The present invention relates in general to monitoring the operation of wind turbines—in particular, monitoring the state of a wind turbine tower. The invention relates, in particular, to an arrangement with fiber optic sensors for determining loads on a wind turbine tower.
Systems for monitoring wind turbines that assess the condition are gaining in importance. The condition of a wind turbine tower, e.g., wear, material fatigue, and other changes which can occur due to aging or use, is the subject matter of the condition monitoring of wind turbines. With a knowledge of this condition, maintenance work can be planned, the present value of the installation estimated, and the safety requirements of the legislator and customer met.
In existing systems, the wind turbine tower is designed with regard to expected loads, such as gravitational load cycles caused by the number of rotor rotations or loads due to wind gusts, which are to be expected over the service life of the wind turbine. After installation of the wind turbine, the condition of the wind turbine tower is checked, for example, by means of regular inspections. This condition monitoring of the tower is, however, fraught with some degree of uncertainty, since, with short-term heavy loads, e.g., strong gusts of wind during thunderstorms, critical material loads can occur which may possibly lead to material failure shortly thereafter.
There is therefore a need for improved monitoring of the condition of a wind turbine tower.
Embodiments of the present disclosure provide a method for determining loads on a wind turbine tower according to claim 1. Furthermore, embodiments of the present disclosure provide a device adapted for the determination of loads on a wind turbine tower according to claim 10.
According to one embodiment, a method for determining loads on a wind turbine tower is provided. The method comprises: determining bending moments in at least one rotor blade of the wind turbine in order to provide a first variable, which identifies a first force acting on a nacelle of the wind turbine tower; determining a nacelle deflection in order to provide a second variable, which identifies a second force that acts on the nacelle of the wind turbine tower; entering the first variable and the second variable into a calculation model, which displays the behavior of the tower; and determining the loads on the wind turbine tower by means of the calculation model.
According to a further embodiment, a device adapted for determining loads on a wind turbine tower is provided. The device comprises: at least one strain sensor arranged and adapted for measuring a strain on at least one rotor blade of the wind turbine; at least one position sensor device arranged and adapted for determining the position of a nacelle of the wind turbine tower; and an evaluation unit, which is connected to the at least one strain sensor for receiving a first signal from the at least one strain sensor and which is connected to the at least one position sensor device for receiving a second signal from the at least one position sensor device, wherein the evaluation unit is adapted to determine, from the first signal, bending moments in the at least one rotor blade of the wind turbine, in order to provide a first variable, wherein the evaluation unit is adapted to determine, from the second signal, a nacelle deflection, in order to provide a second variable, and wherein the evaluation unit is adapted to determine loads on the wind turbine tower from the first variable and from the second variable by means of a calculation model that displays the behavior of the tower.
Exemplary embodiments are illustrated in the drawings and explained in greater detail in the following description. In the drawings is shown:
Embodiments of the present disclosure are explained below in more detail. The drawings serve to illustrate one or more examples of embodiments. In the drawings, the same reference numerals designate the same or similar features of the respective embodiments.
An improved condition monitoring of a wind turbine tower can thus be provided by means of the method described herein for determining loads on a wind turbine tower.
According to embodiments which may be combined with other embodiments described herein, the calculation model is a physical model of the wind turbine—in particular, of the wind turbine tower. Such a physical calculation model typically includes model parameters which, for example, take into account the dimensioning of the wind turbine—in particular, of the wind turbine tower—and also the material properties of the wind turbine—in particular, of the wind turbine tower. Furthermore, the physical calculation model can include dynamic model parameters that take into account, for example, material aging processes, load variations, weather conditions, or the like.
According to further embodiments which can be combined with other embodiments described herein, in the first step 110 of the method 100, during determination of the bending moments in the at least one rotor blade, a strain in the at least one rotor blade can be measured by means of at least one strain sensor, so that bending moments can be determined at least in one direction. According to other typical embodiments, at least two strain sensors—in particular, three strain sensors or at least four strain sensors—can be used to determine bending moments in a sectional plane of the at least one rotor blade of the wind turbine. With a suitable arrangement of two strain sensors, e.g., at different angular coordinates of the rotor blade root, the bending moments acting on the rotor blade can be measured in two directions—typically, in two orthogonal directions—even with two strain sensors. For this purpose, the two strain sensors should typically be mounted with angular coordinates rotated by 90°, or not with angular coordinates rotated by 180°.
Accordingly, according to embodiments of the method described herein, during determination of the bending moments in the at least one rotor blade, a strain in the at least one rotor blade can be measured in two—in particular, two mutually orthogonal—directions.
