The present invention concerns a method for coring and/or drilling through a wall of a bore hole which has been cored or drilled previously in an underground formation, in order to carry out coring and/or drilling deviated transversely from and with respect to a longitudinal direction of the bore hole.
Methods and devices for coring and/or drilling through a wall of a bore hole which has been cored or drilled previously, are known in which there are installed in the bore hole deviation means which act on the outside of the drilling auger or of the core bit. Installing these means at precise locations and orientations of the bore hole is complicated and expensive.
The aim of the present invention is to remedy this problem and propose a method in which a core barrel carries, at least for the time to carry out the deviation operation, its own guidance means. Thus, by directly setting the depth to which the core barrel is lowered to start the deviation, the location from which a deviated coring can start is set immediately.
To that end, the method of the invention comprises, besides selection of a core barrel provided with a core bit having an inner gauge bore, arrangement, in the core barrel, of an internal guide which is made of a material resistant to the abrasion of the bit; moreover, before beginning a deviated coring, said guide is inside at least the inner gauge bore, so that the bit can move along this internal guide. The guide extends in front of the bit, according to a forward direction of coring thereof, and is arranged to progressively deviate the bit from said longitudinal direction towards the wall, following a desired deviated path direction. The method next comprises start-up of the coring with said bit and guidance of the bit through cooperation between its inner gauge bore and the internal guide, until said wall and the formation are penetrated to a desired depth following the deviated path.
According to one embodiment of the invention, there is fixed in a detachable manner to the bit, and in front thereof according to its forward direction of coring, a destructible element which is made of a material chosen so that it can be destroyed by the bit in the process of coring along the deviated path, and which has dimensions chosen in order to go into the bore hole. A guidance means arranged to give the deviated path direction is fixed in the destructible element.
According to one advantageous embodiment of the invention, the above-mentioned internal guide is used as the guidance means in the destructible element, and the destructible element is fixed to the wall of the bore hole at a location chosen for a deviated coring. Next, breaking of the detachable fixing between the bit and the destructible element is caused, and the bit is set rotating and pushed forward in order to follow the deviated path given by the internal guide, destroying the part of the destructible element which it encounters and penetrating said wall and the formation to a desired depth.
It should be noted that in this case the internal guide is fixed in the bore hole by the destructible element, until the bit has completely detached it from the destructible element.
According to another advantageous embodiment of the invention, the method comprises, before the deviated coring proper, arrangement, as the guidance means in the destructible element, of a guidance channel, one end of which is substantially coaxial with the inner gauge bore and whose line corresponds to the desired deviated path. There is then disposed, in particular in steps, a drilling machine, carried by a drilling string, through the core barrel and the inner gauge bore and following the guidance channel. Drilling by the machine in the wall of the bore hole according to the deviated path given by said channel is organized, the drilling string having a length chosen in order that, when the drilling machine is driven into the wall according to a chosen anchorage depth, the drilling string is still engaged in at least the inner gauge bore of the bit. Next, breaking of the detachable fixing between the bit and the destructible element is caused, and the bit is set rotating and pushed forward following the deviated path given by the drilling string and the drilling machine, in order to destroy the part of the destructible element and of said guidance channel which it encounters and to penetrate said wall and the formation to a desired depth.
It should be noted that in this case the internal guide is sent and embedded in the wall of the bore hole beforehand, in order to be fixed there, before the bit is activated. Next, the activated bit will be advanced along the internal guide until the latter is freed from its fixing in said wall. Provision can then be made for withdrawal of said internal guide through the core barrel when the latter has been deviated.
