feb 2012 | B2 |
8117481 | Anselmi et al. | Feb 2012 | B2 |
8120493 | Burr | Feb 2012 | B2 |
8123686 | Fennell et al. | Feb 2012 | B2 |
8124452 | Sheats | Feb 2012 | B2 |
8130093 | Mazar et al. | Mar 2012 | B2 |
8131351 | Kalgren et al. | Mar 2012 | B2 |
8131365 | Zhang et al. | Mar 2012 | B2 |
8131565 | Dicks et al. | Mar 2012 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8233456 | Kopikare et al. | Jul 2012 | B1 |
8260393 | Kamath et al. | Sep 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8417312 | Kamath et al. | Apr 2013 | B2 |
8427298 | Fennell et al. | Apr 2013 | B2 |
8478389 | Brockway et al. | Jul 2013 | B1 |
8560037 | Goode, Jr. et al. | Oct 2013 | B2 |
8622903 | Jin et al. | Jan 2014 | B2 |
8638411 | Park et al. | Jan 2014 | B2 |
8698615 | Fennell et al. | Apr 2014 | B2 |
8849459 | Ramey et al. | Sep 2014 | B2 |
8914090 | Jain et al. | Dec 2014 | B2 |
8937540 | Fennell | Jan 2015 | B2 |
9402584 | Fennell | Aug 2016 | B2 |
20010011224 | Brown | Aug 2001 | A1 |
20010011795 | Ohtsuka et al. | Aug 2001 | A1 |
20010016310 | Brown et al. | Aug 2001 | A1 |
20010016682 | Berner et al. | Aug 2001 | A1 |
20010016683 | Darrow et al. | Aug 2001 | A1 |
20010020124 | Tamada | Sep 2001 | A1 |
20010029340 | Mault et al. | Oct 2001 | A1 |
20010032278 | Brown et al. | Oct 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037069 | Carlson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010039504 | Linberg et al. | Nov 2001 | A1 |
20010041830 | Varalli et al. | Nov 2001 | A1 |
20010041831 | Starkweather et al. | Nov 2001 | A1 |
20010044581 | Mault | Nov 2001 | A1 |
20010044588 | Mault | Nov 2001 | A1 |
20010047125 | Quy | Nov 2001 | A1 |
20010047127 | New et al. | Nov 2001 | A1 |
20010049096 | Brown | Dec 2001 | A1 |
20010049470 | Mault et al. | Dec 2001 | A1 |
20020002326 | Causey, III et al. | Jan 2002 | A1 |
20020002328 | Tamada | Jan 2002 | A1 |
20020004640 | Conn et al. | Jan 2002 | A1 |
20020010414 | Coston et al. | Jan 2002 | A1 |
20020013522 | Lav et al. | Jan 2002 | A1 |
20020013538 | Teller | Jan 2002 | A1 |
20020016530 | Brown | Feb 2002 | A1 |
20020016719 | Nemeth et al. | Feb 2002 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020019584 | Schulze et al. | Feb 2002 | A1 |
20020019586 | Teller et al. | Feb 2002 | A1 |
20020019748 | Brown | Feb 2002 | A1 |
20020023852 | McIvor et al. | Feb 2002 | A1 |
20020026111 | Ackerman | Feb 2002 | A1 |
20020026937 | Mault | Mar 2002 | A1 |
20020027164 | Mault et al. | Mar 2002 | A1 |
20020028995 | Mault | Mar 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020045808 | Ford et al. | Apr 2002 | A1 |
20020046300 | Hanko et al. | Apr 2002 | A1 |
20020047867 | Mault et al. | Apr 2002 | A1 |
20020049482 | Fabian et al. | Apr 2002 | A1 |
20020053637 | Conn et al. | May 2002 | A1 |
20020062069 | Mault | May 2002 | A1 |
20020063060 | Gascoyne et al. | May 2002 | A1 |
20020065454 | Lebel et al. | May 2002 | A1 |
20020068858 | Braig et al. | Jun 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020072858 | Cheng | Jun 2002 | A1 |
20020074162 | Su et al. | Jun 2002 | A1 |
20020077765 | Mault | Jun 2002 | A1 |
20020077766 | Mault | Jun 2002 | A1 |
20020081559 | Brown et al. | Jun 2002 | A1 |
20020083461 | Hutcheson et al. | Jun 2002 | A1 |
20020084196 | Liamos et al. | Jul 2002 | A1 |
20020085719 | Crosbie | Jul 2002 | A1 |
20020087056 | Aceti et al. | Jul 2002 | A1 |
20020091312 | Berner et al. | Jul 2002 | A1 |
20020091796 | Higginson et al. | Jul 2002 | A1 |
20020093969 | Lin et al. | Jul 2002 | A1 |
20020099854 | Jorgensen | Jul 2002 | A1 |
20020103425 | Mault | Aug 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020107433 | Mault | Aug 2002 | A1 |
20020107476 | Mann et al. | Aug 2002 | A1 |
20020109600 | Mault et al. | Aug 2002 | A1 |
20020109621 | Khair et al. | Aug 2002 | A1 |
20020117639 | Paolini et al. | Aug 2002 | A1 |
20020118528 | Su et al. | Aug 2002 | A1 |
20020119711 | Van Antwerp et al. | Aug 2002 | A1 |
20020124017 | Mault | Sep 2002 | A1 |
20020126036 | Flaherty et al. | Sep 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020130042 | Moerman et al. | Sep 2002 | A1 |
20020133378 | Mault et al. | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161286 | Gerber et al. | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20020173830 | Starkweather et al. | Nov 2002 | A1 |
20020177764 | Sohrab | Nov 2002 | A1 |
20020185130 | Wright et al. | Dec 2002 | A1 |
20020188748 | Blackwell et al. | Dec 2002 | A1 |
20020193679 | Malave et al. | Dec 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030009203 | Lebel et al. | Jan 2003 | A1 |
20030023182 | Mault et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030028120 | Mault et al. | Feb 2003 | A1 |
20030032077 | Itoh et al. | Feb 2003 | A1 |
20030032867 | Crothall et al. | Feb 2003 | A1 |
20030032868 | Graskov et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030035371 | Reed et al. | Feb 2003 | A1 |
20030040683 | Rule et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030050537 | Wessel | Mar 2003 | A1 |
20030050546 | Desai et al. | Mar 2003 | A1 |
20030060689 | Kohls et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065257 | Mault et al. | Apr 2003 | A1 |
20030065273 | Mault et al. | Apr 2003 | A1 |
20030065274 | Mault et al. | Apr 2003 | A1 |
20030065275 | Mault et al. | Apr 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030076792 | Theimer | Apr 2003 | A1 |
20030081370 | Haskell et al. | May 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030105407 | Pearce et al. | Jun 2003 | A1 |
20030108976 | Braig et al. | Jun 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030119457 | Standke | Jun 2003 | A1 |
20030122021 | McConnell et al. | Jul 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030135100 | Kim et al. | Jul 2003 | A1 |
20030135333 | Aceti et al. | Jul 2003 | A1 |
20030144579 | Buss | Jul 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030146841 | Koenig | Aug 2003 | A1 |
20030153820 | Berner et al. | Aug 2003 | A1 |
20030153821 | Berner et al. | Aug 2003 | A1 |
20030158472 | Sohrab | Aug 2003 | A1 |
20030158707 | Doi | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030175806 | Rule et al. | Sep 2003 | A1 |
20030175992 | Toranto et al. | Sep 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030179705 | Kojima | Sep 2003 | A1 |
20030181851 | Mann et al. | Sep 2003 | A1 |
20030181852 | Mann et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030187525 | Mann et al. | Oct 2003 | A1 |
20030191376 | Samuels et al. | Oct 2003 | A1 |
20030191431 | Mann et al. | Oct 2003 | A1 |
20030195403 | Berner et al. | Oct 2003 | A1 |
20030195462 | Mann et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030199791 | Boecker et al. | Oct 2003 | A1 |
20030199903 | Boecker et al. | Oct 2003 | A1 |
20030203498 | Neel et al. | Oct 2003 | A1 |
20030204290 | Sadler et al. | Oct 2003 | A1 |
20030208110 | Mault et al. | Nov 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030208114 | Ackerman | Nov 2003 | A1 |
20030208133 | Mault | Nov 2003 | A1 |
20030208409 | Mault | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212364 | Mann et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030212579 | Brown et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030226695 | Mault | Dec 2003 | A1 |
20030229514 | Brown | Dec 2003 | A2 |
20030232370 | Trifiro | Dec 2003 | A1 |
20030235817 | Bartkowiak et al. | Dec 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040017300 | Kotzin et al. | Jan 2004 | A1 |
20040018486 | Dunn et al. | Jan 2004 | A1 |
20040030226 | Quy | Feb 2004 | A1 |
20040030531 | Miller et al. | Feb 2004 | A1 |
20040030581 | Levin et al. | Feb 2004 | A1 |
20040039255 | Simonsen et al. | Feb 2004 | A1 |
20040039256 | Kawatahara et al. | Feb 2004 | A1 |
