Method and device for electrochemical formation of therapeutic species in vivo

Information

  • Patent Grant
  • 8303643
  • Patent Number
    8,303,643
  • Date Filed
    Friday, May 21, 2010
    14 years ago
  • Date Issued
    Tuesday, November 6, 2012
    12 years ago
Abstract
A device and method are provided for spontaneous electrochemical production of therapeutic species, in vivo. An active metal is implanted in the tissue. The metal undergoes corrosion, thus acting as a reducing agent to constituents in the tissue, so as to cause these constituents to form the therapeutic agents.
Description
FIELD OF THE INVENTION

The present invention relates generally to in vivo electrochemical formation of therapeutic species, and in particular, to in vivo electrochemical formation of therapeutic species with no use of external power.


BACKGROUND OF THE INVENTION

Electrochemical reactions are chemical reactions in which electrons are transferred from one atom to another. Electrochemistry is thus a branch of chemistry that deals with the chemical changes produced by electricity and conversely, the production of electricity by chemical changes. A basic overview of electrochemistry may be obtained, for example, from Chemical Sciences, by James A. Plambeck, http://www.compusmart.ab.ca/plambeck/che/p102/p02071.htm, 1995, and from Stoner et al. Bioelectrochemistry and Bioengineering, 9, (1982) 229-243.


Three types of electrochemical reactions may be distinguished, as follows:


i. An oxidation reaction, in which electrons are lost by atoms of the species involved in the reaction, so that the atoms become more positive, i.e., their oxidation state increases. In an oxidation reaction, electrons appear as products.


ii. A reduction reaction, in which electrons are gained by the species involved in the reaction, so that they become less positive, i.e., their oxidation state decreases. In a reduction reaction, electrons appear as reactants.


iii. A redox reaction, which involves both a reduction and an oxidation, and is called redox as an abbreviation to these. The stoichiometry of a redox reaction is such that all the electrons lost in the oxidation are gained in the reduction, so in a redox reaction, electrons do not appear explicitly.


One may thus define a reducing agent, as a species that reduces another species, and is itself oxidized in the process. Similarly, one may define an oxidizing agent, as a species that oxidizes another species, and is itself reduced in the process.


Two types of electrical conductors are operative in electrochemical reactions. An electronic conductor, such as a metal, and an ionic conductor, such as a solution containing ions, often called an electrolyte solution, or an electrolyte.


An electronic conductor, such as a metal, in contact with an electrolyte, is termed, an electrode. An electrode on whose surface an oxidation reaction takes place is defined as an anode. The anode acts as an electron sink to the electrolyte. Similarly, an electrode on whose surface a reduction reaction takes place is a cathode. The cathode acts as an electron source to the electrolyte.


In corrosion reactions, an electrochemical reaction may be sustained by a single metal, immersed in an electrolyte. The corroding metal acts both as the anode and the cathode. For example, when a strip of zinc is immersed in an acidic solution, an oxidation reaction takes place on its surface, as follows:

Zn→Zn2++2e  [I]


This process cannot continue for any significant length of time, without a suitable cathodic process, in which the electrons are consumed. Thus the strip of metal zinc also acts as a cathode, providing a nucleation site and a source for the electrons, for example, in the cathodic reaction:

2H++2e→H2  [II]


Corrosion reactions may also take place in a neutral environment, wherein the cathodic reaction may cause the solution to become more alkaline:

O2+2H2O+4e→4(OH)  [III]


Although the zinc strip may act both as anode and as cathode, the addition of a second conducting strip, connected by wire to the zinc strip, will form an electrode pair. If the second strip is less active than the zinc, then the zinc strip will operate as the anode, and the second strip will operate as the cathode.


Certain metals such as platinum, though inert to electrochemical reactions, have a catalytic effect on the corrosion reaction. For example, when using platinum as a cathode, for reaction [II], the rate of the reaction may increase by a factor of 104-105, compared to its rate on zinc


Two or more electrodes, immersed in an electrolyte and connected by an electronic conductor, form an electrochemical cell.


In a galvanic electrochemical cell, current flows, power is produced, and the cell reaction proceeds spontaneously.


In an electrolytic electrochemical cell, current flows, power is consumed, and the cell reaction, which is driven, is the reverse of the spontaneous reaction of the glavanic cell.


In a reversible electrochemical cell, an infinitesimal change in cell potential can cause the reaction to proceed in either direction.


Chemists have selected the electrode reaction of hydrogen, under standard conditions of pressure and concentration, as a basis against which others electrode reactions are compared, and have termed it, standard hydrogen electrode (S.H.E.). The physically measured potential difference across a reversible cell made up of any electrode and a standard hydrogen electrode is called the reversible potential of the electrode, E. If the electrode (other than hydrogen) is also being operated under standard conditions of pressure and concentrations, the potential difference across the cell is the standard electrode potential, E0 of the electrode other than hydrogen.