According to yet another advantageous embodiment of the invention, the method comprises, before the deviated coring proper, arrangement, as the guidance means in the destructible element, of a guidance channel, one end of which is substantially coaxial with the inner gauge bore and whose line corresponds to the desired deviated path. In this case the destructible element is fixed to said wall of the bore hole at the location chosen for the deviation. A drilling machine, carried by a drilling string, is arranged through the core barrel and the inner gauge bore and so that it follows the guidance channel in the direction of said wall. The drilling machine is fixed to the core barrel, so that it projects by a given distance outside the bit into the guidance channel. The detachable fixing between the bit and the destructible element is broken and the bit and the drilling machine are set rotating and pushed forward and drilling by the machine in the wall of the bore hole is caused, according to said deviated path given by the guidance channel, and coring by the bit is caused following the deviated path given by the drilling string and the drilling machine, destroying the part of the destructible element and of said guidance channel which it encounters and penetrating said wall and the formation to a desired depth.
It should be noted that in this case the internal guide moves in front of the bit, at the same time, and in principle by the same amount, as the bit but a withdrawal of said internal guide through the core barrel when the latter has been deviated can also be organized.
The invention also concerns a device for coring and/or drilling through a wall of a bore hole which has been cored or drilled previously in an underground formation, in order to carry out coring and/or drilling deviated transversely from and with respect to a longitudinal direction of the bore hole.
The device of the invention comprises a core barrel, provided with a core bit having an inner gauge bore, and an internal guide which is made of a material resistant to the abrasion of the bit, which, before beginning a deviated coring, is inside at least the inner gauge bore, so that the bit can move along this internal guide, which extends in front of the bit, according to a forward direction of coring thereof, and is arranged to progressively deviate the bit from said longitudinal direction towards the wall, and which is kept fixed in order to give the bit the desired deviation direction.
Other details and particular features of the invention will emerge from the secondary claims and from the description of the drawings accompanying the present document and which illustrate, by way of non-limiting examples, the method and particular embodiments of the device according to the invention.
In the different figures, the same reference notations designate identical or analogous elements. However, in the third embodiment, certain elements of similar kind and/or function as those of the second embodiment, but different in their design, will receive the same number with the letter “t” added.
For clarity of explanation, a description is given first of the device of the invention intended for deviated coring and/or drilling, through a wall of a bore hole (not depicted) which has been cored and or drilled previously in an underground formation (not depicted).
According to one of its embodiments, the device of the invention (
Hereinafter, front end of an element will designate the one closest to the bottom of the bore hole when the core barrel 1 is disposed therein in the coring position, and rear end of an element will designate the one closest to a derrick to which said core barrel 1 is connected for the coring.
Said device of the invention can comprise in addition a destructible element 9 which is fixed in a detachable manner in front of the bit 3, according to the forward direction of coring thereof, and which is made of a material chosen so that it can be destroyed by the bit 3 in the process of coring along the deviated path. The destructible element 9 has dimensions chosen in order to go into the bore hole.
The destructible element 9 can be made of any known material, composite or not, which the bit 3 can destroy on its passage without it becoming unnecessarily worn, but which can keep the guidance means 11 and/or the internal guide 7 in place sufficiently effectively. To that end it can be a block of cement, polyester, composite material, etc.
In the destructible element 9 there is fixed a guidance means 11 arranged to give the deviated path direction that the bit 3 has to follow.
The destructible element 9 can comprise a means 13 for its selective fixing to the wall of the bore hole.
Said selective fixing means 13 can comprise an annular sleeve 15, made of elastic material, which is mounted on a peripheral lateral surface part of the destructible element 9 and whose external diameter at rest passes freely into the bore hole but which can be expanded selectively until it becomes wedged against the wall of the bore hole, means 17 being provided to cause this expansion and retain it. The annular sleeve 15 is for example fixed by one of its ends 15A to the destructible element 9 whilst its other end 15B is arranged to be able to slide in a sealed manner along said destructible element 9.
The means 17 arranged to cause the expansion can comprise an annular chamber 19, between the annular sleeve 15 and the destructible element 9, means 21 for supplying this annular chamber 19 with fluid, and blocking-up means 23, in particular a ball and spring valve 23, arranged to selectively block up in the annular chamber 19 the fluid which has been supplied thereto.
Other appropriate selective fixing means 13, different from those described, can be used for implementing the invention.
