The present invention relates to a method and a device for determining the accuracy of a fold position which is produced, for example, via a folding apparatus for printed products.
German Patent Application No. 197 43 020 relates to a separating device for printed products having a plurality of conveying elements for conveying the printed products. A series of printed products at least partially overlapping each other in a shingle-like manner and which are received from a pre-processing machine pass through the separating device and are converted to a series of spaced-apart printed products for feeding into a post-processing machine. The separating device possesses a detector element for detecting the degree of overlapping of the individual printed products overlapping each other in a shingle-like manner and an additional conveying element for accelerated conveyance of individual printed products for correcting the degree of overlapping or the distance between individual printed products.
In the related art, the fold position of printed products is assessed by a person carrying out a visual assessment. This is time-consuming and tiresome work which can take up to several hours a day. During this time, ususally only about 100 test copies can be examined. Moreover, human visual assessment of the folding accuracy involves the risk of assessment errors and of manipulations, possibily involuntary, of the results.
In view of the indicated related art, an object of the present invention is to automate the analysis of folding accuracy and, in this manner, to make it faster and more reliable.
The present invention provides a device for analyzing the positional accuracy of a fold (3) of a printed product (2) which is folded in a folding apparatus and conveyed in a shingle stream (1), characterized by sensors (4) which detect the position of the fold (3) relative to markings (5) which are applied to the printed product (2). The present invention also provide a method for analyzing the positional accuracy of a fold which is produced via a folding apparatus for printed products under a given configuration and at a given speed, comprising the following method steps: imprinting markings (5) onto the printed product (2) to be folded; folding the printed products (2) in a folding apparatus; conveying the folded printed products (2) further as a shingle stream (1) on a conveying element (10) at a substantially constant speed; measuring the time lag between two markings (5) of the printed products (2) with the aid of sensors (4) used for detecting contrasts which are located above the shingle stream (1).
The use of sensors and the evaluation via a computer permit a fast analysis of the folding accuracy so that, for example, the number of copies of the printed product which can be examined in the same period of time is increased by a factor of 10 or 20. Due to the fast analysis, it is possible to carry out a great number of tests, for example, with different types of paper or numbers of pages to gather knowledge about the folding accuracy in the whole possible range of producible products on the folding apparatuses. Via further tests, it is possible to extend the knowledge about the dynamics of the folding apparatus, for example, about the folding precision as a function of the speed. Since the device according to the present invention permits examination of a large number of test copies, the statistic meaningfulness of the calculated folding accuracy is increased. Moreover, this great number of examined copies makes it possible to gain knowledge about errors which occur with very small frequencies. Furthermore, the present invention can be used to provide service technicians or operators of the folding apparatus with an aid for error diagnosis. Using sensors, it is possible, moreover, to increase the measuring accuracy and to avoid the risk of human assessment errors or manipulations. The integration of a marking field in the print allows the printing accuracy to be fed back to the folding apparatus, thereby allowing measures for increasing the folding accuracy to be initiated in response to the occurrence of errors (such as oblique folds, overhanging paper), for example, an error correction using the folding mechanism or a speed control of the conveying element conveying the stream of shingles.
In a further embodiment of the basic idea of the present invention, the markings can include at least two, preferably rectangular dark areas which are preferably arranged on both sides of a copy of a printed product as viewed in the direction of conveyance. In this context, it is an advantage that the, for example, black areas constitute a well-detectable contrast over white background and that each rectangular black area features a sharp edge to the light, for example, white surroundings. In lieu of the dark areas, light markings can be used as well if the background, in particular the edge of the printed product, is dark up to the fold. Moreover, it is conceivable for register marks or print control bars, which are already applied to the printing-material web from which the printed products are produced, to be used as markings. In any case, the intention is to ensure a well detectable contrast between the marking and the background. The arrangement of the two areas on both sides of a copy at a distance from each other which nearly corresponds to the size of the printed product involves the advantage that the as large as possible a distance permits detection of even a slight obliqueness of the fold.
In the present invention, the markings are imprinted at a fixed distance from the nominal line of the fold to permit detection of a deviation of the fold from its nominal line. This distance is selected such that it is large enough for the detection of the light region defined by it and that it is smaller than the non-overlapped free space of the respective printed product so that the markings are not completely covered in the stream of shingles. Besides the physical properties of the sensors, the distance which is large enough for the detection also depends on the conveying speed of the printed products. To resolve the contrast changes between the respective marking and the fold, a larger distance of the markings from the fold is required in the case of a high conveying speed than in the case of a lower conveying speed.
The length of the markings is selected large enough so that a part of the respective marking of a printed product is covered by the printing product which follows in the stream of shingles.
