The present invention relates to a method and device for precision engagement of hostile targets by dispersing towards the target, from a flying non-rotating or slowly rotating carrier in the form of a rocket, missile or equivalent, a large quantity of submunitions that act by direct impact in the target via a combination of mass, inherent hardness and velocity. The submunitions in themselves can be of an elective type such as a cube, ball or dart.
Combating a target with fragments is currently the most common way of enhancing kill probability against targets that are difficult to combat by a direct hit because they have, for example, an extended surface or consist of numerous small units dispersed over a specific area. The most common method of achieving fragment dispersion must thereby be considered to be by using a detonating explosive charge to give the fragments their desired velocity and direction. The fragments in question can thereby be either pre-shaped before the explosive charge that is to disperse them is detonated, or can be formed during the actual detonation such as by bursting a fragmentation casing. One disadvantage of using a detonating charge to disperse large quantities of fragments is that the limits for true dispersion of fragments are, despite everything, relatively approximate and difficult to predict. This may apply especially when the fragments are formed by fragmenting a fragmentation casing since the fragments are then of many different sizes and thus fly different distances.
As already indicated the present invention relates to a method and device for attacking a pre-determined target with a well-defined cluster of submunitions which, just like fragments, act on impact and which are deployed from a specific carrier in the form of a rocket, missile or equivalent. The method and device as claimed in the present invention enable dispersion of, submunitions to be actuated with the shortest possible period of notice, while also enabling the dispersion pattern imparted to the fragments to be varied within certain constraints. As dispersion of the submunitions is intended to operate from the side of a carrier with a relatively high velocity the dispersed submunitions as claimed in the present invention will be given a forwards and lateral velocity vector relative to the carrier, which means that the submunitions from the carrier can be dispersed obliquely forwards relative to its own direction of flight. Dispersion of the submunitions can then be carried out either simultaneously all around the carrier or within a restricted angular zone relative to the cross-section of the carrier. The present invention also enables variation of the angle between the direction of flight of the carrier and the central axis of the cluster of submunitions emitted from the carrier. With regard to the submunitions we consider that special advantages are achievable if they are made dart-shaped, since dart-shaped submunitions as claimed in the method that is characteristic of the present invention can be given a stable flight and thereby a greater range and better penetration in the target. The method and device as claimed in the present invention for dispersing submunitions enables an evenly distributed dispersion pattern, which is ideal from the point of view of achieving a target kill.
The basic principle for the present invention is that a large number of the submunitions shall be maintained in a state of readiness in the carrier in a dedicated magazine comprising a number of concentric submunitions arranged in ring- or spiral-shaped layers whereby the submunitions in the magazine, if they have an elongated form like a dart for example, shall be located with their own longitudinal axis parallel with the direction of flight of the carrier. This magazine is rotatably journalled around a central axis that is preferably coincident with the longitudinal axis of the carrier, around which axis the magazine can then rotate up to a pre-determined rate while the submunitions are retained in the magazine. When the carrier approaches a target to be engaged the magazine rotates to a rate that provides the centrifugal force necessary to give the desired dispersion pattern in relation to the distance to the target. The magazine subsequently opens when the carrier has reached its intended engagement distance, whereby the submunitions in the magazine are released and dispersed along the directional vectors specified by the resultant of the centrifugal force in each direction and of the velocity of the carrier in its direction of flight Dispersion of the submunitions is then dependent on where they are located in the magazine since the submunitions located furthest from the centre of rotation of the magazine are propelled by the greatest centrifugal force thus being given the highest velocity vector lateral to the direction of flight of the carrier, while those nearest the centre of rotation are propelled by the lowest centrifugal force in the same direction, and the velocity vector imparted by the carrier in its own direction of flight is the same for all the submunitions.
By subdividing the magazine into a number of compartments, each preferably with a segmented circular cross-section format, the content of each such compartment can be released individually when the desired rotational position is attained, i.e. when it is directed at the target, thereby enabling a number of closely consecutive clusters of submunitions to be propelled towards the target during a very brief time interval. Each such compartment is thereby provided with its own peripheral outer wall segment, releasable on command, for retaining the submunitions until the correct stand-off distance to the target is reached.