The Nernst Equation for an electrode links the actual (measurable) reversible potential of an electrode E, to the standard reversible potential, E0. It may be described as:

E=E0−(0.05915/n)log(activity of the reactants/activity of the products),


where n is the reaction charge (the number of electrons that are transferred).


Another use of the Nernst equation is to provide the activity ratio, which is approximately equal to the concentration ratio between the reactants and products.


Given the reversible potential at an electrode E, and the concentration of the reactants, the concentration of the products may be calculated, and vise versa.


While electrochemistry is extensively applied in many technological fields, its application in vivo is limited to fewer reports and applications.


Electrochemical treatment of tumors is referred to in the medical literature as ECT.


In an ECT procedure, electrodes are implanted at spaced positions in or around the malignant tumor to be treated. Applied across these electrodes is a low DC voltage usually having a magnitude of less than 10 volts, causing a current to flow between the electrodes through the tumor. Due to an electrochemical process, reaction products are formed, which include cytotoxic agents that act to destroy the tumor cells.


In the ECT technique disclosed by Li et al., in Bioelectromagnetic 18:2-7 (1997), in the article “Effects of Direct Current on Dog Liver: Possible Mechanisms For Tumor Electrochemical Treatment” two platinum anode and cathode electrodes were inserted in a dog's liver with a 3 cm separation therebetween. Applied across these electrodes was a DC voltage of 8.5 volts, giving rise to an average current through the liver of 30 mA. This was continued for 69 minutes, with a total charge of 124 coulombs.


The concentration of selected ions near the anode and cathode were measured. The concentration of Na+ and K+ ions were found to be higher around the cathode, whereas the concentration of Cl ions was higher around the anode. Water content and pH were determined near the anode and cathode, the pH values being 2.1 near the anode and 12.9 near the cathode. The released gases were identified as chlorine at the anode and hydrogen at the cathode. The series of electrochemical reactions which took place during ECT resulted in the rapid and complete destruction of both normal and tumor cells in the liver.


Another example of ECT appears in the article “Electrochemical Treatment of Lung Cancer” by Xin et al. in Bioelectromagnetics 18:8-13 (1997). In this ECT procedure platinum electrodes were inserted transcutaneously into a tumor, the voltage applied thereto was in the 6-8 volt range, the current was in the 40 to 100 mA range, and the electric charge, 100 coulombs per cm of tumor diameter.


According to this article, the clinical results indicate that ECT provides a simple, safe and effective way of treating lung cancers that are surgically inoperable and are not responsive to chemotherapy or radiotherapy.


Also disclosing ECT techniques are Chou et al., Bioelectromagnetics 18:14-24 (1997); Yen et al., Bioelectromagnetics 20:34-41 (1999); Turler at al., Bioelectromagnetics 21:395-401 (2000); Ren at al., Bioelectromagnetics 22:205-211 (2001); U.S. Pat. No. 5,360,440 to Andersen and U.S. Pat. No. 6,021,347 to Herbst et al.


Electrochemical reactions as a function of pH and electrode potential can be predicted by means of a Pourbaix diagram, as disclosed in the Atlas of Electrochemical Equilibria in Aqueous Solutions—Pergamon Press, 1986—by Pourbaix.


While U.S. Pat. No. 5,458,627 to Baranowski Jr., et al. does not relate to ECT but to the electrochemically controlled stimulation of osteogenesis, it is nevertheless of prior art interest, for it discloses that reaction products produced by an electrochemical reaction includes not only hydrogen and oxygen, but also hydrogen peroxide.


In the text Methods in Cell Biology, Vol. 46—Cell Death—published by Academic Press, it is noted (on page 163), that hydrogen peroxide has been reported to be an inducer of cell death in various cell systems. This type of cell death is attributed to the direct cytotoxicity of H2O2 and other oxidant species generated from H2O2.


The above described ECT technologies are limited in several aspects. First, they all pertain to the treatment of solid tumor masses, yet other applications are not envisaged. Second, they all fail to teach implantable electrochemical devices which are controlled and/or powered via telemetry.


U.S. Pat. Nos. 5,797,898 and 6,123,861 to Santini Jr. et al. both describe microchips which comprise a plurality of drug containing capped reservoirs, whereas in one embodiment the release of the drug therefrom is effected by disintegration of the caps via an electrochemical reaction.


While Santini Jr. et al. teach an electrochemical in vivo drug release mechanism effected by telemetry, Santini Jr. et al. fails to teach the in vivo electrochemical production of therapeutic agents.