20040039298 | Abreu et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040059201 | Ginsberg | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040069164 | Nakamura et al. | Apr 2004 | A1 |
20040072357 | Stiene et al. | Apr 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040096959 | Stiene et al. | May 2004 | A1 |
20040100376 | Lye et al. | May 2004 | A1 |
20040105411 | Boatwright et al. | Jun 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040106859 | Say et al. | Jun 2004 | A1 |
20040108226 | Polychronakos et al. | Jun 2004 | A1 |
20040116786 | Iijima et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040122530 | Hansen et al. | Jun 2004 | A1 |
20040128161 | Mazar et al. | Jul 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040136361 | Holloway et al. | Jul 2004 | A1 |
20040136377 | Miyazaki et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040152961 | Carlson et al. | Aug 2004 | A1 |
20040153585 | Kawatahara et al. | Aug 2004 | A1 |
20040162473 | Sohrab | Aug 2004 | A1 |
20040164961 | Bal et al. | Aug 2004 | A1 |
20040167383 | Kim et al. | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040172284 | Sullivan et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040176913 | Kawatahara et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193020 | Chiba et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040197846 | Hockersmith et al. | Oct 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040202576 | Aceti et al. | Oct 2004 | A1 |
20040204055 | Nousiainen | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040206916 | Colvin, Jr. et al. | Oct 2004 | A1 |
20040208780 | Faries, Jr. et al. | Oct 2004 | A1 |
20040212536 | Mori et al. | Oct 2004 | A1 |
20040221057 | Darcey et al. | Nov 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040248204 | Moerman | Dec 2004 | A1 |
20040249250 | McGee et al. | Dec 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040249254 | Racchini et al. | Dec 2004 | A1 |
20040249999 | Connolly et al. | Dec 2004 | A1 |
20040253736 | Stout et al. | Dec 2004 | A1 |
20040254429 | Yang | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260363 | Arx et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010087 | Banet et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050016276 | Guan et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027179 | Berner et al. | Feb 2005 | A1 |
20050027180 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027181 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027462 | Goode, Jr. et al. | Feb 2005 | A1 |
20050027463 | Goode, Jr. et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050033132 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050043894 | Fernandez | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050049473 | Desai et al. | Mar 2005 | A1 |
20050054909 | Petisce et al. | Mar 2005 | A1 |
20050059372 | Arayashiki et al. | Mar 2005 | A1 |
20050065464 | Talbot et al. | Mar 2005 | A1 |
20050070777 | Cho et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096512 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050112544 | Xu et al. | May 2005 | A1 |
20050113648 | Yang et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050113657 | Alarcon et al. | May 2005 | A1 |
20050113658 | Jacobson et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050118726 | Schultz et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050124873 | Shults et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050137471 | Haar et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050143636 | Zhang et al. | Jun 2005 | A1 |
20050148003 | Kieth et al. | Jul 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050161346 | Simpson et al. | Jul 2005 | A1 |
20050171503 | Van Den Berghe et al. | Aug 2005 | A1 |
20050171513 | Mann et al. | Aug 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177036 | Shults et al. | Aug 2005 | A1 |
20050177398 | Watanabe et al. | Aug 2005 | A1 |
20050181012 | Saint et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050182358 | Veit et al. | Aug 2005 | A1 |
20050182451 | Griffin et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050203707 | Tsutsui et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050215871 | Feldman et al. | Sep 2005 | A1 |
20050215872 | Berner et al. | Sep 2005 | A1 |
20050221504 | Petruno et al. | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050239156 | Drucker et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050242479 | Petisce et al. | Nov 2005 | A1 |
20050245795 | Goode, Jr. et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050245904 | Estes et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050251083 | Carr-Brendel et al. | Nov 2005 | A1 |
20050259514 | Iseli et al. | Nov 2005 | A1 |
20050261660 | Choi | Nov 2005 | A1 |
20050267780 | Ray et al. | Dec 2005 | A1 |
20050271546 | Gerber et al. | Dec 2005 | A1 |
20050271547 | Gerber et al. | Dec 2005 | A1 |
20050272640 | Doyle, III et al. | Dec 2005 | A1 |
20050272985 | Kotulla et al. | Dec 2005 | A1 |
20050277164 | Drucker et al. | Dec 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001550 | Mann et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060003398 | Heller et al. | Jan 2006 | A1 |
20060004270 | Bedard et al. | Jan 2006 | A1 |
20060004271 | Peyser et al. | Jan 2006 | A1 |
20060007017 | Mann et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060029177 | Cranford, Jr. et al. | Feb 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060036187 | Vos et al. | Feb 2006 | A1 |
20060040402 | Brauker et al. | Feb 2006 | A1 |
20060052679 | Kotulla et al. | Mar 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060058602 | Kwiatkowski et al. | Mar 2006 | A1 |
20060063218 | Bartkowiak et al. | Mar 2006 | A1 |
20060074564 | Bartowiak et al. | Apr 2006 | A1 |
20060129733 | Solbelman | Jun 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060155180 | Brister et al. | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060173406 | Hayes et al. | Aug 2006 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060183984 | Dobbles et al. | Aug 2006 | A1 |
20060183985 | Brister et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060195029 | Shults et al. | Aug 2006 | A1 |
20060198426 | Partyka | Sep 2006 | A1 |
20060200112 | Paul | Sep 2006 | A1 |
20060202805 | Schulman et al. | Sep 2006 | A1 |
20060202859 | Mastrototaro et al. | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224109 | Steil et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060229512 | Petisce et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060253296 | Liisberg et al. | Nov 2006 | A1 |
20060258918 | Burd et al. | Nov 2006 | A1 |
20060258929 | Goode, Jr. et al. | Nov 2006 | A1 |
20060263763 | Simpson et al. | Nov 2006 | A1 |
20060264785 | Dring et al. | Nov 2006 | A1 |
20060264888 | Moberg et al. | Nov 2006 | A1 |
20060270922 | Brauker et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060276714 | Holt et al. | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070026440 | Broderick et al. | Feb 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070027507 | Burdett et al. | Feb 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070053341 | Lizzi | Mar 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066877 | Arnold et al. | Mar 2007 | A1 |
20070071681 | Gadkar et al. | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078323 | Reggiardo et al. | Apr 2007 | A1 |
20070090511 | Borland et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106133 | Satchwell et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070135697 | Reggiardo | Jun 2007 | A1 |
20070149873 | Say et al. | Jun 2007 | A1 |
20070149874 | Say et al. | Jun 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070151869 | Heller et al. | Jul 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070161879 | Say et al. | Jul 2007 | A1 |