Preferably, the detachable fixing between the destructible element 9 and the bit 3 is arranged to be detached by relative rotation of the bit 3 with respect to the destructible element 9 previously fixed to said wall.
To that end, said detachable fixing between the destructible element 9 and the bit 3 can comprise at least one and preferably several rods 25 fixed each time through a nozzle 27, of the bit 3, provided as a coring fluid outlet on the front face of the bit 3. This rod 25 is advantageously partially tubular and open at its end turned towards the inside of the bit 3, its internal hollow extending as far as beyond the nozzle 27 towards the outside of the bit 3. The rod 25 is closed at its end outside the bit 3. It is arranged to break, during said relative rotation, between the bit 3 and the destructible element 9, in the place where it is hollow, and it is preferably made of a material that can be removed, for example by wear, by coring fluid passing in the broken tubular rod 25 and/or the corresponding nozzle 27. In the example of
The rods 25 which are used for the detachable fixing between the bit 3 and the destructible element 9 thus plug all the nozzles 27 in the present embodiment of the invention.
According to this first embodiment of the invention, depicted in
In the example case of
The outer 33 and inner 31 tubes are each usually formed from several successive sections fixed to one another in a known manner.
The internal space 43 (
For introducing the particular fluid into the lower space 49 when the piston system 45 is in the position depicted in
This particular fluid is introduced by this path into said lower space 49 before putting the inner tube 31 into the outer tube 33.
The inner tube 31 is suspended in a known manner in the outer tube 33 using a ball thrust bearing system 67 (
Coring fluid can be conveyed through the thrust bearing system 67 and can flow to the gap 69 between the outer 33 and inner 31 tubes through orifices 71 and to the top of the piston 45 through an orifice 73 as long as the latter has not been closed off by a ball 75.
A first embodiment of the method of the invention can be described with the help of the device of the invention according to the embodiment described above, without however being limited to the use of this device.
Besides usual selection, according to the work to be carried out, of a core barrel 1 provided with a core bit 3, there is arranged in the core barrel 1 an internal guide 7 of the kind described which, before beginning a deviated coring, is arranged inside at least said inner gauge bore 5, so that the bit 3 can move along this internal guide 7. The latter is disposed so as to extend in front of the bit 3, according to a forward direction of coring thereof, and is arranged to progressively deviate the bit 3 from said longitudinal direction of the bore hole towards the wall thereof.
The internal guide 7 is kept fixed with respect to the wall of the bore hole in order to give the bit 3 a desired deviated path direction. The coring is started up with said bit 3 thus equipped and there is allowed to be carried out a guidance of the bit 3 by its inner gauge bore 5 along the internal guide 7, until said wall and the formation are penetrated to a desired depth following the deviated path.
In a variant of the method of the invention, in order to fix the position of the internal guide 7 with respect to said wall of the bore hole, there is advantageously fixed in a detachable manner to the bit 3, in front thereof according to its forward direction of coring, the above-mentioned destructible element 9, in particular using the described rods 25.
There is then fixed in this destructible element 9 a guidance means arranged to give the deviated path direction.
In particular, the above-mentioned internal guide 7 can be used directly as the guidance means 11 in the destructible element 9 or vice versa, the internal guide 7 and the guidance means 11 being merged in one component.
The aforementioned particular fluid may be introduced into the internal space 43 only when the destructible element 9 and the internal guide 7 are fixed to the core barrel 1, so as to also fill the longitudinal channel 39 up to at least the valve 23, and preferably right into the annular chamber 19, flushing out the air therein.
