The present invention relates to a method for determining the change in the footprint of a tire. Furthermore, the present invention relates to a device for executing a method for determining the change in the footprint of a tire.
With the increase in vehicles participating in road traffic, the demands on active and passive safety systems in the vehicles have also risen. Because of this, the number of safety systems used in vehicles, such as antilock brake system, anti-slip control, electronic stability program, airbag, etc., as well as their complexity, have increased in recent years. In addition to the safety systems, more and more comfort systems, such as automatic level control, adjustable suspension, etc., have also been integrated into the vehicles at the request of the driver. These safety and comfort systems are instructed by greatly varying data from a plurality of various sensors. The above-mentioned safety and comfort systems also include so-called tire pressure monitoring systems, which are becoming increasingly widespread. In the case of tire pressure monitoring systems, the tire pressure is monitored, so that the driver may be warned of a sudden or gradual pressure loss in the tires. In addition, the load state of the vehicle also plays a significant role in tire pressure monitoring systems, because a load-dependent tire pressure recommendation, for a single wheel or all wheels, may be output to the driver on the basis of the load state.
Methods and devices which may be used to perform load measurements based on an acceleration signal, the tire pressure, and the temperature are known from the related art.
For example, a method which may be used to determine load changes based on the amplitude curve of the acceleration signal, the tire pressure, and the temperature is known from WO 2005/005950 A1.
However, these known methods have the disadvantage that they also require information about tire pressure and temperature in addition to an acceleration signal for the determination of a load change.
The method according to the present invention having the features described herein advantageously has a robust method for determining a change in the footprint of a tire, based on a signal which is able to be assigned to the rotation of the tire and corresponds to an acceleration (acceleration signal), and a signal which corresponds to a reference acceleration (reference acceleration signal), no information about tire pressure and temperature being required. The acceleration acting on the sensor may contain a component in the radial direction.
Advantageous embodiments and refinements of the present invention are made possible by the measures specified further herein.
In an exemplary embodiment, a change in the footprint of a tire is determined on the basis of an acceleration signal, which is able to be assigned to the rotation of the tire and is output by a sensor, having the following steps: recording at least one acceleration signal gl, which is able to be assigned to the rotation of the tire; reading out a stored reference acceleration signal g0, which is able to be assigned to the rotation of the tire; calculating a difference between acceleration signal gl and reference acceleration signal g0; and/or determining the change in the footprint of the tire on the basis of the calculated difference between the acceleration signals.
According to the present invention, the footprint of the tire refers to the tire surface section which is in contact with the roadway.
According to the present invention, the sensor which outputs the acceleration signal may be a piezoelectric acceleration sensor or a micro-electromechanical system. In the case of a piezoelectric acceleration sensor, pressure variations are converted by a piezoceramic sensor lamina into electrical signals, which may be processed further accordingly. In the case of a micro-electromechanical system, the sensor includes a spring-mass system, in which the “springs” are made of silicon webs and the mass is also made of silicon. A capacitance change, which is proportional to the acceleration, may be measured between the springs and the mass through the deflection during acceleration.
The acceleration signal output by the sensor may have a continuous or discrete curve. The acceleration signal output by the sensor may in turn be recorded continuously or in a time-discrete manner, i.e., at specific time intervals.
The recorded acceleration signal may be converted into a pulse-width-modulated signal (PWM signal) using filtering. The PWM signal may have a pulse-duty ratio. The pulse-duty ratio may correspond to the ratio of the tire footprint to the tire circumference. A change in the tire footprint may be detected by a change in the pulse-duty ratio. The change in the tire footprint may occur because of a load change in the vehicle and/or a change in the profile depth.
It is also possible that one or more frequency components are extracted from the recorded acceleration signal using filtering and this extracted frequency component is supplied to a transformation, as described hereafter. This has the advantage that the full information content from the recorded signal is preserved.
In an advantageous embodiment, the spectrum of the acceleration signal is calculated using a transformation. The calculation of the spectrum may be performed using Fourier analysis, fast Fourier analysis, or another suitable calculation method. The thus calculated spectrum may subsequently be scaled with respect to acceleration and/or frequency. The Fourier analysis or the fast Fourier analysis has the advantage that no information content is lost from the recorded signal.
An advantage of this method is that a change in the footprint of the tire results in a proportional change in the spectrum, which may be analyzed accordingly.
According to the present invention, the calculated spectrum of the acceleration signal may be recorded over multiple rotations of the tire and buffered. A mean value or mean spectrum may be calculated from the multiple spectra of the acceleration signals. This mean value may be an arithmetic mean value, a median, or a floating average. The number of acceleration signals recorded in sequence may be 2 to 20, and which may be 4 to 15, and which may be 6 to 10, still more which may be 8.
In an exemplary embodiment, at least one reference acceleration signal may be stored with respect to the acceleration signal output by the rotation of the tire. The at least one reference acceleration signal may correspond to the output acceleration signal of an unloaded, fully loaded, or overloaded tire. It is also possible that the reference acceleration signal is related to the tire type used.
The reference signal may be compared to the detected acceleration signal. The load state of the tire may be derived from the comparison of the signals. A change in the load (increase/decrease) and/or a decrease of the profile depth may also be detected by the comparison of the signals.