20070161880 | Say et al. | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070168224 | Letzt et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173712 | Shah et al. | Jul 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070179349 | Hoyme et al. | Aug 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070179370 | Say et al. | Aug 2007 | A1 |
20070179372 | Say et al. | Aug 2007 | A1 |
20070191699 | Say et al. | Aug 2007 | A1 |
20070191700 | Say et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203408 | Say et al. | Aug 2007 | A1 |
20070203410 | Say et al. | Aug 2007 | A1 |
20070203411 | Say et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208245 | Brauker et al. | Sep 2007 | A1 |
20070208247 | Say et al. | Sep 2007 | A1 |
20070213610 | Say et al. | Sep 2007 | A1 |
20070213657 | Jennewine et al. | Sep 2007 | A1 |
20070215491 | Heller et al. | Sep 2007 | A1 |
20070218097 | Heller et al. | Sep 2007 | A1 |
20070219496 | Kamen et al. | Sep 2007 | A1 |
20070222609 | Duron et al. | Sep 2007 | A1 |
20070232877 | He | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070244380 | Say et al. | Oct 2007 | A1 |
20070244383 | Talbot et al. | Oct 2007 | A1 |
20070249919 | Say et al. | Oct 2007 | A1 |
20070249920 | Say et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070271285 | Eichorn et al. | Nov 2007 | A1 |
20070282299 | Hellwig | Dec 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080004515 | Jennewine et al. | Jan 2008 | A1 |
20080004601 | Jennewine et al. | Jan 2008 | A1 |
20080009304 | Fry | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080027586 | Hern et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080033254 | Kamath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080055070 | Bange et al. | Mar 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080062055 | Cunningham et al. | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080067627 | Boeck et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080154513 | Kovatchev et al. | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167543 | Say et al. | Jul 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080179187 | Ouyang et al. | Jul 2008 | A1 |
20080183060 | Steil et al. | Jul 2008 | A1 |
20080183061 | Goode et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080188796 | Steil et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194935 | Brister et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080208113 | Damiano et al. | Aug 2008 | A1 |
20080212600 | Yoo | Sep 2008 | A1 |
20080214900 | Fennell et al. | Sep 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255434 | Hayter et al. | Oct 2008 | A1 |
20080255437 | Hayter | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080255808 | Hayter | Oct 2008 | A1 |
20080256048 | Hayter | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080267823 | Wang et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080278333 | Fennell et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287762 | Hayter | Nov 2008 | A1 |
20080287763 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080287766 | Rasdal et al. | Nov 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20080288204 | Hayter et al. | Nov 2008 | A1 |
20080294024 | Cosentino et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300919 | Charlton et al. | Dec 2008 | A1 |
20080300920 | Brown et al. | Dec 2008 | A1 |
20080301158 | Brown et al. | Dec 2008 | A1 |
20080301436 | Yao et al. | Dec 2008 | A1 |
20080301665 | Charlton et al. | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080312841 | Hayter | Dec 2008 | A1 |
20080312842 | Hayter | Dec 2008 | A1 |
20080312844 | Hayter et al. | Dec 2008 | A1 |
20080312845 | Hayter et al. | Dec 2008 | A1 |
20080320587 | Vauclair et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090033482 | Hayter et al. | Feb 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036760 | Hayter | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090055149 | Hayter et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090062767 | VanAntwerp et al. | Mar 2009 | A1 |
20090063402 | Hayter | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076359 | Peyser et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090094680 | Gupta et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090105636 | Hayter et al. | Apr 2009 | A1 |
20090112478 | Mueller, Jr. et al. | Apr 2009 | A1 |
20090124877 | Goode et al. | May 2009 | A1 |
20090124878 | Goode et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090146826 | Gofman et al. | Jun 2009 | A1 |
20090149717 | Brauer et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter et al. | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090198118 | Hayter et al. | Aug 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204340 | Feldman et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090237216 | Twitchell, Jr. | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247931 | Damgaard-Sorensen | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100025238 | Gottlieb et al. | Feb 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100057040 | Hayter | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100057044 | Hayter | Mar 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100110931 | Shim et al. | May 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100119881 | Patel et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168545 | Kamath et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100235439 | Goodnow et al. | Sep 2010 | A1 |
20100267161 | Wu et al. | Oct 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100324403 | Brister et al. | Dec 2010 | A1 |
20100332142 | Shadforth et al. | Dec 2010 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110074349 | Ghovanloo | Mar 2011 | A1 |
20110125040 | Crawford et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110184268 | Taub | Jul 2011 | A1 |
20110191059 | Farrell et al. | Aug 2011 | A1 |
20110230741 | Liang et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110270112 | Manera et al. | Nov 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20120108931 | Taub et al. | May 2012 | A1 |
20120148054 | Rank et al. | Jun 2012 | A1 |
20120215092 | Harris, III et al. | Aug 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
4234553 | Jan 1995 | DE |
0010375 | Apr 1980 | EP |
0026995 | Apr 1981 | EP |
0048090 | Mar 1982 | EP |
0078636 | May 1983 | EP |
0080304 | Jun 1983 | EP |
0098592 | Jan 1984 | EP |
0125139 | Nov 1984 | EP |
0127958 | Dec 1984 | EP |
0136362 | Apr 1985 | EP |
0170375 | Feb 1986 | EP |
0177743 | Apr 1986 | EP |
0184909 | Jun 1986 | EP |
0206218 | Dec 1986 | EP |
0230472 | Aug 1987 | EP |
0241309 | Oct 1987 | EP |
0245073 | Nov 1987 | EP |
0255291 | Feb 1988 | EP |
0278647 | Aug 1988 | EP |
0320109 | Jun 1989 | EP |
0353328 | Feb 1990 | EP |
0359831 | Mar 1990 | EP |
0368209 | May 1990 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
0400918 | Dec 1990 | EP |
0453283 | Oct 1991 | EP |
0470290 | Feb 1992 | EP |
0504835 | Sep 1992 | EP |
0286118 | Jan 1995 | EP |
0653718 | May 1995 | EP |
0680727 | Nov 1995 | EP |
0724859 | Aug 1996 | EP |
0800082 | Oct 1997 | EP |
0805574 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
0970655 | Jan 2000 | EP |
0973289 | Jan 2000 | EP |
0678308 | May 2000 | EP |
1034734 | Sep 2000 | EP |
1048264 | Nov 2000 | EP |
1579690 | Nov 2002 | EP |
1292218 | Mar 2003 | EP |
1077634 | Jul 2003 | EP |
1445746 | Aug 2004 | EP |
1445893 | Aug 2004 | EP |
1568309 | Aug 2005 | EP |
1666091 | Jun 2006 | EP |
1703697 | Sep 2006 | EP |
1704893 | Sep 2006 | EP |
1897487 | Nov 2009 | EP |
1897492 | Nov 2009 | EP |
2113864 | Nov 2009 | EP |
1897488 | Dec 2009 | EP |