The core barrel 1 can then be lowered into the bore hole and the destructible element 9 fixed to the wall of the bore hole at a location chosen for a deviated coring. To that end, drilling fluid sent under pressure into the core barrel 1, not being able to flow through the nozzles 27 plugged by the rods 25, is forced to pass through the orifice 73 and act on the face of the piston 45 which it encounters in the upper space 47. The piston 45 thus acted on pushes the particular fluid through the longitudinal channel 39 so that this fluid opens the valve 23 and passes, through holes 24, into the annular chamber 19 in order to fill it and thus push the annular sleeve 15 into a contact of the closest kind with the wall of the bore hole. This locks in the bore hole the destructible element 9 and the core barrel 1 which is fixed thereto. When the pressure of the coring fluid is reduced or nullified temporarily, the piston 45 releases the pressure of the particular fluid and the valve 23 is closed again by the action of its spring and possibly by a reverse pressure caused by the annular sleeve 15. The annular chamber 19 thus remains full and the annular sleeve 15 remains in locking contact in order to keep the position of the destructible element 9 fixed translation-wise and rotation-wise in the bore hole.
So that the pressure of the coring fluid no longer acts on the piston 45, there can advantageously be sent into the core barrel 1, as is known, a closure ball 75 (
As the destructible element 9 is thus fixed in the bore hole, when the bit 3 is set rotating by means of the outer tube 33, the rods 25 are caused to break. The coring fluid can now pass through the tubular part of each rod 25 remaining in its respective nozzle 27, and by abrasion wear this tubular part until said nozzle 27 is freed sufficiently or totally.
It is then necessary to continue the rotation of the bit 3 and push it forward so that it follows the deviated path given by the internal guide 7 thus fixed to the wall of the bore hole, destroying the part of the destructible element 9 which it encounters and penetrating said wall and the formation to a desired depth.
Said particular fluid remaining in the inner space 43 or more precisely in the lower space 49 can be used, if it has been chosen for that purpose, to coat the core as it enters this lower space 49, the surplus of this fluid being able to escape for example through the valve 63 and, by pushing back the ball 75, mix with the coring fluid in the gap 69.
It should be understood that the curve that can be given to the internal guide 7 has a very large radius, and that consequently the length of this internal guide 7 is large, since the deviation that the latter can give to the core barrel 1 is small owing to the rigidity thereof. At the time of selection of the core barrel 1, this length will therefore be taken into account in calculation of the length of the inner space 43 in which the internal guide 7 will enter and remain. To that end, the internal guide 7 can advantageously have, outside the destructible element 9, a certain flexibility so as to be able to straighten somewhat when it reaches and is located in the inner tube 31.
In
It is apparent that, for example, the front part of the destructible element 9, which carries the means 13 (sleeve 15) of fixing to the wall, remains practically in place in the bore hole when the core barrel 1 is withdrawn after the deviated coring. This part, wedge-shaped by the action of the bit 3, can therefore serve as a guide for reintroducing, following the same deviation, the same core barrel 1 or another or even a drilling device. This same wedge-shaped front part can however subsequently be detached from the wall and/or destroyed in order to make it possible to carry out a deviated coring and/or drilling operation at a deeper level in the same initial bore hole.
In a second embodiment of the invention (
In this second embodiment of the invention, an intermediate guidance tube 81 can be arranged in the outer tube 33, in order to temporarily house therein, on the one hand, a removable assembly 83 comprising the internal guide 7 which will cause the desired deviation and, on the other hand, next an inner tube 31 which will subsequently receive a core. A toothed coupling (
The internal guide 7 proper comprises for its part a drilling machine 87 (
In the case being described at present, the destructible element 9 (
In the case of the second embodiment, the removable assembly 83, which is proposed by way of example for manipulating the internal guide 7 in the intermediate tube 81, can comprise a removable tube 97 arranged to slide in the intermediate tube 81 and in which the drilling string 89 of the drilling machine 87 is housed.
The method associated with said second embodiment can then comprise arrangement, as the guidance means 11 in the destructible element 9, of the guidance channel 79 disposed as explained above.