Naturally, all the submunitions in the magazine can also be released simultaneously instead, in which case all the submunitions are dispersed all around the carrier.
As already indicated the device as claimed in the present invention is designed to be incorporated in a carrier in the form of a rocket, missile or equivalent, and such projectiles should preferably have a smooth outer casing to provide the least possible drag. Before dispersion of the submunitions can begin this outer casing must be eliminated and, as claimed in one version of the present invention, this is achieved by the carrier separating into two parts level with the magazine, each such part continuing along mainly the same stable flight path but with a somewhat different velocity and with a gradually increasing distance between them whereby the part that does not incorporate the submunition-dispersing magazine takes with it the parts of the carrier's outer walls that until the point of separation surrounded the magazine. The actual separation can be actuated by a small explosive charge.
The method and device as claimed in the present invention gives the submunitions an evenly distributed dispersion pattern, which is ideal from the point of view of achieving a target kill. It also enables very good capability for precision engagement of difficult targets, such as targets that one needs to engage while leaving their surroundings as far as possible undamaged. One advantage with the present invention is namely that one can specify very precisely in advance what the dispersion of the submunitions will be like, allied to the fact that under the same circumstances such dispersion will be very similar between different carrier units of the same type.
Because the device as claimed in the present invention also requires very little space it can be used as a complementary warhead in missiles that are already equipped with a major warhead, and thereby the proximity fuze of the main warhead and other sub-functions can also serve this complementary warhead. To be able to provide the desired result the device as claimed in the present invention usually needs access to information regarding distance and direction to the target as well as the relative velocity of the target, and such information should be obtainable from a proximity fuze or equivalent.
In a specially preferred design of the present invention a gas generator with a number of outlets arranged tangentially around its own periphery is used to accelerate the magazine to the desired rate of rotation, after which the submunitions are released via, for example, elimination of an outer retaining wall that keeps the submunitions in place until release.
The present invention is defined in more detail in the subsequent patent claims, and is now described in more detail with reference to the appended figures that illustrate one of several conceivable designs of a device designed in accordance with the present invention.
If required, each carrier unit can be equipped with more of the submunition magazines that are a characteristic feature of the present invention and if, when actuated, they are made to rotate in different directions the gyro effect that otherwise acts on the carrier can be eliminated.
In the appended figures
The corresponding parts in the various figures have the same reference number irrespective of scale and degree of detail.
The missile illustrated in
These journals are designated 8. The front section 9 of the missile 1 contains its control system, possible target seeker and proximity fuze, as well as its main warhead and flight motor. The aft section 10 of the missile 1 contains the submunition magazine 4 and space to accommodate the missile's launch motor.
The submunition magazine 4 is shown in more detail with its constituent parts in
The device functions as described below. The proximity fuze, or other information source such as a remote command, provides data regarding distance and direction to the target relative to the flight path of the carrier (in
As illustrated in
Number | Date | Country | Kind |
---|---|---|---|
0002495 | Jul 2000 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE01/01399 | 6/20/2001 | WO | 00 | 3/31/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/03013 | 1/10/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3954060 | Haag et al. | May 1976 | A |
4072107 | Saxe et al. | Feb 1978 | A |
4388869 | Edleson | Jun 1983 | A |
4388870 | Edleson | Jun 1983 | A |
4455943 | Pinson | Jun 1984 | A |
4676167 | Huber, Jr. et al. | Jun 1987 | A |
4750403 | Huber, Jr. et al. | Jun 1988 | A |
5005483 | Deffayet | Apr 1991 | A |
5817969 | Ettmuller | Oct 1998 | A |
6598534 | Lloyd et al. | Jul 2003 | B2 |
6668814 | Borrell | Dec 2003 | B1 |
6672220 | Brooks et al. | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
2557286 | Jun 1985 | FR |
406273100 | Sep 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20030164110 A1 | Sep 2003 | US |