U.S. Pat. No. 6,185,455, teaches functional neuromuscular stimulation (FNS) or functional electrical stimulation (FES) devices, designed also to locally release drugs that inhibit physiological reactions against the devices.


U.S. Pat. No. 5,938,903 teaches a microelectrode for inserting in vivo, in vitro into a warm-blooded or cold blooded animal brain or body, or extra-corporeally and measuring intracellular and/or extracellular concentration and/or release and/or reuptake of one or more biogenic chemicals while measuring said chemical in vivo or in vitro.


U.S. Pat. No. 5,833,715 teaches a pacing lead having a stylet introduced anti-inflammatory drug delivery element advanceable from the distal tip electrode. The element is formed as a moldable biocompatible composite material. The element has a biocompatible matrix material which may be combined with drugs and therapeutic agents to deliver the drugs and agents by co-dissolution or diffusion to the point of either passive or active fixation. The drug delivery element may be rigid and serve to center an active fixation mechanism, preferably a helix, which penetrates the myocardium.


U.S. Pat. No. 3,868,578 teaches a method and apparatus for electroanalysis.


U.S. Pat. No. 6,201,991 teaches a method and system for preventing or treating atherosclerosis in which a blood vessel susceptible to or containing atherosclerotic plaque is subjected to a low-frequency electrical impulse at an effective rate and amplitude to prevent or impede the establishment or decrease the size of the plaque in the vessel. The system can be implanted into the body of a patient or applied externally to the skin.


U.S. Pat. No. 5,360,440 teaches an apparatus for the in situ generation of an electrical current in a biological environment characterized by including an electrolytic fluid. The apparatus comprises first and second electrodes of differing electrochemical potentials separated by an insulator. The apparatus is adapted to be implanted in the environment. The presence of the electrolytic fluid and formation of a current path by hyperplastic cells bridging the electrodes enables electrolysis to occur and a direct current to pass through the current path to impede hyperplastic cell growth.


U.S. Pat. No. 6,206,914 teaches an implantable system that includes a carrier and eukaryotic cells, which produce and release a therapeutic agent, and a stimulating element for stimulating the release of the therapeutic agent. The system can also include a sensing element for monitoring a physiological condition and triggering the stimulating element to stimulate the delivery device to release the therapeutic agent. Alternatively, the patient in whom the system is implanted can activate the stimulating element to release the therapeutic agent. In one embodiment the carrier is medical electrical electrodes.


U.S. Pat. No. 6,366,808 describes an implantable electrical method and apparatus for the treatment of cancer tumors based on the usage of various levels of electrical fields and current to assist in specific ways to reduce tumor size. The method comprises: (1) implanting at least one electrode into or near a tumor, (2) implanting a source of electrical power, (3) connecting the electrode to the source of electrical power and (4) delivering electrical current into the tumor. Alternatively, the method comprises: (1) implanting at least one electrode into a tumor, (2) implanting a source of electrical power, (3) connecting the electrode to the source of electrical power, (4) monitoring at least one voltage from within tissue, and (5) delivering electrical current into the tumor. In both cases, it is the electrical current that provides the therapeutic action.


U.S. Pat. No. 5,951,458 describes a method for inhibiting restenosis by local application of an oxidizing agent to blood vessel walls. Preferred oxidizing agents include peroxides, most preferably hydrogen peroxide. Oxidizing agents can be delivered utilizing drug delivery balloon catheters. Preferred delivery catheters include an inflatable balloon having a perfusion lumen therethrough to allow for longer application periods. Oxidizing agents can be delivered either alone or in conjunction with radiation or stent delivery. One method includes local delivery of 0.1% hydrogen peroxide to a dilated stenosis wall for a period of 10 minutes at a rate of 0.5 cc per minute.


Each one of these patents, however, fails to teach in vivo electrochemical production of therapeutic agents.


There is thus a great need for and it would be highly advantageous to have methods, systems and devices for in vivo electrochemical production of therapeutic agents.


SUMMARY OF THE INVENTION

Hence, according to one aspect of the present invention, there is provided a method of producing a therapeutic agent in a body, the method comprising implanting an active metal in a tissue, for electrochemically converting at least one substance present in the body fluid into the therapeutic agent.


According to an additional aspect of the present invention, electrochemically converting the at least one substance present in the body fluid into the therapeutic agent comprises direct conversion.


According to an additional aspect of the present invention, electrochemically converting the at least one substance present in the body fluid into the therapeutic agent comprises indirect conversion.


According to an additional aspect of the present invention, the at least one substance is a normal body fluid constituent.