There is disposed, for example at the assembling of the core barrel 1, the drilling machine 87, carried by its drilling string 89, through the core barrel 1 and the inner gauge bore 5, so that it follows the guidance channel 79, preferably so that the drill head 91 is positioned (as depicted in
To that end, the drilling string 89 from which the drilling machine 87 is suspended is held by a breakable pin 99 (
Drilling or coring fluid is sent under pressure into the core barrel 1 from its rear end 109 (
Thus there is caused a drilling by the machine 87 in the wall of the bore hole according to said deviated path given by the guidance channel 79. The drilling string 89 has a length chosen so that, when the drilling machine 87 is driven into said wall according to a chosen anchorage depth, the drilling string 89 is still engaged in at least the inner gauge bore 5 of the bit 3.
Advantageously (
When the drilling string 89 has run along in the removable tube 97 the distance chosen for the anchorage, said external sleeve 119 comes to abut (
At this stage of the operations with the second embodiment of the invention, the destructible element 9 (
For example, at this moment a chosen sudden increase in pressure of the fluid is caused and said pressure acts on the selector piston 113 (
At this moment, it is necessary to cause the breaking of the detachable fixing between the bit 3 and the destructible element 9. To that end in particular, the bit 3 is set rotating by means of the outer tube 33, the destructible element 9 being locked rotationally by the drilling machine 87 embedded in the formation. This breaks the rods 25. Said rotation is kept up and the core barrel 1 is pushed forward, being able to follow only the deviated path given by the drilling string 89 and the drilling machine 87, destroying the part of the destructible element 9 and of said guidance channel 79 which the bit 3 encounters and penetrating said wall and the formation around the bore hole to a desired depth.
At this stage of the operations, the removable assembly 83, and therefore said internal guide 7, formed by the drilling machine 87 and its accessories, can for example be withdrawn by catching hold in a known manner of the coupling stud 86 of this assembly. There can then be introduced into the core barrel 1, more precisely into its intermediate tube 81, a customary inner tube 31 (
In the example being described presently, the internal space 131 (
At the rear end of said internal space 131 (
In a third embodiment (
However, in the example of
To that end, the drilling machine 87t and its drilling string 89t form a removable assembly 83t which is installed in the intermediate tube 81 in order to come directly or indirectly into abutment against a stop in the bit 3, so that the drill head 91t is at the desired distance in front of the bit 3. A spring catch 139 (
In the case being described presently, since the bit 3 must turn in order to provide the rotation of the drill head 91t, it is consequently necessary to fix the destructible element 9 (
In order to convey inflation fluid to the sleeve 15, the supply means 21 (
The method of the invention, applied within the context of this third embodiment of the core barrel 1, can comprise the following steps, certain of which are essential to the invention and others of which are necessary only for understanding (as is also the case for the other embodiments).
There is mounted for example a core barrel 1 like the one depicted in
There can then be poured into the intermediate tube 81 a fluid, preferably particular fluid, with no particles in order to not impede the correct operation of the valve 23, so that a sufficient quantity of this fluid is stored in the duct 143, the guidance channel 79 being closed off by the plug 145, and the drilling string 89t in order to subsequently provide correct inflation of the sleeve 15.
The core barrel 1 can then be lowered into the bore hole and positioned at the location where the deviated coring is desired. Fixing of the destructible element 9 to said wall of the bore hole is next caused, as already described, by inflation of the sleeve 15 using the particular fluid subjected to sufficient pressure sent into the core barrel 1 from the derrick, in particular using a coring/drilling fluid pressing on the particular fluid.
It is necessary to cause, at this moment, breaking of the detachable fixing between the bit 3 and the destructible element 9. To that end, in the present case the bit 3 is set rotating and, the destructible element 9 being locked by the fixing means 13 in the bore hole, the rods 25 break. It should be noted that, in order to be able to pressurize the fluids, all the nozzles have been plugged by rods 25 of the type described above.
It is possible to continue the rotating of the bit 3 and push it forward through the destructible element 9 which it destroys on its passage, at the same time as the guidance channel 79 which is located there. In its travel, the bit 3 drives the drilling machine 87t which precedes it, the coring/drilling fluid pressing the drilling string 89t towards the front. The drill head 91t drills and removes first the plug 145 and can next drill the wall of the bore hole according to said deviated path given by the guidance channel 79. The bit 3 then follows the deviated path given by the drilling string 89t and the drilling machine 87t, penetrating said wall and the formation to a desired depth.