1681992 | Apr 2010 | EP |
1448489 | Aug 2010 | EP |
1971396 | Aug 2010 | EP |
2201969 | Mar 2011 | EP |
1413245 | Jun 2011 | EP |
2153382 | Feb 2012 | EP |
2284773 | Feb 2012 | EP |
1394171 | May 1975 | GB |
1579690 | Nov 1980 | GB |
1599241 | Sep 1981 | GB |
2073891 | Oct 1981 | GB |
2154003 | Aug 1985 | GB |
2194892 | Mar 1988 | GB |
2204408 | Nov 1988 | GB |
2225637 | Jun 1990 | GB |
2254436 | Oct 1992 | GB |
2409951 | Jul 2005 | GB |
1281988 | Jan 1987 | SU |
WO-1985005119 | Nov 1985 | WO |
WO-1986000513 | Jan 1986 | WO |
WO-1987000513 | Jan 1987 | WO |
WO-1987006040 | Oct 1987 | WO |
WO-1989002246 | Mar 1989 | WO |
WO-1989005119 | Jun 1989 | WO |
WO-1989008713 | Sep 1989 | WO |
WO-1990000367 | Jan 1990 | WO |
WO-1990005300 | May 1990 | WO |
WO-1990005910 | May 1990 | WO |
WO-1991001680 | Feb 1991 | WO |
WO-1991004704 | Apr 1991 | WO |
WO-1991015993 | Oct 1991 | WO |
WO-1992001947 | Feb 1992 | WO |
WO-1992013271 | Aug 1992 | WO |
WO-1994020602 | Sep 1994 | WO |
WO-1994027140 | Nov 1994 | WO |
WO-1995028878 | Feb 1995 | WO |
WO-1995006240 | Mar 1995 | WO |
WO-1996007908 | Mar 1996 | WO |
WO-1996025089 | Aug 1996 | WO |
WO-1996030431 | Oct 1996 | WO |
WO-1996035370 | Nov 1996 | WO |
WO-1997002847 | Jan 1997 | WO |
WO-1997019344 | May 1997 | WO |
WO-1997020207 | Jun 1997 | WO |
WO-1997033513 | Sep 1997 | WO |
WO-1997041421 | Nov 1997 | WO |
WO 1997042882 | Nov 1997 | WO |
WO-1997042883 | Nov 1997 | WO |
WO-1997042886 | Nov 1997 | WO |
WO-1997042888 | Nov 1997 | WO |
WO-1997043962 | Nov 1997 | WO |
WO-1997046868 | Dec 1997 | WO |
WO-1998009167 | Mar 1998 | WO |
WO-1998024366 | Jun 1998 | WO |
WO-1998035053 | Aug 1998 | WO |
WO-1998052045 | Nov 1998 | WO |
WO-1998052293 | Nov 1998 | WO |
WO-1999005966 | Feb 1999 | WO |
WO-1999032883 | Jul 1999 | WO |
WO-1999056613 | Nov 1999 | WO |
WO-2000013580 | Mar 2000 | WO |
WO-2000018294 | Apr 2000 | WO |
WO-2000019887 | Apr 2000 | WO |
WO-2000020626 | Apr 2000 | WO |
WO-2000033065 | Jun 2000 | WO |
WO-2000049940 | Aug 2000 | WO |
WO-2000059370 | Oct 2000 | WO |
WO-2000060350 | Oct 2000 | WO |
WO-2000062664 | Oct 2000 | WO |
WO-2000062665 | Oct 2000 | WO |
WO-2000078210 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001024038 | Apr 2001 | WO |
WO-2001033216 | May 2001 | WO |
WO-2001052727 | Jul 2001 | WO |
WO-2001052935 | Jul 2001 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2001057238 | Aug 2001 | WO |
WO-2001057239 | Aug 2001 | WO |
WO-2001067009 | Sep 2001 | WO |
WO-2002013686 | Feb 2002 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2002017210 | Feb 2002 | WO |
WO-2002058537 | Aug 2002 | WO |
WO-2002078512 | Oct 2002 | WO |
WO-2003036583 | May 2003 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2003085372 | Oct 2003 | WO |
WO-2004047445 | Jun 2004 | WO |
WO-2004061420 | Jul 2004 | WO |
WO-2004098405 | Nov 2004 | WO |
WO-2005010756 | Feb 2005 | WO |
WO-2005041766 | May 2005 | WO |
WO-2005045744 | May 2005 | WO |
WO-2005089103 | Sep 2005 | WO |
WO-2005117269 | Dec 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
WO-2006032653 | Mar 2006 | WO |
WO-2006037109 | Apr 2006 | WO |
WO-2006064397 | Jun 2006 | WO |
WO-2006079114 | Jul 2006 | WO |
WO-2006118947 | Nov 2006 | WO |
WO-2006119084 | Nov 2006 | WO |
WO-2006124099 | Nov 2006 | WO |
WO-2007002189 | Jan 2007 | WO |
WO-2007007459 | Jan 2007 | WO |
WO-2007016399 | Feb 2007 | WO |
WO-2007027381 | Mar 2007 | WO |
WO-2007027788 | Mar 2007 | WO |
WO-2007041069 | Apr 2007 | WO |
WO-2007041070 | Apr 2007 | WO |
WO-2007041072 | Apr 2007 | WO |
WO-2007041248 | Apr 2007 | WO |
WO-2007056638 | May 2007 | WO |
WO-2007101223 | Sep 2007 | WO |
WO-2007101260 | Sep 2007 | WO |
WO-2007120363 | Oct 2007 | WO |
WO-2007126444 | Nov 2007 | WO |
WO-2007053832 | Dec 2007 | WO |
WO-2007143225 | Dec 2007 | WO |
WO-2008003003 | Jan 2008 | WO |
WO-2008005780 | Jan 2008 | WO |
WO-2008021913 | Feb 2008 | WO |
WO-2008042760 | Apr 2008 | WO |
WO-2008086541 | Jul 2008 | WO |
WO-2008128210 | Oct 2008 | WO |
WO-2008130896 | Oct 2008 | WO |
WO-2008130897 | Oct 2008 | WO |
WO-2008130898 | Oct 2008 | WO |
WO-2008143943 | Nov 2008 | WO |
WO-2008150428 | Dec 2008 | WO |
WO-2008153825 | Dec 2008 | WO |
WO-2009018058 | Feb 2009 | WO |
WO-2009075697 | Jun 2009 | WO |
WO-2009086216 | Jul 2009 | WO |
WO-2009096992 | Aug 2009 | WO |
WO-2009097594 | Aug 2009 | WO |
WO-2010077329 | Aug 2010 | WO |
WO-2011022418 | Feb 2011 | WO |
Entry |
---|
Abruna, H. D., et al., “Rectifying Interfaces Using Two-Layer Films of Electrochemically Polymerized Vinylpyridine and Vinylbipyridine Complexes of Ruthenium and Iron on Electrodes”, Journal of the American Chemical Society, vol. 103, No. 1, 1981, pp. 1-5. |
Albery, W. J., et al., “Amperometric Enzyme Electrodes Part II: Conducting Salts as Electrode Materials for the Oxidation of Glucose Oxidase”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 223-235. |
Albery, W. J., et al., “Amperometric Enzyme Electrodes”, Philosophical Transactions of the Royal Society of London, vol. 316, 1987, pp. 107-119. |
Alcock, S. J., et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology Magazine, 1994, pp. 319-325. |
Anderson, L. B., et al., “Thin-Layer Electrochemistry: Steady-State Methods of Studying Rate Processes”, Journal of ElectroAnalytical Chemistry, vol. 10, 1965, pp. 295-305. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Bartlett, P. N., et al., “Covalent Binding of Electron Relays to Glucose Oxidase”, Journal of the Chemical Society, Chemical Communications, 1987, pp. 1603-1604. |
Bartlett, P. N., et al., “Modification of Glucose Oxidase by Tetrathiafulvalene”, Journal of the Chemical Society, Chemical Communications, 1990, pp. 1135-1136. |
Bartlett, P. N., et al., “Strategies for the Development of Amperometric Enzyme Electrodes”, Biosensors, vol. 3, 1987/88, pp. 359-379. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Bergman, R., et al., “Physiological Evaluation of Factors Controlling Glucose Tolerance in Man: Measurement of Insulin Sensitivity and Beta-cell Glucose Sensitivity From the Response to Intravenous Glucose”, J. Clin. Invest., The American Society for Clinical Investigation, Inc., vol. 68, 1981, pp. 1456-1467. |
Bindra, D. S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring”, Analytical Chemistry, vol. 63, No. 17, 1991, pp. 1692-1696. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Bobbioni-Harsch, E., et al., “Lifespan of Subcutaneous Glucose Sensors and Their Performances During Dynamic Glycaemia Changes in Rats”, Journal of Biomedical Engineering, vol. 15, 1993, pp. 457-463. |
Boedeker Plastics, Inc., “Polyethylene Specifications”, Web Page of Boedeker.com, 2007, pp. 1-3. |
Brandt, J., et al., “Covalent Attachment of Proteins to Polysaccharide Carriers by Means of Benzoquinone”, Biochimica et Biophysica Acta, vol. 386, 1975, pp. 196-202. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Brownlee, M., et al., “A Glucose-Controlled Insulin-Delivery System: Semisynthetic Insulin Bound to Lectin”, Science, vol. 206, 1979, 1190-1191. |
Cass, A. E., et al., “Ferricinum Ion as an Electron Acceptor for Oxido-Reductases”, Journal of ElectroAnalytical Chemistry, vol. 190, 1985, pp. 117-127. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Castner, J. F., et al., “Mass Transport and Reaction Kinetic Parameters Determined Electrochemically for Immobilized Glucose Oxidase”, Biochemistry, vol. 23 No. 10, 1984, 2203-2210. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Claremont, D. J., et al., “Biosensors for Continuous In Vivo Glucose Monitoring”, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 10, 1988. |
Clark Jr., L. C., et al., “Differential Anodic Enzyme Polarography for the Measurement of Glucose”, Oxygen Transport to Tissue: Instrumentation, Methods, and Physiology, 1973, pp. 127-133. |