According to an additional aspect of the present invention, the normal body fluid constituent is selected from the group consisting of water, molecular oxygen, nitrite and nitrate ions and L-arginine.


According to an alternative aspect of the present invention, the at least one substance is administered to the body.


According to an additional aspect of the present invention, the at least one substance is administered to the body through a diet.


According to an alternative aspect of the present invention, the at least one substance is administered to the body through a medical administration.


According to an additional aspect of the present invention, the at least one substance is selected from the group consisting of nitrite ion, nitrate ions, and a combination thereof.


According to an additional aspect of the present invention, the therapeutic agent is the vasodilating agent, nitric oxide (NO).


According to an alternative aspect of the present invention, the therapeutic agent is an oxidizing agent.


According to an additional aspect of the present invention, the oxidizing agent is selected from the group consisting of molecular chloride, perchloric acid, superoxide, ozone, molecular oxygen, singlet oxygen, hydroxyl radical, hypochlorite, hydrogen peroxide and a combination thereof.


According to an additional aspect of the present invention, the active metal comprises zinc.


According to an alternative aspect of the present invention, the active metal comprises iron.


According to an additional aspect of the present invention, implanting comprises implanting a stent formed of a biologically inert metal, fully coated with the active metal.


According to an alternative aspect of the present invention, implanting comprises implanting a stent formed of a biologically inert metal, having:


a portion coated with the active metal, operative as an anode; and


an uncoated portion, operative as a cathode.


According to an additional aspect of the present invention, the implanting further comprises implanting the portion coated with the active metal, downstream of the uncoated portion, so that the therapeutic agents, produced at the cathode, will migrate downstream with the body fluid, to effect therapy at the anode as well.


According to an alternative aspect of the present invention, the coated and uncoated portions are equally distributed along the length and width of the stent.


According to an additional aspect of the present invention, the uncoated portion is further operative as a catalyst to the conversion.


According to an alternative aspect of the present invention, implanting comprises implanting a stent formed of a biologically inert material, wherein the stent includes a piece of the active metal attached thereto.


According to an additional aspect of the present invention, the stent is further operative as a catalyst to the conversion.


According to an alternative aspect of the present invention, implanting comprises implanting an anchor formed of a biologically inert metal, fully coated with the active metal.


According to an additional aspect of the present invention, implanting comprises implanting an anchor formed of a biologically inert metal, having:


a portion coated with the active metal, operative as an anode; and


an uncoated portion, operative as a cathode.


According to an additional aspect of the present invention, the implanting further comprises implanting the portion coated with the active metal, downstream of the uncoated portion, so that the therapeutic agents, produced at the cathode, will migrate downstream with the body fluid, to effect therapy at the anode as well.


According to an alternative aspect of the present invention, the coated and uncoated portions are equally distributed along the length and width of the anchor.


According to an additional aspect of the present invention, the uncoated portion is further operative as a catalyst to the conversion.


According to an alternative aspect of the present invention, implanting comprises implanting an anchor formed of a biologically inert material, wherein the anchor includes a piece of the active metal attached thereto.


According to an additional aspect of the present invention, the anchor is further operative as a catalyst to the conversion.


According to an additional aspect of the present invention, the tissue is a blood vessel.


According to an additional aspect of the present invention, the tissue is a renal artery.


According to an alternative aspect of the present invention, the tissue a brain tissue.


According to an alternative aspect of the present invention, the tissue is a cancerous tissue.


According to an alternative aspect of the present invention, the tissue is a blood vessel feeding a cancerous tissue.


According to an alternative aspect of the present invention, the tissue is a blood vessel feeding a tissue for which therapeutic treatment is desired.


According to another aspect of the present invention, there is provided a method, comprising implanting an active metal in the body, for electrochemically converting at least one substance, present in the body, into the oxidizing agent.


According to another aspect of the present invention, there is provided a method, comprising implanting an active metal in the tissue, for electrochemically converting at least one substance, present in the body fluid, into an oxidizing agent, in an amount sufficient for reducing cell proliferation in the tissue.


According to another aspect of the present invention, there is provided a method, comprising implanting an active metal in a tissue, for electrochemically converting at least one substance present in the body fluid into the vasodilating agent, nitric oxide.


According to another aspect of the present invention, there is provided a medical implant for producing a therapeutic agent in a body, the medical implant comprising an active metal for electrochemically converting in a body fluid stream environment, at least one substance present in the body fluid into the therapeutic agent.


According to another aspect of the present invention, there is provided an implanted vessel, comprising an active metal, for electrochemically converting in a body fluid stream environment, at least one substance present in the body fluid into the therapeutic agent. The present invention successfully addresses the shortcomings of the presently known configurations by providing a device and method for spontaneous electrochemical production of therapeutic species, within a tissue, by implanting in the tissue an active metal, which undergoes corrosion, thus acting as a reducing agent to constituents in the tissue, so as to cause these constituents to form the therapeutic agents.


