This application claims priority to foreign Patent Application FR 09 02874, filed on Jun. 12, 2009, the disclosure of which is incorporated herein by reference in its entirety.
The invention relates to the field of aerial navigation aids for the prevention of accidents in which a still-maneuverable aircraft collides with an obstacle. The term “obstacle” subsequently designates any non-natural obstruction present in the environment of the aircraft, one then speaks notably of human constructions such as buildings or bridges. Moreover, the term “relief” or “terrain” designates obstructions relating to the natural environment such as mountainous zones.
Owing to the type of missions carried out, landing and takeoff in zones that are difficult to access, sometimes unprepared, or flight at low altitude, a helicopter, for example, is a craft which is very highly exposed to the risk of collision with obstacles situated in its close environment. Beyond the geographical aspect, during medical evacuation operations, the use of the helicopter is quite often reserved for emergency survival cases for which swiftness of action and the continuation of the mission are vital in respect of the victim to be rescued. The urgent nature of the mission and the taking of risks which stems therefrom, correspondingly increase the risks of being in proximity to obstacles.
The person skilled in the art is familiar with systems of TAWS type, “Terrain Awareness and Warning System”. The aim of these systems is to generate an alert when the aircraft is in a dangerous situation where the operational margins are no longer complied with TAWSs in the guise of autonomous computer or computer integrated with the TCAS (Traffic Collision Avoidance System) function and WXR (Weather Band X Radar) function, in an ISS (Integrated Surveillance System), fulfill a primary function of terrain anti-collision surveillance (“Safety Net”) and the aim of which is the emission of audible alerts upon an exceptional approach to the relief allowing the crew to react by engaging a vertical resource before it is too late.
Accordingly, the TAWS systems, decoupled from navigation systems, proceed in two ways. They periodically compare the theoretical trajectory that would be described by the aircraft during a resource and compare it with a sectional cut through the terrain and with the obstacles overflown obtained on the basis of a worldwide digital terrain model embedded aboard the computer. Or then, some TAWSs also integrate modes termed “reactive modes” which, by periodically comparing some of the current parameters of the craft, for example the radio-altitude and the vertical speed, various charts determine whether the current situation of the aircraft is a normal situation or whether it is potentially dangerous. In the latter case, an alert, limited to a verbal message, is generated to inform the crew. The availability of a model of the terrain permits functions making it possible to improve the perception of the situation of the crew. Among them, the alert lines have the objective of delimiting the terrain zones for which a TAWS alert might appear. For their part, the “Alert Areas” show the zones giving rise to a TAWS alert. These alert lines are displayed in the navigation display device, commonly called the “navigation display”.
Beyond the logic of alerts, the requirements expressed by pilots are to have at their disposal graphical information allowing them to remain outside of situations that may evolve dangerously.
One known at-risk obstacle zone detection system compares the position of an obstacle in relation to the current position of the aircraft. The calculation method for determining the risk of the dangerous zones does not take into account the current behavior of the aircraft, nor the capabilities of the aircraft. Moreover, the display of the zones of obstacles shows the zones for which alerts are already engaged.
A display of the zones at risk for which alerts are already engaged aboard the aircraft is also known.
Embodiments of the present invention advantageously improve safety during situations where the helicopter operates with low lateral and vertical separation margins with respect to the terrain or obstacles situated in proximity, and provide the pilot with a representation of the exterior environment allowing him to anticipate at-risk situations.
One embodiment provides a method of displaying, for a system for anti-collision monitoring of an aircraft, the limits of flight margins in relation to obstructions located in a flight zone, the monitoring system generating collision alerts for obstructions located in a protection envelope of the aircraft and being able to calculate at least one flight maneuver predefined in a vertical plane, the method comprising:
The flight maneuver of the first type is an initiation and an execution of a climb trajectory of the aircraft and the flight maneuver of the second type is an initiation and an execution of a flattening out trajectory of the aircraft.
Advantageously the flight margins are displayed for obstructions located beyond the protection envelope of the aircraft. This allows the pilot to view the zones at risk without however penetrating into a zone for which the aircraft's anti-collision system generates a collision alert. This makes it possible to reduce the stress factor of the pilot and of his crew as well as the surprise effect of triggering an alert. The protection envelope, or prober, is the monitoring volume calculated by the aircraft anti-collision system. It is generally calculated as a function of avoidance maneuvers predefined in the anti-collision system. A method according to this aspect of the invention displays limits of flight margins in relation to obstructions not to be exceeded in order to avoid situations of alerts in the sense of a TAWS.