According to further embodiments which may be combined with other embodiments described herein, the at least one strain sensor is arranged in the at least one rotor blade. For example, the at least one strain sensor may be a fiber optic strain sensor, as described, by way of example, with reference to
According to further embodiments which may be combined with other embodiments described herein, during determination of the nacelle deflection, a position determination of the nacelle may be performed by means of a position sensor device. Typically, the position sensor device is adapted to carry out at least one method selected from the group consisting of: a GPS position determination method—in particular, per RTK GPS (Real-Time Kinematic GPS); a differential GPS position determination method; a camera-based position determination method; a radar-based position determination method; and a laser-based position determination method. The position sensor device can be designed to use a stationary reference point for position determination. In the second step 120 of the method 100, a stationary reference point can thus be used when determining the nacelle deflection.
In this context, it should be noted that a differential GPS position determination method is to be understood as a method in which a GPS reference radio signal or a separate GPS reference station in the vicinity of the wind turbine is used.
As exemplified in the flow diagram shown in
In further embodiments which may be combined with other embodiments described herein, in the fourth step 140 of the method 100, when determining the loads on the tower by means of the calculation model, wind turbine parameters—in particular, tower thickness and/or tower material—may be used, so that an accurate load determination adapted to the wind turbine is made possible.
According to further embodiments which may be combined with other embodiments described herein, in the fourth step 140 of the method 100, when determining the loads on the tower by means of the calculation model, a Kalman filter may be used, in order to increase accuracy in determining the loads on the tower.
In this connection, it should be mentioned that, in contrast to the classic FIR and IIR filters of signal and time series analysis, the Kalman filter is based upon a state-space modeling in which a distinction is explicitly made between the dynamics of the system state and the process of its measurement. The use of a Kalman filter is therefore particularly advantageous in the method described herein, since its special mathematical structure allows use in real-time systems—for example, in the evaluation of signals for tracking the position of moving objects. Due to the real-time capability of the filter, the use of a Kalman filter when determining the loads on the tower by means of the calculation model—in particular, taking nacelle deflection into account—thus makes it possible to increase accuracy in determining the loads on the tower.
According to further embodiments which may be combined with other embodiments described herein, the method described herein may be applied—in particular, using a device as described herein—for determining loads on a wind turbine tower.
According to embodiments described herein, the device 300 for determining loads on a tower 202 of a wind turbine 200 comprises at least one strain sensor 310, which is arranged on at least one rotor blade 210 of the wind turbine 200 and adapted so as to carry out a measurement of a strain on the at least one rotor blade of the wind turbine. Furthermore, the device 300 described herein includes at least one position sensor device 320, arranged on the wind turbine 200 and adapted so as to perform a position determination of the nacelle 203 of the tower 202 of the wind turbine 200. Furthermore, the device 300 described herein comprises an evaluation unit 330, connected to the at least one strain sensor 310 for receiving a first signal S1 from the at least one strain sensor 310 and connected to the at least one position sensor device 320 for receiving a second signal S2 from the at least one position sensor device 320.
Typically, the evaluation unit 330 is adapted to determine, from the first signal S1, bending moments in the at least one rotor blade of the wind turbine, in order to provide a first variable G1. Furthermore, the evaluation unit 330 is typically adapted to determine, from the second signal S2, a nacelle deflection, in order to provide a second variable G2. As schematically illustrated in
In this way, by means of the embodiments described herein of the device for determining loads on a wind turbine tower, an improved condition monitoring of the wind turbine tower can be provided.
According to further embodiments which may be combined with other embodiments described herein, the position sensor device of the device described herein can be adapted to carry out at least one method selected from the group consisting of: a GPS position detection method—in particular, per RTK GPS (Real-Time Kinematic GPS); a differential GPS position determination method; a camera-based position determination method; a radar-based position determination method; and a laser-based position determination method. Furthermore, the position sensor device can also be designed to use a stationary reference point for position determination.
According to embodiments which may be combined with other embodiments described herein, a strain sensor 310, such as, for example, a fiber optic strain sensor 310 as shown in
According to further embodiments, which can be combined with other embodiments described herein, at least one strain sensor is provided on each rotor blade, so that an individual strain or compression distribution can be measured separately in each rotor blade, and the corresponding bending moments can be determined. In particular, in accordance with the embodiments described herein, at least one fiber optic strain sensor is provided in each rotor blade.
According to some of the embodiments described herein, which can be combined with other embodiments, fiber optic strain sensors, in which a signal is optically transmitted via a light guide, allow a radial mounting position, hitherto regarded as unfavorable in practice, along a longitudinal direction of the rotor blade, since transmission by means of a light guide or an optical fiber involves a reduced risk of lightning damage. Fiber optic strain sensors may thus be provided, so as to allow mounting in a radially outer region of a rotor blade without increasing the risk of lightning damage.
It should be noted at this point that the aspects and embodiments described herein can be suitably combined with each other, and that individual aspects may be omitted where this is reasonable and possible within the bounds of professional competence. Modifications of and additions to the aspects described herein will be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 117 191.3 | Sep 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/072751 | 9/11/2017 | WO | 00 |