Unless otherwise defined, all technical and scientific terms used herein have the same meanings as are commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.


In case of conflict, the patent specification, including definitions, will prevail. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.


In the drawings:



FIG. 1 is a schematic illustration of a stent, coated with an active metal, in accordance with another preferred embodiment of the present invention;



FIG. 2 is a schematic illustration of a stent, partially coated with an active metal, in accordance with another preferred embodiment of the present invention;



FIG. 3 is a schematic illustration of a stent, partially coated with an active metal, in accordance with another preferred embodiment of the present invention;



FIG. 4 is a schematic illustration of a stent, to which a strip of active metal is attached, in accordance with another preferred embodiment of the present invention;



FIG. 5 is a schematic illustration of an anchor, partially coated with an active metal, in accordance with another preferred embodiment of the present invention;



FIGS. 6A and 6B are schematic illustrations of an implant, adapted for cancer treatment, in accordance with another preferred embodiment of the present invention;



FIGS. 7A-7D are schematic illustrations of implantable vessels, in accordance with another preferred embodiment of the present invention; and



FIG. 8 is a schematic illustration of a stent, coated with an active metal, at the renal arteries, in accordance with the present invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is of a device and method for spontaneous electrochemical production of therapeutic species, within a tissue. Specifically, the present invention relates to implanting in the tissue an active metal, which undergoes corrosion, thus acting as a reducing agent to constituents in the tissue, so as to cause these constituents to form the therapeutic agents.


The principles and operation of the device according to the present invention may be better understood with reference to the drawings and accompanying descriptions.


Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details set forth in the following description or exemplified by the Examples. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.


Referring now to the drawings, FIG. 1 is a schematic illustration of an implant 10, formed as a stent 10, fully coated with an active metal 12, in accordance with a first preferred embodiment of the present invention. An active metal in the present context is a metal that will corrode in the body environment, and thus act as a reducing agent. Active metal 12 may be for example, zinc. Alternatively, it may be iron.


Stent 10 is adapted for implantation in a blood vessel, where active metal 12 will corrode and act as a reducing agent for blood constituents, and (or) other body fluid constituents, as will be described hereinbelow, in conjunctions with Examples 1-8. In accordance with the first preferred embodiment of the present invention, stent 10 is homogeneous, and operative as an anode and a cathode, wherein both oxidation and reduction reactions occur on its surface. In the absence of a catalyst, such as platinum, the corrosion reaction is relatively slow. Thus the first preferred embodiment of the present invention is applicable to situations, where a slow reaction rate is preferred.


Preferably, stent 10 is operative as a reducing agent, water and molecular oxygen, leading to the production of hydrogen peroxide and hydroxide ions. These can be used to prevent unwanted cell proliferation in cases of, for example, cancer, stenosis, restenosis, in-stent stenosis, and in-graft stenosis. Their production by stent 10 is particularly useful for treatment of in-stent stenosis.


Additionally or alternatively, stent 10 is operative as a reducing agent to nitrite and nitrate ions, and L-arginine, leading to the production of the vasodilating agent nitric oxide (NO). Nitric oxide may be operative to dilate blood vessels. In particular, stent 10 may be placed in the renal artery, and the production of nitric oxide may enlarge renal blood vessels and blood capillaries. However, it will be appreciated that for significant production of nitric acid, nitrite and nitrate ions may need to be administered to the body, by diet, or intravenously.


As will be described hereinbelow, in conjunction with Examples 1-8, some reduction reactions are a single-step reduction process, so the electrochemical conversion of a substance into a therapeutic agent may be considered a direct conversion. Other reduction reactions include two or more steps, so the electrochemical conversion of a substance into a therapeutic agent may be considered indirect conversion.


It will be appreciated that since the active metal undergoes depletion, the therapeutic nature of the present invention is temporary.


Referring further to the drawings, FIG. 2 is a schematic illustration of implant 10, formed as stent 10, formed of a platinum body 14, and partially coated with active metal 12, in accordance with a second preferred embodiment of the present invention. In this situation, the portion coated with active metal 12 acts as an anode while the portion formed of bare platinum body 14 acts as a cathode. In the presence of platinum, which acts as a catalyst, the corrosion reaction is considerably faster than that described in conjunction with FIG. 1. In accordance with the present embodiment, stent 10 is disposed with the cathode upstream of the anode, so that therapeutic compounds produced at the cathode, will migrate downstream with the blood, to effect therapy at the anode as well.