Clark Jr., L. C., et al., “Electrode Systems for Continuous Monitoring in Cardiovascular Surgery”, Annals New York Academy of Sciences, 1962, pp. 29-45. |
Clark Jr., L. C., et al., “Long-term Stability of Electroenzymatic Glucose Sensors Implanted in Mice”, American Society of Artificial Internal Organs Transactions, vol. XXXIV, 1988, pp. 259-265. |
Clarke, W. L., et al., “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose”, Diabetes Care, vol. 10, No. 5, 1987, pp. 622-628. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Csoregi, E., et al., “Design, Characterization, and One-Point in Vivo Calibration of a Subcutaneously Implanted Glucose Electrode”, Analytical Chemistry, vol. 66 No. 19, 1994, pp 3131-3138. |
Csoregi, E., et al., “On-Line Glucose Monitoring by Using Microdialysis Sampling and Amperometric Detection Based on ‘Wired’ Glucose Oxidase in Carbon Paste”, Mikrochimica Acta, vol. 121, 1995, pp. 31-40. |
Dai, W. S., et al., “Hydrogel Membranes with Mesh Size Asymmetry Based on the Gradient Crosslinking of Poly(vinyl alcohol),” Journal of Membrane Science, vol. 156, 1999, pp. 67-79. |
Davis, G., “Electrochemical Techniques for the Development of Amperometric Biosensors”, Biosensors, vol. 1, 1985, pp. 161-178. |
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 1. Electron Transfer from Glucose Oxidase to Metal Electrodes via Electron Relays, Bound Covalently to the Enzyme”, The Journal of Physical Chemistry, vol. 91, No. 6, 1987, pp. 1285-1289. |
Degani, Y., et al., “Direct Electrical Communication Between Chemically Modified Enzymes and Metal Electrodes. 2. Methods for Bonding Electron-Transfer Relays to Glucose Oxidase and D-Amino-Acid Oxidase”, Journal of the American Chemical Society, vol. 110, No. 8, 1988, pp. 2615-2620. |
Degani, Y., et al., “Electrical Communication Between Redox Centers of Glucose Oxidase and Electrodes via Electrostatically and Covalently Bound Redox Polymers”, Journal of the American Chemical Society, vol. 111, 1989, pp. 2357-2358. |
Denisevich, P., et al., “Unidirectional Current Flow and Charge State Trapping at Redox Polymer Interfaces on Bilayer Electrodes: Principles, Experimental Demonstration, and Theory”, Journal of the American Chemical Society, vol. 103, 1981, pp. 4727-4737. |
Dicks, J. M., et al., “Ferrocene Modified Polypyrrole with Immobilised Glucose Oxidase and its Application in Amperometric Glucose Microbiosensors”, Annales de Biologie Clinique, vol. 47, 1989, pp. 607-619. |
Diem, P., et al., “Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose”, Diabetes Technology & Therapeutics, vol. 6, 2004, pp. 790-799. |
Ellis, C. D., et al., “Selectivity and Directed Charge Transfer through an Electroactive Metallopolymer Film”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7480-7483. |
Engstrom, R. C., “Electrochemical Pretreatment of Glassy Carbon Electrodes”, Analytical Chemistry, vol. 54, No. 13, 1982, pp. 2310-2314. |
Engstrom, R. C., et al., “Characterization of Electrochemically Pretreated Glassy Carbon Electrodes”, Analytical Chemistry, vol. 56, No. 2, 1984, pp. 136-141. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Feldman, B., et al., “Electron Transfer Kinetics at Redox Polymer/Solution Interfaces Using Microelectrodes and Twin Electrode Thin Layer Cells”, Journal of ElectroAnalytical Chemistry, vol. 194, 1985, pp. 63-81. |
Fischer, H., et al., “Intramolecular Electron Transfer Medicated by 4,4′-Bypyridine and Related Bridging Groups”, Journal of the American Chemical Society, vol. 98, No. 18, 1976, pp. 5512-5517. |
Flentge, F., et al., “An Enzyme-Reactor for Electrochemical Monitoring of Choline and Acetylcholine: Applications in High-Performance Liquid Chromatography, Bran Tissue, Microdialysis and Cerebrospinal Fluid,” Analytical Biochemistry, vol. 204, 1992, pp. 305-310. |
Foulds, N. C., et al., “Enzyme Entrapment in Electrically Conducting Polymers: Immobilisation of Glucose Oxidase in Polypyrrole and its Application in Amperometric Glucose Sensors”, Journal of the Chemical Society, Faraday Transactions 1, vol. 82, 1986, pp. 1259-1264. |
Foulds, N. C., et al., “Immobilization of Glucose Oxidase in Ferrocene-Modified Pyrrole Polymers”, Analytical Chemistry, vol. 60, No. 22, 1988, pp. 2473-2478. |
Frew, J. E., et al., “Electron-Transfer Biosensors”, Philosophical Transactions of the Royal Society of London, vol. 316, 1987, pp. 95-106. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Godsland, I. F., et al., “Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels,” Clinical Science, vol. 101, 2001, pp. 1-9. |
Gorton, L., et al., “Selective Detection in Flow Analysis Based on the Combination of Immobilized Enzymes and Chemically Modified Electrodes”, Analytica Chimica Acta, vol. 250, 1991, pp. 203-248. |
Graham, N. B., “Poly(ethylene oxide) and Related Hydrogels,” Hydrogels in Medicine and Pharmacy, vol. II: Polymers, Chapter 4, 1987, pp. 95-113. |
Gregg, B. A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Bionsensor Applications”, Analytical Chemistry, vol. 62, No. 3, 1990, pp. 258-263. |
Gregg, B. A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone”, Journal of Physical Chemistry, vol. 95, No. 15, 1991, 5970-5975. |
Hale, P. D., et al., “A New Class of Amperometric Biosensor Incorporating a Polymeric Electron-Transfer Mediator”, Journal of the American Chemical Society, vol. 111, No. 9, 1989, pp. 3482-3484. |
Harrison, D. J., et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniatureized Integrated Potentiostat for Glucose Analysis in Whole Blood”, Analytical Chemistry, vol. 60, No. 19, 1988, pp. 2002-2007. |
Hawkridge, F. M., et al., “Indirect Coulometric Titration of Biological Electron Transport Components”, Analytical Chemistry, vol. 45, No. 7, 1973, pp. 1021-1027. |
Heller, A., “Electrical Connection Enzyme Redox Centers to Electrodes”, Journal of Physical Chemistry, vol. 96, No. 9, 1990, pp. 3579-3587. |
Heller, A., “Electrical Wiring of Redox Enzymes”, Accounts of Chemical Research vol. 23, No. 5, 1990, 128-134. |
Heller, A., et al., “Amperometric Biosensors Based on Three-Dimensional Hydrogel-Forming Epoxy Networks”, Sensors and Actuators B, vol. 13-14, 1993, pp. 180-183. |
Ianniello, R. M., et al., “Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes”, Analytical Chemistry, vol. 54, No. 7, 1982, pp. 1098-1101. |
Ianniello, R. M., et al., “Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor”, Analytical Chemistry, vol. 53, No. 13, 1981, pp. 2090-2095. |
Ikeda, T., et al., “Glucose Oxidase-Immobilized Benzoquinone-Carbon Paste Electrode as a Glucose Sensor”, Agricultural and Biological Chemistry, vol. 49, No. 2, 1985, pp. 541-543. |
Ikeda, T., et al., “Kinetics of Outer-Sphere Electron Transfers Between Metal Complexes in Solutions and Polymeric Films on Modified Electrodes”, Journal of the American Chemical Society, vol. 103, No. 25, 1981, pp. 7422-7425. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, J. M., et al., “Potential-Dependent Enzymatic Activity in an Enzyme Thin-Layer Cell”, Analytical Chemistry, vol. 54, No. 8, 1982, pp. 1377-1383. |
Johnson, K. W., “Reproducible Electrodeposition of Biomolecules for the Fabrication of Miniature Electroenzymatic Biosensors”, Sensors and Actuators B, vol. 5, 1991, pp. 85-89. |
Johnson, K. W., et al., “In vivo Evaluation of an Electroenzymatic Glucose Sensor Implanted in Subcutaneous Tissue”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 709-714. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jonsson, G., et al., “An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface With Immobilized Glucose Oxidase and Adsorbed Mediator”, Biosensors, vol. 1, 1985, pp. 355-368. |