In the present invention, the time lag between two markings on the shingled, folded printed products moving on a conveying element is measured using sensors for detecting contrasts, for example, CCD sensors. This time depends on the distance of the fold from the print marking. Via the nominal distance of the marking from the fold, a nominal time lag to be measured is defined for the at least two sensors. Deviations of the measured time lag from the nominal time lag suggest a folding error.
The absolute position of the fold relative to the markings can be derived from the measured time lag and the mean speed of the conveying element, it being possible to determine the mean speed from the mean time lag and the known nominal distance of the markings from the fold. This absolute position of the fold relative to the markings permits a statement on the accuracy of the fold, in particular as to whether it is situated in a central and straight line.
In a specific embodiment of the present invention, the respective position of the sensors relative to the printed products is adjustable in all three spatial directions. An adaptation to the width of different printed products is effected via a width-adjustment capability of the sensors.
The height-adjustment capability of the sensors permits an accurate focusing of the contrasts to be detected. The height can be adapted, in particular to the thickness of the printed products. Lower-contrast transitions between the markings and the background can be resolved better via an exact focusing. The adjustment settings for the sensors can be stored in advance for known or common kinds of printed products. They can then be retrieved in the case of a change between the different printed products, and an automatic adjustment of the sensors can take place.
In an advantageous embodiment of the device according to the present invention, the storage and analysis of the quantities measured by the sensors are carried out on a computer via already-existing software adapted to the existing problem or via newly-developed software for this task. Moreover, the software preferably evaluates the measured quantities statistically to ascertain also the variations of the folding position about its nominal position and the variation of the folding errors such as “oblique fold”, “non-central fold” and “completely incorrect fold” in addition to the absolute position of the fold relative to the markings.
When folding errors occur, these can be directly fed back to the folding apparatus or to the appertaining control stand. In the case of a direct feedback to the folding apparatus, it is possible to initiate automatic measures for increasing the folding accuracy, for example, an automatic correction of the phase relation of the folding blade to the folding jaw or, in the extreme case, a shut down of the rotary press. In the event of a status signal to the control stand, it is advantageous to signal a warning, for example, on a video screen so that a technician can take measures, if required.
One way to forward an error message or the folding accuracy to machines for further processing machines, for example stackers, is to integrate marking fields in the print which contain information on the folding accuracy. To this end, the content of the marking fields must be readable at the further processing machines, using an appropriate read-out device.
To detect the contrasts between the marking and the background, it is preferred to use optical sensors. These optical sensors can measure, for example, the luminous intensity which is reflected from the printed product. In a specific embodiment of the present invention, the reflected light is light from the surroundings of the printed products, for example, light from neon tubes in a factory building. In another embodiment of the present invention, each sensor includes a transmitter unit and a receiver unit. The transmitter unit emits electromagnetic waves whose component which is reflected by the respective printed product is measured by the receiver unit of the sensor.
In a specific embodiment of the present invention, a plurality of conveying elements are arranged side by side, at least two sensors per shingle stream being situated above the shingled printed products which are conveyed thereon. They measure the time lag between the contrast transitions of the imprinted markings against the background surrounding them to determine the folding accuracy in the respective stream of shingles. The evaluation of the values measured by the sensors can be carried out for all shingle streams with the aid of the same software.
According to the method proposed according to the present invention for analyzing the accuracy of a fold produced by a folding apparatus, the application, in particular the imprinting of markings, the folding of the printed products and their conveyance in a shingled manner are carried out before the time lag between two markings is measured by sensors for detecting contrasts which are situated above the stream of shingles. Subsequently, the measured quantities are evaluated via software so that a statement can be made on the folding accuracy and occurring errors.
According to the present invention, a folding apparatus can contain a device for analyzing the accuracy of a fold produced by the folding machine.
In the following, the present invention will be explained in greater detail with reference to the drawing.
In the case of shingle streams 21 and 22 depicted in
Number | Date | Country | Kind |
---|---|---|---|
100 63 528 | Dec 2000 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3809387 | Heist et al. | May 1974 | A |
4061326 | Proudman | Dec 1977 | A |
4578052 | Engel et al. | Mar 1986 | A |
4974077 | Kusaba | Nov 1990 | A |
5007096 | Yoshida | Apr 1991 | A |
5212656 | Clary et al. | May 1993 | A |
5818719 | Brandon et al. | Oct 1998 | A |
5930139 | Chapdelaine et al. | Jul 1999 | A |
6086522 | Hechler | Jul 2000 | A |
Number | Date | Country |
---|---|---|
19743020 | Apr 1999 | DE |
60137770 | Nov 1985 | JP |
07277592 | Oct 1995 | JP |
07277593 | Oct 1995 | JP |
Number | Date | Country | |
---|---|---|---|
20020113977 A1 | Aug 2002 | US |