There can be noted in
At this stage of the operations, the removable assembly 83t which comprises the drilling machine 87t can be withdrawn using the stud 86 and this assembly 83t replaced, as in the case of the second embodiment above, with a customary inner coring tube 31 (
In a variant of the third embodiment, when the drilling machine has penetrated the wall of the bore hole by a desired depth, a choice can be made to reduce the pressure of the coring fluid in the core barrel 1 so that the drilling machine 87t is no longer pushed forward into the formation and the head 91t no longer, or scarcely, drills. Under these conditions, if the bit 3 continues to advance into the destructible element 9 and/or the formation, the removable assembly 83t goes back into the core barrel 1, in the intermediate tube 81. The system comprising catch 139 and longitudinal groove 141 can be arranged in order that, from an in position of the removable assembly 83t, the catch 139 comes out of this groove 141. Consequently, the head 91t is then no longer driven rotationally and no longer advances at all into the formation. If the bit 3 is still driven rotationally and pushed forward, it can advance whilst being guided by the drilling machine 87t and/or its drilling string 89t.
It is apparent to persons skilled in the art that the second and third embodiments of the invention give the bit 3 a guidance superior to that given by the first embodiment, since the internal guide 7 in these two cases is disposed as far as beyond the interface between the destructible element 9 and the formation.
Moreover, in the second and third embodiments, if the drilling machine 87 or 87t is sent sufficiently deeply into the formation from the wall of the bore hole, the core cut will then consist quite entirely of formation and not of a first part consisting of debris from the destructible element 9 and a second part consisting of said formation with, between these two parts, an interface surface on a slant with respect to the coring direction.
It must be understood that the invention is in no way limited to the embodiments described and that many modifications can be made to the latter without departing from the scope of the claims.
In the description and the claims, the indicated order of the steps of the method seem presently favorable. However, modifications of this order must be considered as included within the scope of the claims.
The stabilization wings 77 of the destructible element 9 are depicted extending parallel to the longitudinal axis 41. They can however be of helical appearance.
There should be noted in
This mechanism 151 can comprise, in the small annular chamber 155, sensors of different types known in the art for performing detections and/or measurements in particular electrical ones on a core which enters the core barrel 1. The large annular chamber 153 is intended to receive devices for detections, measurements and/or recordings or even sending of data to the operators, connected to these sensors, not depicted.
The above-mentioned particular fluid can then be chosen and/or arranged in order to have electrical characteristics matched to the operation of these sensors, as is known.
Thus, from the moment a core enters the core barrel and before raising the latter to the surface, one or more measurements and/or detections of parameters of this core at the level of the bit 3 and recording and/or transmission to an operator of these measurements and/or detections can be performed. Said measurements and/or detections can be used to decide on actions to be undertaken during the deviated coring.
The guidance means 11 or channel 79 is principally depicted in the form of a tube in a major part of its length. It can however be any element fashioned to give the described result.
Number | Date | Country | Kind |
---|---|---|---|
2002/0223 | Mar 2002 | BE | national |
This application is a Continuation Application of International Application Serial No. PCT/BE03/00054 entitled METHOD AND DEVICE FOR DEVIATED CORING AND/OR DRILLING, filed on Mar. 25, 2003, which claims priority to Belgian Application Serial No. 2002/0223 filed on Mar. 27, 2002.
Number | Name | Date | Kind |
---|---|---|---|
5029653 | Jurgens et al. | Jul 1991 | A |
5148875 | Karlsson et al. | Sep 1992 | A |
6202752 | Kuck et al. | Mar 2001 | B1 |
Number | Date | Country |
---|---|---|
575.685 | Feb 1946 | GB |
9000666 | Jan 1990 | WO |
9804804 | Feb 1998 | WO |
03080987 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20050072598 A1 | Apr 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/BE03/00054 | Mar 2003 | US |
Child | 10950877 | US |