Josowicz, M., et al., “Electrochemical Pretreatment of Thin Film Platinum Electrodes”, Journal of the Electrochemical Society, vol. 135, No. 1, 1988, pp. 112-115. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Katakis, I., et al., “Electrostatic Control of the Electron Transfer Enabling Binding of Recombinant Glucose Oxidase and Redox Polyelectrolytes”, Journal of the American Chemical Society, vol. 116, No. 8, 1994, pp. 3617-3618. |
Katakis, I., et al., “L-α-Glycerophosphate and L-Lactate Electrodes Based on the Electrochemical ‘Wiring’ of Oxidases”, Analytical Chemistry, vol. 64, No. 9, 1992, pp. 1008-1013. |
Kemp, G. J., “Theoretical Aspects of One-Point Calibration: Causes and Effects of Some Potential Errors, and Their Dependence on Concentration,” Clinical Chemistry, vol. 30, No. 7, 1984, pp. 1163-1167. |
Kenausis, G., et al., “‘Wiring’ of Glucose Oxidase and Lactate Oxidase Within a Hydrogel Made with Poly(vinyl pyridine) complexed with [Os(4,4′-dimethoxy-2,2′-bipyridine)2C1]+/2+”, Journal of the Chemical Society, Faraday Transactions, vol. 92, No. 20, 1996, pp. 4131-4136. |
Kerner, W., et al., “The Function of a Hydrogen Peroxide-Detecting Electroenzymatic Glucose Electrode is Markedly Impaired in Human Subcutaneous Tissue and Plasma,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 473-482. |
Kondepati, V., et al., “Recent Progress in Analytical Instrumentation for Glycemic Control in Diabetic and Critically Ill Patients”, Analytical Bioanalytical Chemistry, vol. 388, 2007, pp. 545-563. |
Korf, J., et al., “Monitoring of Glucose and Lactate Using Microdialysis: Applications in Neonates and Rat Brain,” Developmental Neuroscience, vol. 15, 1993, pp. 240-246. |
Koudelka, M., et al., “In-Vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 31-36. |
Kulys, J., et al., “Mediatorless Peroxidase Electrode and Preparation of Bienzyme Sensors”, Bioelectrochemistry and Bioenergetics, vol. 24, 1990, pp. 305-311. |
Lager, W., et al., “Implantable Electrocatalytic Glucose Sensor”, Hormone Metabolic Research, vol. 26, 1994, pp. 526-530. |
Laurell, T., “A Continuous Glucose Monitoring System Based on Microdialysis”, Journal of Medical Engineering & Technology, vol. 16, No. 5, 1992, pp. 187-193. |
Lindner, E., et al., “Flexible (Kapton-Based) Microsensor Arrays of High Stability for Cardiovascular Applications”, Journal of the Chemical Society, Faraday Transactions, vol. 89, No. 2, 1993, pp. 361-367. |
Lo, B., et al., “Key Technical Challenges and Current Implementations of Body Sensor Networks”, Body Sensor Networks, 2005, pp. 1-5. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria” Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Maidan, R., et al., “Elimination of Electrooxidizable Interferant-Produced Currents in Amperometric Biosensors”, Analytical Chemistry, vol. 64, No. 23, 1992, pp. 2889-2896. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectoscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
Marko-Varga, G., et al., “Enzyme-Based Biosensor as a Selective Detection Unit in Column Liquid Chromatography”, Journal of Chromatography A, vol. 660, 1994, pp. 153-167. |
Mastrototaro, J. J., et al., “An Electroenzymatic Glucose Sensor Fabricated on a Flexible Substrate”, Sensors and Actuators B, vol. 5, 1991, pp. 139-144. |
Mauras, N., et al., “Lack of Accuracy of Continuous Glucose Sensors in Healthy, Nondiabetic Children: Results of the Diabetes Research in Children Network (DirecNet) Accuracy Study,” Journal of Pediatrics, 2004, pp. 770-775. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
McNeil, C. J., et al., “Thermostable Reduced Nicotinamide Adenine Dinucleotide Oxidase: Application to Amperometric Enzyme Assay”, Analytical Chemistry, vol. 61, No. 1, 1989, pp 25-29. |
Miyawaki, O., et al., “Electrochemical and Glucose Oxidase Coenzyme Activity of Flavin Adenine Dinucleotide Covalently Attached to Glassy Carbon at the Adenine Amino Group”, Biochimica et Biophysica Acta, vol. 838, 1985, pp. 60-68. |
Moatti-Sirat, D., et al., “Evaluating In Vitro and In Vivo the Interference of Ascorbate and Acetaminophen on Glucose Detection by a Needle-Type Glucose Sensor”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 345-352. |
Moatti-Sirat, D., et al., “Reduction of Acetaminophen Interference in Glucose Sensors by a Composite Nafion Membrane: Demonstration in Rats and Man”, Diabetologia, vol. 37, 1994, pp. 610-616. |
Moatti-Sirat, D., et al., “Towards Continuous Glucose Monitoring: In Vivo Evaluation of a Miniaturized Glucose Sensor Implanted for Several Days in Rat Subcutaneous Tissue”, Diabetologia, vol. 35, 1992, pp. 224-330. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Nagy, G., et al., “A New Type of Enzyme Electrode: The Ascorbic Acid Eliminator Electrode”, Life Sciences, vol. 31, No. 23, 1982, pp. 2611-2616. |
Nakamura, S., et al., “Effect of Periodate Oxidation on the Structure and Properties of Glucose Oxidase”, Biochimica et Biophysica Acta., vol. 445, 1976, pp. 294-308. |
Narasimham, K., et al., “p-Benzoquinone Activation of Metal Oxide Electrodes for Attachment of Enzymes”, Enzyme and Microbial Technology, vol. 7, 1985, pp. 283-286. |
Ohara, T. J., “Osmium Bipyridyl Redox Polymers Used in Enzyme Electrodes”, Platinum Metals Review, vol. 39, No. 2, 1995, pp. 54-62. |
Ohara, T. J., et al., “‘Wired’ Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances”, Analytical Chemistry, vol. 66, No. 15, 1994, pp. 2451-2457. |
Ohara, T. J., et al., “Glucose Electrodes Based on Cross-Linked [Os(bpy)2C1]+/2+ Complexed Poly(1-Vinylimidazole) Films”, Analytical Chemistry, vol. 65, No. 23, 1993, pp. 3512-3517. |
Olievier, C. N., et al., “In Vivo Measurement of Carbon Dioxide Tension with a Miniature Electrodes”, Pflugers Archiv: European Journal of Physiology, vol. 373, 1978, pp. 269-272. |
Paddock, R. M., et al., “Electrocatalytic Reduction of Hydrogen Peroxide via Direct Electron Transfer From Pyrolytic Graphite Electrodes to Irreversibly Adsorbed Cyctochrome C Peroxidase”, Journal of ElectroAnalytical Chemistry, vol. 260, 1989, pp. 487-494. |
Palleschi, G., et al., “A Study of Interferences in Glucose Measurements in Blood by Hydrogen Peroxide Based Glucose Probes”, Analytical Biochemistry, vol. 159, 1986, pp. 114-121. |
Pankratov, I., et al., “Sol-Gel Derived Renewable-Surface Biosensors”, Journal of ElectroAnalytical Chemistry, vol. 393, 1995, pp. 35-41. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pathak, C., et al., “Rapid Photopolymerization of Immunoprotective Gels in Contact with Cells and Tissue”, Journal of the American Chemical Society, vol. 114, No. 21, 1992, pp. 8311-8312. |
Pickup, J. “Developing Glucose Sensors for In Vivo Use”, Tibtech, vol. 11, 1993, pp. 285-291. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pickup, J., et al., “Potentially-Implantable, Amperometric Glucose Sensors with Mediated Electron Transfer: Improving the Operating Stability”, Biosensors, vol. 4, 1989, pp. 109-119. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Poitout, V., et al., “A Glucose Monitoring System for On Line Estimation in Man of Blood Glucose Concentration Using a Miniaturized Glucose Sensor Implanted in the Subcutaneous Tissue and a Wearable Control Unit”, Diabetolgia, vol. 36, 1993, pp. 658-663. |
Poitout, V., et al., “Calibration in Dogs of a Subcutaneous Miniaturized Glucose Sensor Using a Glucose Meter for Blood Glucose Determination”, Biosensors & Bioelectronics, vol. 7, 1992, pp. 587-592. |
Poitout, V., et al., “In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor”, ASAIO Transactions, vol. 37, No. 3, 1991, pp. M298-M300. |
Pollak, A., et al., “Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels”, Journal of the American Chemical Society, vol. 102, No. 20, 1980, pp. 6324-6336. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Reach, G., et al., “Can Continuous Glucose Monitoring Be Used for the Treatment of Diabetes?”, Analytical Chemistry, vol. 64, No. 6, 1992, pp. 381-386. |