A further aspect of the present invention relates to a device for determining a change in the footprint of a tire, which is set up in order to determine a change in the footprint of a tire on the basis of an acceleration signal, which is able to be assigned to the rotation of the tire and is output by a sensor, having the following steps: recording at least one acceleration signal gl, which is able to be assigned to the rotation of the tire; reading out a stored reference acceleration signal g0, which is able to be assigned to the rotation of the tire; calculating a difference between acceleration signal gl and reference acceleration signal g0; and/or determining the change in the footprint of the tire on the basis of the calculated difference between the acceleration signals.
Another aspect of the present invention relates to a computer program which executes the steps of the method according to the present invention when it runs on a computing device.
The present invention is explained in greater detail hereafter by way of example on the basis of the appended drawings.
The curve of the acceleration signal output by sensor 12 is schematically shown in
In an exemplary embodiment, the method according to the present invention is executed in a velocity range between 10 km/h and 100 km/h. If the velocity is below a predetermined threshold value, the signal-to-noise ratio of the acceleration signal is poor, i.e., the noise component of the measuring signal is excessively high. On the other hand, if the velocity of the vehicle is above a further predetermined threshold value, sensor 12 goes into saturation and the area of the tire footprint may no longer be detected.
Based on the change in the spectrum in the case of a change in the pulse-duty ratio, an evaluation may be performed with reference to a load change and/or profile depth change. For example, it is possible to subject the acceleration signal, which is output by sensor 12 over one or more wheel revolutions, to a Fourier transform or a fast Fourier transform and to track the rate of change in the frequency-discrete acceleration components in the lower frequency range. If a change is detected between the acceleration components, a load change has occurred. For example, if the drop in the acceleration components becomes steeper toward higher frequencies, an increase in load has occurred. Vice versa, if the drop in the acceleration components is flatter toward higher frequencies, a reduction of the load has occurred. The amount of the rate of change may be used for both qualitative and also quantitative determination of the load change.
In spectra 31, 32, 33, and 34 shown in
The revolution period of the tire may be ascertained from the time signal of the radial accelerations. The revolution period essentially corresponds to period duration 24. For example, the entry into the area of the tire footprint may be detected via a simple acceleration threshold value slightly above Earth's gravity of 1 g, which is present in the area of the footprint as described above, and may be used for triggering of a time measurement. The time between two entry points corresponds to the tire revolution time.
A further possibility for the analysis is a frequency-discrete amplitude comparison. This may be performed either in the scaled frequency spectrum, or one or more individual frequency components may be extracted from the acceleration signal via one or more bandpass filters. This results in various sine signals, whose amplitude changes in the event of a change in the pulse-duty ratio. Before the pulse-duty ratio is concluded from the amplitude change, the amplitudes may also be scaled via the revolution time using the corresponding method as described above.
On the one hand, the fundamental frequency of the acceleration signal, the wheel speed, or the inverse of the revolution period may be used as a possible filter frequency. The filter frequency of the bandpass filter must be so narrow that multiples of the fundamental frequency may not pass the filter. This is necessary because the phase location of the multiples of the fundamental frequency is significantly shifted. The fundamental frequency is velocity-dependent and may be determined from the tire signal before the filtering. The above-mentioned method may also be used for determining the tire revolution period here. The scaling of the velocity-dependent acceleration amplitude may also be performed on the basis of the revolution time, as described above.
For the described methods for determining the tire footprint length via the frequency analysis, only the signal curves in the area of the tire footprint and their chronological sequence (revolution time) are of interest. Only the centripetal acceleration is important outside the area of the tire footprint. Therefore, recording (sampling) of the acceleration signal is only required in the area of the tire footprint. The sensor is located in this area less than 10% of the tire revolution time. Because of this, the corresponding circuit part may be turned off outside the tire footprint.
The centripetal acceleration or a value proportional thereto may be derived from the presented method of the revolution time determination. If the revolution time is used for determining the centripetal acceleration, it is no longer necessary to know the tire radius precisely.
In addition to the loading or tire profile depth, tire pressure and temperature also have an influence on the footprint. These dependencies may be stored in the sensor module or a central analysis unit in the vehicle. It is also advantageous if the minimum and maximum permissible contact length with respect to wheel load and profile depth are known and stored as a function of pressure and temperature.
A flow chart of the method according to the present invention is shown in
A method and a device for determining a change in the footprint of a tire, on the basis of an acceleration signal, which is able to be assigned to the rotation of the tire and is output by a sensor, was described, the determination being performed by at least the following steps: recording at least one acceleration signal gl, which is able to be assigned to the rotation of the tire; reading out of a stored reference acceleration signal g0, which is able to be assigned to the rotation of the tire; calculating a difference between acceleration signal gl and reference acceleration signal g0; and/or determining the change in the footprint of the tire on the basis of the calculated difference between the acceleration signals.
It should be noted that the proposed approaches corresponding to the above-mentioned specific embodiments may be implemented as software modules and/or hardware modules in the corresponding functional blocks. Furthermore, it should be noted that the present invention is not restricted to the above-mentioned specific embodiments, but rather may also be used in other sensor modules.
It is clear from the above statements that, while exemplary embodiments have been shown and described, various changes may be performed without deviating from the fundamental aspects of the present invention. The present invention is accordingly not to be restricted thereto by the detailed description of the exemplary embodiments.
Number | Date | Country | Kind |
---|---|---|---|
102008007775.5 | Feb 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2008/066178 | 11/26/2008 | WO | 00 | 7/22/2010 |