It will be appreciated that another biologically inert metal, operative as a catalyst, may be used for the cathode, in place of platinum. For example, palladium, iridium, nickel, a platinum-iridium alloy, or other alloys thereof may be used.


It will be appreciated that a biologically inert metal, which is a relatively poor catalyst, may still be used for the cathode, in place of platinum. For example, stainless steel, gold, or a gold alloy may be used. The use of a poor catalyst, such as stainless steel, will slow down the reaction, when compared to the use of platinum.


It will be appreciated that a biologically inert material, which is inoperative as a cathode, may still be used for the stent body, in place of platinum. For example, titanium, tantalum, alloys thereof, as well as various other materials such as a high-strength, high-resilience plastic may be used. The use of these materials will create a situation wherein active metal 12 is operative both as an anode and as a cathode, similar to the situation described in context of FIG. 1.


It will be appreciated that a combination of three or more materials may also be used in stent 10.


Referring further to the drawings, FIG. 3 is a schematic illustration of implant 10, formed as stent 10, formed of platinum body 14, and partially coated with active metal 12, in accordance with a third preferred embodiment of the present invention. In accordance with the present embodiment, the portions of bare platinum body 14 and active metal coating 12 are evenly distributed along stent 10. Alternating coating patterns may also be employed, generating a plurality of alternating cathodes and anodes. In these manners, the therapeutic compounds produced at the cathode generally reach all portions of stent 10, in a manner somewhat similar to that of FIG. 1.


The current density on the uncoated portions of the stent may not be uniform—it will be the highest in regions of contact between the coated and the uncoated portions, where the electrolytic path between the anodic and the cathodic sections of the surface is the shortest, which amounts to the lowest internal resistance of the local cells. A non-uniform current distribution may, in fact, be useful to create the highest concentration of therapeutic species, where restenosis is expected to be the most severe.


The total amount of zinc coated can be chosen to ensure that the electroless reduction occurs just as long as desired. The rate of corrosion of the zinc will depend on the location of the stent, the flow rate and the amount of oxygen in the blood, as well as on the nature of the metal of which the stent has been constructed.


It will be appreciated that with time, the situation of FIG. 1, hereinabove, will resemble that of FIG. 3, due to active metal depletion.


Referring further to the drawings, FIG. 4 is a schematic illustration of an implant 35, which includes stent 10, formed of bare platinum body 14, in accordance with a fourth preferred embodiment of the present invention. Additionally, implant 35 includes a strip of active metal 12. An electronic conductor, such as a metal wire 16, connects active metal 12, forming the anode, and bare platinum body 14, forming the cathode.


There are several reasons for metal wire 16 of implant 35, as follows:


i. The anode and cathode may be implanted at different locations, for example, as will be described hereinbelow, in conjunction with FIGS. 6A and 6B.


ii. By providing an ammeter 19, or an equivalent thereof, in electrical communication with metal wire 16, the current through metal wire 16 may be measured, for providing an indication of the reaction rate.


iii. Additionally, by adding a variable resistor 21, controlled by a controller 23, wherein controller 23 is in signal communication with ammeter 19, and by adding a power source 25, one could control the current through metal wire 16, hence, the reaction rate, responsive to measurements of ammeter 19. Power source 25 may be, for example, a miniature battery. Miniature body implantable batteries are well known in the art. Such batteries are used, for example, for powering pace-makers and other devices and sensors implanted in the body.


iv. By adding a receiver 27 and a transmitter 29, in signal communication with controller 23, an extracorporeal station could receive signals, indicative of the reaction rate, as measured by ammeter 19, and transmit signals for varying the resistance of resistor 21, preferably responsive to the reaction rate signals.


v. By providing a telemetric energy transfer, battery 25 may be recharged. Telemetric energy transfer according to the present invention can be effected in any one of a plurality of ways known in the art, including radio frequency energy transfer, magnetic energy transfer and acoustic energy transfer.


Radio frequency energy transfer can be effected, for example, using an antenna coil and a rectifying circuit. Such circuits are well known and in common use in pacemakers and defibrillators, and therefore require no further description herein.


Magnetic energy transfer can be effected, for example, using a magnetic transducer which employs a magnet and a coil as is well known in the art. Examples of magnetic energy transfer are disclosed in, for example, U.S. Pat. Nos. 5,880,661, 6,185,457, 6,167,307, 6,164,284 and 6,162,238, which are incorporated herein by reference.


Acoustic energy transfer can be effected, for example, using an acoustic transducer as described, for example, in U.S. Pat. Nos. 6,140,740 and 6,170,488, which are incorporated herein by reference.