Rebrin, K., et al., “Automated Feedback Control of Subcutaneous Glucose Concentration in Diabetic Dogs”, Diabetologia, vol. 32, 1989, pp. 573-576. |
Reusch, W., “Other Topics: Organometallic Chemistry: Organometallic Compounds: Main Group Organometallic Compounds,” Virtual Textbook of Organic Chemistry, 1999, Rev. 2007, 25 pages. |
Rodriguez, N., et al., “Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces”, IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 1, 2007, pp. 19-27. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sacks (Ed), “Guidelines and Recommendations for Laboratory Analysis in the Diagnosis and Management of Diabetes Mellitus,” The National Academy of Clinical Biochemistry Presents Laboratory Medicine Practice Guidelines, vol. 13, 2002, pp. 8-11, 21-23, 52-56, 63. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salditt, P., “Trends in Medical Device Design and Manufacturing”, SMTA News and Journal of Surface Mount Technology, vol. 17, 2004, pp. 19-24. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Samuels, G. J., et al., “An Electrode-Supported Oxidation Catalyst Based on Ruthenium (IV). pH ‘Encapsulation’ in a Polymer Film”, Journal of the American Chemical Society, vol. 103, No. 2, 1981, pp. 307-312. |
Sasso, S. V., et al., “Electropolymerized 1,2-Diaminobenzene as a Means to Prevent Interferences and Fouling and to Stabilize Immobilized Enzyme in Electrochemical Biosensors”, Analytical Chemistry, vol. 62, No. 11, 1990, pp. 1111-1117. |
Scheller, F. W., et al., “Second Generation Biosensors,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 245-253. |
Scheller, F., et al., “Enzyme Electrodes and Their Application”, Philosophical Transactions of the Royal Society of London B, vol. 316, 1987, pp. 85-94. |
Schmehl, R. H., et al., “The Effect of Redox Site Concentration on the Rate of Mediated Oxidation of Solution Substrates by a Redox Copolymer Film”, Journal of ElectroAnalytical Chemistry, vol. 152, 1983, pp. 97-109. |
Schmidt, F. J., et al., “Calibration of a Wearable Glucose Sensor”, The International Journal of Artificial Organs, vol. 15, No. 1, 1992, pp. 55-61. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sittampalam, G., et al., “Surface-Modified Electrochemical Detector for Liquid Chromatography”, Analytical Chemistry, vol. 55, No. 9, 1983, pp. 1608-1610. |
Skoog, D. A., et al., “Evaluation of Analytical Data,” Fundamentals of Analytical Chemistry, 1966, pp. 55. |
Slattery, C., et al., “A Reference Design for High-Performance, Low-Cost Weigh Scales”, Analog Dialogue 39-12, 2005 pp. 1-6. |
Soegijoko, S., et al., “External Artificial Pancreas: A New Control Unit Using Microprocessor”, Hormone and Metabolic Research Supplement Series, vol. 12, 1982, pp. 165-169. |
Sprules, S. D., et al., “Evaluation of a New Disposable Screen-Printed Sensor Strip for the Measurement of NADH and Its Modification to Produce a Lactate Biosensor Employing Microliter Volumes”, Electroanalysis, vol. 8, No. 6, 1996, pp. 539-543. |
Sternberg, F., et al., “Calibration Problems of Subcutaneous Glucosensors when Applied ‘In-Situ’ in Man”, Hormone and Metabolic Research, vol. 26, 1994, pp. 523-526. |
Sternberg, R., et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development”, Analytical Chemistry, vol. 60, No. 24, 1988, pp. 2781-2786. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Suekane, M., “Immobilization of Glucose Isomerase”, Zettschrift fur Allgemeine Mikrobiologie, vol. 22, No. 8, 1982, pp. 565-576. |
Tajima, S., et al., “Simultaneous Determination of Glucose and 1,5-Anydroglucitol”, Chemical Abstracts, vol. 111, No. 25, 1989, pp. 394. |
Takamura, A., et al., Drug release from Poly(vinyl alcohol) Gel Prepared by Freeze-Thaw Procedure, Journal of Controlled Release, vol. 20, 1992, pp. 21-27. |
Tarasevich, M. R., “Bioelectrocatalysis”, Comprehensive Treatise of Electrochemistry, vol. 10, 1985, pp. 231-295. |
Tatsuma, T., et al., “Enzyme Monolayer- and Bilayer-Modified Tin Oxide Electrodes for the Determination of Hydrogen Peroxide and Glucose”, Analytical Chemistry, vol. 61, No. 21, 1989, pp. 2352-2355. |
Taylor, C., et al., “‘Wiring’ of Glucose Oxidase Within a Hydrogel Made with Polyvinyl Imidazole Complexed with [(Os-4,4′-dimethoxy-2,2′-bipyridine)C1]+/2+”, Journal of ElectroAnalytical Chemistry, vol. 396, 1995, pp. 511-515. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Travenol Laboratories, Inc., An Introduction to “Eugly”, Book 1, 1985, pp. 1-22. |
Trojanowicz, M., et al., “Enzyme Entrapped Polypyrrole Modified Electrode for Flow-Injection Determination of Glucose”, Biosensors & Bioelectronics, vol. 5, 1990, pp. 149-156. |
Tsalikian, E., et al., “Accuracy of the GlucoWatch G2® Biographer and the Continuous Glucose Monitoring System During Hypoglycemia: Experience of the Diabetes Research in Children Network”, Diabetes Care, vol. 27, No. 3, 2004, pp. 722-726. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Turner, R. F., et al., “A Biocompatible Enzyme Electrode for Continuous in vivo Glucose Monitoring in Whole Blood”, Sensors and Actuators B, vol. 1, 1990, pp. 561-564. |
Tuzhi, P., et al., “Constant Potential Pretreatment of Carbon Fiber Electrodes for In Vivo Electrochemistry”, Analytical Letters, vol. 24, No. 6, 1991, pp. 935-945. |
Umana, M., “Protein-Modified Electrochemically Active Biomaterial Surface”, U.S. Army Research Office, Analytical and Chemical Sciences Research Triangle Institute, 1988, pp. 1-9. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Urban, G., et al., “Miniaturized Thin-Film Biosensors Using Covalently Immobilized Glucose Oxidase”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Velho, G., et al., “In Vitro and In Vivo Stability of Electrode Potentials in Needle-Type Glucose Sensors”, Diabetes, vol. 38, No. 2, 1989, pp. 164-171. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Von Woedtke, T., et al., “In Situ Calibration of Implanted Electrochemical Glucose Sensors”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 943-952. |
Vreeke, M. S., et al., “Hydrogen Peroxide Electrodes Based on Electrical Connection of Redox Centers of Various Peroxidases to Electrodes through a Three-Dimensional Electron-Relaying Polymer Network”, Diagnostic Biosensors Polymers, Chapter 15, 1993, pp. 180-193. |
Vreeke, M., et al., “Hydrogen Peroxide and β-Nicotinamide Adenine Dinucleotide Sensing Amperometric Electrodes Based on Electrical Connection of Horseradish Peroxidase Redox Centers to Electrodes through a Three-Dimensional Electron Relaying Polymer Network”, Analytical Chemistry, vol. 64, No. 24, 1992, pp. 3084-3090. |
Wang, D. L., et al., “Miniaturized Flexible Amperometric Lactate Probe”, Analytical Chemistry, vol. 65, No. 8, 1993, pp. 1069-1073. |
Wang, J., et al., “Activation of Glassy Carbon Electrodes by Alternating Current Electrochemical Treatment”, Analytica Chimica Acta, vol. 167, 1985, pp. 325-334. |
Wang, J., et al., “Amperometric Biosensing of Organic Peroxides with Peroxidase-Modified Electrodes”, Analytica Chimica Acta, vol. 254, 1991, pp. 81-88. |
Wang, J., et al., “Screen-Printable Sol-Gel Enzyme-Containing Carbon Inks”, Analytical Chemistry, vol. 68, No. 15, 1996, pp. 2705-2708. |
Wang, J., et al., “Sol-Gel-Derived Metal-Dispersed Carbon Composite Amperometric Biosensors”, Electroanalysis, vol. 9, No. 1, 1997, pp. 52-55. |
Williams, D. L., et al., “Electrochemical-Enzymatic Analysis of Blood Glucose and Lactate”, Analytical Chemistry, vol. 42, No. 1, 1970, pp. 118-121. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
Yabuki, S., et al., “Electro-Conductive Enzyme Membrane”, Journal of the Chemical Society, Chemical Communications, 1989, pp. 945-946. |