Advantageously, the position of the first monitoring zone is correlated with the current dynamic turning parameters of the aircraft in such a way that in the event of turning of the aircraft the sector of disk is moved in rotation as a function of the angle of turn. The limits of the first monitoring zone evolve dynamically as a function of the aircraft's current flight parameters, notably altitude, heading and roll rate.
According to the mode of display, the delimitations between the first flight zone and the second flight zone are displayed.
According to a first mode of display the limits of flight margins are displayed in a flight zone in two dimensions.
According to a second mode of display, the limits of flight margins are displayed in a flight zone in three dimensions.
Another embodiment provides a device for displaying, for a system for anti-collision monitoring of an aircraft, the limits of flight margins in relation to obstructions located in a flight zone, the monitoring system generating collision alerts for obstructions located in a protection envelope of the aircraft, the device comprising a display to display in the flight zone a first monitoring zone in the form of a sector of disk surrounding the current trajectory of the aircraft and a second monitoring zone outside of the first zone, the first monitoring zone displaying the limits of the anti-collision alert zones in relation to the obstructions and the second monitoring zone displaying the operational flight margins in relation to the obstructions, the operational flight margins being configured in such a way that the aircraft can execute a flattening out maneuver for a predefined duration.
Advantageously, an alert zone represents the positions of the obstructions located beyond the protection envelope of the aircraft and for which the monitoring system would trigger collision alerts if the aircraft exceeded these limits while moving according to the instantaneous flight parameters of the aircraft.
In one embodiment, the display device displays the delimitations between the first flight zone and the second flight zone.
Various aspects of the invention make it possible to display the operational limits of margins in the zones far from the trajectory of the aircraft and to maintain the display of the collision alert zones for the positions around the trajectory. The function of the operational margins is to present the positions allowing the aircraft to carry out a flattening out phase for a predetermined duration. This is the maneuver generally carried out while the pilot gets his bearings in a zone not initially envisaged.
The invention will be better understood and other advantages will become apparent on reading the non-limiting description which follows and by virtue of the appended figures among which:
The anti-collision monitoring system makes it possible to achieve the objectives aimed at by making the following systems collaborate.
A system of databases making it possible to have available data regarding location and the altitude of the surrounding obstacles, terrain data, flight parameter data specific to the aircraft (maximum climb capability, flight envelope, flight margins, etc.) and data relating to flight maneuvers, notably avoidance maneuvers.
A system of TAWS type carrying out the trajectory monitoring functions in relation to the terrain and making it possible to raise ad hoc alerts in the event of coming dangerously close to the relief and obstacles.
The avionics systems transmitting the aircraft's flight parameters in real time (heading, roll rate, altitude, position, etc.)
A system of display devices in the cockpit making it possible to present the information formulated by the monitoring system.
Preferably, the functions for carrying out a method according to one embodiment of the invention are integrated into the system of TAWS type.
One aspect of the invention improves flight safety by showing the pilot the limits of the operational flight margins in relation to the obstacles and terrain. It is sought to show the pilot the operational flight margins around the trajectory initially envisaged. For this purpose, as represented in
The first zone 40 is delimited by two radials 16 and 17 starting at the level of the current position of the aircraft and terminating at the level of the limit 15 of the monitoring zone. This first zone corresponds to an angular sector surrounding the current trajectory of the aircraft. If the aircraft carries out a rectilinear trajectory on a heading straight ahead of the aircraft the angular sector is positioned in the middle of the monitoring zone. If the aircraft carries out a turning trajectory the angular sector of the first zone will be positioned in such a way as to hug the turn carried out as a function of the roll rate. Said first zone displays the limits of alert zones 14 representing the positions for which alerts would be triggered by the anti-collision device if the aircraft crossed these limits while retaining the current flight parameters (vertical speed and speed).
The second zone formed by the sectors 41 and 42 displays the limits of operational margin 10 in relation to obstacles 12 and terrain. The calculation for positioning the limit is different from that for positioning the limits of the alert zones in the first zone. The limit corresponds to the operational margin, more precisely the limit allowing the aircraft to carry out a flattening out maneuver for a predefined duration. The obstacles and terrain positioned in this zone are not envisaged in the initial trajectory of the aircraft. If the aircraft steers in their direction, the pilot will execute a phase of flight by sight under manual control. In this type of situation, the pilot generally carries out a flattening out maneuver for a minimum duration. The operational flight margin corresponds to the time necessary for the execution of a phase of flattening out of the aircraft for a duration predefined in the system.