Telemetry can also be used, according to the present invention, to transmit data pertaining to the implant and (or) its effect from within the body outside thereof, for example as taught by U.S. Pat. No. 6,277,078, U.S. patent application Ser. No. 09/872,129, and U.S. patent application Ser. No. 09/690,615, whose disclosures are incorporated herein by reference.


Thus, implant 35 of the present invention may employ telemetry for accomplishing powering, control and/or communication of data. Different type telemetry can be employed for effecting each of these criteria.


In case telemetry is employed, an extracorporeal unit is provided, designed and constructed for powering, interrogating, controlling and/or receiving data from the implant.


Referring further to the drawings, FIG. 5 is a schematic illustration of an anchor 30, formed of platinum body 14, and partially coated with an active metal 12, in accordance with another preferred embodiment of the present invention. Anchor 30, which includes anchoring pins 18, or other means of anchorage, may be implanted in tissue other than the blood vessel, for example, in the brain, or within a cancerous tissue. When implanted in the brain, a brain fluid known as cerebrospinal fluid (CSF) is operative as the electrolyte for the electrochemical reaction. When implanted in cancerous tissue, or another tissue, the interstitial fluid is operative as the electrolyte for the electrochemical reaction. It will be appreciated that anchor 30 may be implanted also in the stomach, the intestines, and other body cavities and organs, such as the bladder cavity.


Referring further to the drawings, FIGS. 6A and 6B are schematic illustrations of implants 40, adapted for cancer treatment, in accordance with another preferred embodiment of the present invention. Preferably, implant 40 is formed of stent 10, fully coated with an active metal, and operative as an anode, adapted for implantation in a blood vessel 20 which feeds a tumor 22. At least one cathode, preferably formed of bare platinum 14, is implanted within tumor 22. Additionally, a plurality of cathodes of bare platinum 14, may be implanted, for a better distribution of the therapeutic compounds. Uniform production and concentration of the therapeutic compound in the tumor will ensure that all the tumor will be treated with minimal side effect on the healthy tissue and organ around it. The interstitial fluid is operative as the electrolyte for the electrochemical reaction, producing therapeutic agents within the tumor.


Referring further to the drawings, FIGS. 7A-7D are schematic illustrations of implantable vessels 50, in accordance with another preferred embodiment of the present invention. The problem of restenosis is not limited to stents, rather it is also characteristic of implantable vessels, including artificial or natural grafts such as by-pass grafts of veins or arteries, and shunts. Thus, an implantable vessel 50 includes a vessel body 51, defining a flexible tube. Body 51 may be an artificial body, made of an acceptable material such as ePTFE or Dacron. However, vessel 50 may also be a natural blood vessel, obtained for, example from the lungs or the leg.


As seen in FIGS. 7A and 7B, body 51 includes a metal mesh 17, formed of bare platinum 14 wires, operative as cathodes, and zinc coated wires 12, operative as anodes.


Alternatively, as seen in FIGS. 7C-7C, body 51 includes a metal mesh 15, formed of bare platinum 14 wires, operative as cathodes. A zinc anode, may be located outside body 51, connected to cathodes 14 via wire 16.


It will be appreciated that a single zinc wire, or a pair of zinc and platinum wires, connected by a metal wire, or a stent, or a ring, fully or partly coated with zinc may also be used with the implantable vessel. It will be appreciated that other geometries are similarly possible.


It will be appreciated that another active metal, such as iron, may be used for the anode, and another inert metal may be used for the cathode, as has been described hereinabove.


Referring further to the drawings, FIG. 8 is a schematic illustration of a stent 10, coated with an active metal, at renal arteries 60, in accordance with the present invention.


Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.


EXAMPLES

Reference is now made to the following examples, which together with the above descriptions, illustrate the invention in a non-limiting fashion.


Example 1
Open-Circuit Corrosion

When an active metal, such as zinc or iron, is placed in solution, it tends to corrode, by the anodic dissolution of the metal, for example,

Zn→Zn2++2e  [1]


This process cannot continue for any significant length of time, without a suitable cathodic process, in which the electrons are consumed. In blood and other physiological fluids the typical pH is 7.4. Thus, the cathodic process may be described as:

O2+2H2O+4e→4(OH)  [2]


The average potential measured vs. a suitable reference electrode will be somewhere between the reversible potentials for the anodic and the cathodic reactions. However, on the atomic scale, there will be sites on which the anodic reaction will take place and others on which the cathodic reaction will occur.


Zinc or iron are the preferred active metals for the present invention, because their reversible potentials are sufficiently negative and because they both exist naturally in blood and a small increase in their concentration is unlikely to be physiologically damaging or poisonous.