Yang, C., et al., “A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate/Nafion Composite Membranes,” Journal of Membrane Science, vol. 237, 2004, pp. 145-161. |
Yang, L., et al., “Determination of Oxidase Enzyme Substrates Using Cross-Flow Thin-Layer Amperometry” Electroanalysis, vol. 8, No. 8-9, 1996, pp. 716-721. |
Yao, S. J., et al., “The Interference of Ascorbate and Urea in Low-Potential Electrochemical Glucose Sensing”, Proceedings of the Twelfth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, Part 2, 1990, pp. 487-489. |
Yao, T., “A Chemically-Modified Enzyme Membrane Electrode as an Amperometric Glucose Sensor”, Analytica Chimica Acta, vol. 148, 1983, pp. 27-33. |
Ye, L., et al., “High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode”, Analytical Chemistry, vol. 65, No. 3, 1993, pp. 238-241. |
Yildiz, A., et al., “Evaluation of an Improved Thin-Layer Electrode”, Analytical Chemistry, vol. 40, No. 7, 1968, pp. 1018-1024. |
Zamzow, K., et al., “New Wearable Continuous Blood Glucose Monitor (BGM) and Artificial Pancreas (AP)”, Diabetes, vol. 39, 1990, pp. 5A-20. |
Zhang, Y., et al., “Application of Cell Culture Toxicity Tests to the Development of Implantable Biosensors”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 653-661. |
Zhang, Y., et al., “Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor”, Analytical Chemistry, vol. 66, No. 7, 1994, pp. 1183-1188. |
Canadian Patent Application No. 2,683,721, Examiner's Report dated Nov. 3, 2015. |
Canadian Patent Application No. 2,686,641, Examiner's Report dated Dec. 29, 2016. |
European Patent Application No. 08755195.8, Examination Report dated Jan. 5, 2016. |
European Patent Application No. 08755195.8, Extended European Search Report dated Oct. 18, 2013. |
PCT Application No. PCT/US2008/063110, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated Nov. 26, 2009. |
PCT Application No. PCT/US2008/063110, International Search Report and Written Opinion of the International Searching Authority dated Nov. 21, 2008. |
U.S. Appl. No. 12/117,665, Notice of Allowance dated Feb. 23, 2011. |
U.S. Appl. No. 12/117,665, Office Action daed Jan. 20, 2011. |
U.S. Appl. No. 12/117,665, Office Action dated Jun. 28, 2010. |
U.S. Appl. No. 12/117,677, Advisory Action dated Aug. 15, 2012. |
U.S. Appl. No. 12/117,677, Advisory Action dated Jul. 27, 2011. |
U.S. Appl. No. 12/117,677, Office Action dated Apr. 14, 2011. |
U.S. Appl. No. 12/117,677, Office Action dated Jun. 9, 2010. |
U.S. Appl. No. 12/117,677, Office Action dated Mar. 9, 2012. |
U.S. Appl. No. 12/117,677, Office Action dated May 5, 2013. |
U.S. Appl. No. 12/117,677, Office Action dated Nov. 1, 2013. |
U.S. Appl. No. 12/117,677, Office Action dated Nov. 4, 2010. |
U.S. Appl. No. 12/117,677, Office Action dated Oct. 14, 2011. |
U.S. Appl. No. 12/117,681, Notice of Allowance dated Feb. 20, 2013. |
U.S. Appl. No. 12/117,681, Office Action dated Apr. 5, 2010. |
U.S. Appl. No. 12/117,681, Office Action dated Mar. 5, 2012. |
U.S. Appl. No. 12/117,681, Office Action dated Oct. 25, 2012. |
U.S. Appl. No. 12/117,681, Office Action dated Sep. 14, 2010. |
U.S. Appl. No. 12/117,685, Advisory Action dated Jun. 7, 2010. |
U.S. Appl. No. 12/117,685, Office Action dated Apr. 8, 2011. |
U.S. Appl. No. 12/117,685, Office Action dated Aug. 16, 2010. |
U.S. Appl. No. 12/117,685, Office Action dated Aug. 7, 2013. |
U.S. Appl. No. 12/117,685, Office Action dated Mar. 22, 2010. |
U.S. Appl. No. 12/117,685, Office Action dated May 31, 2012. |
U.S. Appl. No. 12/117,685, Office Action dated Sep. 2, 2009. |
U.S. Appl. No. 12/117,685, Office Action dated Sep. 27, 2012. |
U.S. Appl. No. 12/117,694, Advisory Action dated Nov. 16, 2012. |
U.S. Appl. No. 12/117,694, Office Action dated Aug. 7, 2012. |
U.S. Appl. No. 12/117,694, Office Action dated Dec. 9, 2011. |
U.S. Appl. No. 12/117,694, Office Action dated Oct. 1, 2013. |
U.S. Appl. No. 12/117,698, Notice of Allowance dated Feb. 5, 2013. |
U.S. Appl. No. 12/117,698, Office Action dated Apr. 5, 2010. |
U.S. Appl. No. 12/117,698, Office Action dated Mar. 7, 2012. |
U.S. Appl. No. 12/117,698, Office Action dated Nov. 13, 2012. |
U.S. Appl. No. 12/117,698, Office Action dated Sep. 15, 2010. |
U.S. Appl. No. 12/495,219, Notice of Allowance dated Nov. 8, 2013. |
U.S. Appl. No. 12/495,219, Office Action dated Jun. 25, 2010. |
U.S. Appl. No. 12/495,219, Office Action dated Mar. 8, 2011. |
U.S. Appl. No. 12/550,208, Advisory Action dated Dec. 4, 2014. |
U.S. Appl. No. 12/550,208, Advisory Action dated Dec. 6, 2012. |
U.S. Appl. No. 12/550,208, Office Action dated Apr. 12, 2012. |
U.S. Appl. No. 12/550,208, Office Action dated Dec. 31, 2013. |
U.S. Appl. No. 12/550,208, Office Action dated Jul. 31, 2014. |
U.S. Appl. No. 12/550,208, Office Action dated Jul. 9, 2015. |
U.S. Appl. No. 12/550,208, Office Action dated Mar. 20, 2013. |
U.S. Appl. No. 12/550,357, Notice of Allowance dated Dec. 29, 2011. |
U.S. Appl. No. 12/550,357, Office Action dated Jan. 25, 2011. |
U.S. Appl. No. 12/550,357, Office Action dated Jul. 20, 2011. |
U.S. Appl. No. 13/089,309, Notice of Allowance dated Sep. 17, 2012. |
U.S. Appl. No. 13/089,309, Office Action dated Feb. 24, 2012. |
U.S. Appl. No. 13/555,066, Notice of Allowance dated Aug. 6, 2013. |
U.S. Appl. No. 13/555,066, Office Action dated Dec. 28, 2012. |
U.S. Appl. No. 13/906,288, Advisory Action dated Sep. 25, 2014. |
U.S. Appl. No. 13/906,288, Notice of Allowance dated Mar. 3, 2015. |
U.S. Appl. No. 13/906,288, Office Action dated Jan. 22, 2015. |
U.S. Appl. No. 13/906,288, Office Action dated May 28, 2014. |
U.S. Appl. No. 13/906,288, Office Action dated Oct. 25, 2013. |
U.S. Appl. No. 13/914,555, Notice of Allowance dated Aug. 3, 2015. |
U.S. Appl. No. 13/914,555, Office Action dated Apr. 8, 2015. |
U.S. Appl. No. 13/914,555, Office Action dated Dec. 31, 2014. |
U.S. Appl. No. 13/914,555, Office Action dated Jan. 7, 2014. |
U.S. Appl. No. 13/914,555, Office Action dated Jun. 10, 2014. |
U.S. Appl. No. 14/087,751, Notice of Allowance dated Feb. 3, 2015. |
U.S. Appl. No. 14/087,751, Office Action dated Jan. 2, 2015. |
U.S. Appl. No. 14/087,751, Office Action dated Nov. 21, 2014. |
U.S. Appl. No. 14/195,449, Notice of Allowance dated Oct. 5, 2016. |
U.S. Appl. No. 14/195,449, Office Action dated Apr. 5, 2016. |
U.S. Appl. No. 14/226,780, Office Action dated Sep. 8, 2015. |
U.S. Appl. No. 14/678,226, Notice of Allowance dated Dec. 23, 2015. |
U.S. Appl. No. 14/678,226, Notice of Allowance dated Feb. 24, 2016. |
U.S. Appl. No. 14/678,226, Office Action dated Jul. 30, 2015. |
U.S. Appl. No. 14/678,226, Office Action dated Oct. 7, 2015. |
U.S. Appl. No. 14/709,392, Advisory Action dated Sep. 20, 2016. |
U.S. Appl. No. 14/709,392, Notice of Allowance dated Jan. 5, 2017. |
U.S. Appl. No. 14/709,392, Office Action dated Jan. 5, 2016. |
U.S. Appl. No. 14/709,392, Office Action dated Jul. 14, 2016. |
U.S. Appl. No. 14/709,392, Office Action dated Jul. 6, 2015. |
U.S. Appl. No. 14/928,395, Office Action dated May 6, 2016. |
U.S. Appl. No. 14/928,395, Office Action dated Nov. 16, 2016. |
European Patent Application No. 17167461.7, Extended European Search Report dated Aug. 4, 2017. |
U.S. Appl. No. 14/928,395, Office Action dated Jul. 12, 2017. |
U.S. Appl. No. 14/490,537, Office Action dated May 23, 2017. |
U.S. Appl. No. 14/928,326, Office Action dated Jun. 12, 2017. |
U.S. Appl. No. 14/928,326, Office Action dated Dec. 5, 2017. |
Number | Date | Country | |
---|---|---|---|
20170156643 A1 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
60916744 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14195449 | Mar 2014 | US |
Child | 15435214 | US | |
Parent | 12495219 | Jun 2009 | US |
Child | 14195449 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12117681 | May 2008 | US |
Child | 12495219 | US |