For the presentation of the limits of the operational margins in the navigation display device, the display method executes a succession of steps.
A first step is the calculation of a plurality of radial trajectories in vertical planes distributed over the flight zone, said radial trajectories being rectilinear prolongations beyond the protection envelope of the current vertical trajectory of the aircraft in vertical planes. These prolongations of vertical trajectory of the aircraft make it possible to detect the obstacles and the terrain zones located on the current vertical trajectory of the aircraft if the azimuthal trajectory of the aircraft was that of the obstacles and obstructions. For this purpose, a plurality of vertical trajectories distributed over the flight zone is calculated according to an angular interval defined in the system. The smaller this angular interval the higher will be the precision of the limits.
A second step is the calculation in the flight zone of the first monitoring zone in the form of a sector of disk surrounding the current trajectory of the aircraft and a second monitoring zone outside of the first zone. The current trajectory corresponds to the azimuthal trajectory of the aircraft. The first zone and the second zone were defined previously.
A third step is the calculation of the flight maneuvers of a first type on the radial trajectories belonging to the first monitoring zone and of the flight maneuvers of a second type on the radial trajectories belonging to the second monitoring zone.
A fourth step is the calculation, on each radial trajectory, of the parameters for carrying out the flight maneuvers comprising a point of intersection with an obstruction, said parameters comprising the position of the point of initiation of the maneuver. This step, illustrated by
A fifth step of the method of displaying the limits of flight margins is the displaying, for each obstruction 25 or 35 and for each radial trajectory 26 or 36, of the position of the initiation point 24 or 34 of the flight maneuver 2 or 3 closest to the current position of the aircraft, said initiation points 24 or 34 of the flight maneuvers of all the radial trajectories representing the flight margin limits in relation to the obstructions on the flight zone. In
The navigation display device presents in the zone 40 limits of alert zones 14, on the basis of which the aircraft's anti-collision device would trigger alerts if the aircraft approached the obstruction 14 with the same flight parameters (vertical speed, angle of approach FPA) as those of the instantaneous situation. It presents in the zones 41 and 42 the limits of operational flight margins 10 and 11 in relation to the obstructions. These limits correspond to the necessary distance or necessary flight margin for carrying out a flattening out phase for a predetermined duration if the aircraft approached the obstructions with the same flight parameters (vertical speed, angle of approach FPA) as those of the instantaneous situation. The limits displayed in the flight zone of first type and the flight zone of second type therefore have distinct functions. The limits displayed can be in the form of circular arcs or in the form of broken lines.
The method applies to aircraft anti-collision monitoring systems. The method can be implemented by applications integrated into anti-collision devices of TAWS type or by computers dedicated to the aircraft's flight margin display function.
The many features and advantages of the invention are apparent from the detailed specification, and, thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirit and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and, accordingly, all suitable modifications and equivalents may be resorted to that fall within the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
09 02874 | Jun 2009 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
3626411 | Litchford | Dec 1971 | A |
5448233 | Saban | Sep 1995 | A |
6088654 | Lepere et al. | Jul 2000 | A |
6122570 | Muller | Sep 2000 | A |
7307579 | Rees | Dec 2007 | B2 |
7467030 | Artini | Dec 2008 | B2 |
7493197 | Bitar | Feb 2009 | B2 |
7961116 | Reusser | Jun 2011 | B2 |
7962254 | Bouchet | Jun 2011 | B2 |
8155805 | Spek | Apr 2012 | B2 |
20020128755 | Horvath | Sep 2002 | A1 |
20020143439 | Morizet | Oct 2002 | A1 |
20030107499 | Lepere | Jun 2003 | A1 |
20030132860 | Feyereisen | Jul 2003 | A1 |
20030195672 | He | Oct 2003 | A1 |
20050113985 | Greene | May 2005 | A1 |
20060004497 | Bull | Jan 2006 | A1 |
20070250223 | Francois | Oct 2007 | A1 |
20070252748 | Rees | Nov 2007 | A1 |
20080039984 | Bitar | Feb 2008 | A1 |
20080198041 | Sallier | Aug 2008 | A1 |
20080208400 | Bouchet | Aug 2008 | A1 |
20080288169 | Meunier | Nov 2008 | A1 |
20090231163 | He | Sep 2009 | A1 |
Number | Date | Country |
---|---|---|
0565399 | Oct 1993 | EP |
2 905 756 | Mar 2008 | FR |
2008031723 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20100318295 A1 | Dec 2010 | US |