Example 2

Electroless In-Vivo Reduction of NO2 and NO3


The appropriate reactions for the anions of nitrous acid (the nitrate, NO3) and nitric acid, (the nitrite, NO2), and their reversible potentials in the blood and other body fluids, at pH=7.4, are given below.

NO2+H2O+e→NO+2(HO) E=0.329 V vs. SHE  [3]
NO3+2H2O+3e→NO+4(HO) E=0.350 V vs. SHE  [4]


If an active metal such as zinc or iron is attached to a stent and corrodes, as described in Equation [1], either one of the above reactions could take part in the corrosion process, as the cathodic reaction. In principle, Equations [3] and [4] may be considered single-step reduction processes, so that the electrochemical conversion is direct.


Oxygen reduction (Equation [2], as well as the equations of Example 3, hereinbelow) may also occur in parallel with Equations [3] and [4], so that the current efficiency for the reduction of the nitrogen-containing anion will probably be less than unity. This process may be called electroless in-vivo reduction.


Example 3
In-Vivo Electrochemical Production of Hydrogen Peroxide

Thermodynamically, oxygen reduction should lead to the formation of water. However, the high activation energy of the reaction makes it less favored, when compared with competing reactions, though thermodynamically unstable, as follows:

O2+2H2O+2e→H2O2+2(OH)  [5]


This reaction may then be followed by the reaction:

H2O2+2e→2(OH)  [6]


In this instance, one may consider the products of reaction [5] direct, while the product of reaction [6], the second-step reaction, indirect.


The following discussion analyzes and compares the thermodynamics and the kinetics of reaction [5] and [6], which lead to the presence of H2O2 in aquatious solutions, with those of alternative reactions, which may be thermodynamically stable, but kinetically very slow to proceed.


The other reaction that can take place and is relevant in the present context, although as pointed out, it is very slow, kinetically, is:

O2+2H2O+4e→4(OH)  [7]


In addition, the following process, in which molecular hydrogen is formed, can occur at sufficiently negative potentials, but it is thermodynamically unfavored at a pH of 7.4, and in the presence of dissolved oxygen and other reducible materials, such as nitrite and nitrate ions:

2H2O+2e→2(OH)+H2  [8]


The corresponding standard reduction potentials at pH=0 and at the body pH of 7.4 are:

















E0 (volt SHE)
E0 (volt SHE)


Equation
Reaction
at pH = 0
at pH = 7.4


















 [9]
Reduction of H2O2 to H2O
1.776
1.339


[10]
Reduction of O2 to H2O2
0.682
0.245


[11]
Reduction of O2 to H2O
1.229
0.792


[12]
Reduction of H2O to H2
0.000
−0.437









It follows from these data that hydrogen peroxide is not stable thermodynamically in water. To further demonstrate this, one may add reaction [6] with the reverse of reaction [5]:

H2O2+2e→2(OH) E0=1.339V  [6]
H2O2→O22H++2e E0=−0.245V  [reverse of 5]
2H2O2→O2+2H2O; ΔE0=1.094V  [13]


From thermodynamic considerations, the self-decomposition reaction of hydrogen peroxide (Equation [9]) is favored, since:

ΔG0=−nFΔE0=−211 kJ/mole  [14]


Specifically, is should not be possible to make and maintain an appreciable concentration of hydrogen peroxide in aqueous solution. At the positive electrode water is oxidized to hydrogen peroxide at 1.339 V (at pH=7.4), while hydrogen peroxide is oxidized to molecular oxygen at a much lower potential of 0.245 V. In other words, at the potential at which it is formed from water, H2O, is highly unstable with respect to its further oxidation to O2.


The relative stability of this compound in water is primarily due to the slow kinetics of its decomposition. This is not surprising, considering that during the reaction described in Equation [13], two H—O bonds are broken in one molecule and an O—O bond is broken in another. It also follows from Equation [13] that the rate of self-decomposition, which is a bi-homomolecular reaction, will decrease with dilution, as is well known experimentally.


Similarly, at the negative electrode, oxygen can be reduced to hydrogen peroxide at a potential of 0.245 V, where it is highly unstable towards further reduction to water, which can occur already at a potential of 1.339 V. This is a direct consequence of the thermodynamic instability of H2O2.


However, the kinetics of the different reactions plays a decisive role. In practice O2 is reduced in two stages. A two-electron reduction step to H2O2 (Equation [5]) followed by another two-electron reduction step of the peroxide to (OH) (Equation [6]). The slow kinetics of the second step (Equation [6]), or alternative step (Equation [7]) is not surprising. In Equation [5] two protons are attached to an oxygen molecule following charge transfer, but no bonds are broken. In Equations [6] and [7] the O—O bond must be broken. Indeed, one of the challenges facing the development of practical fuel cells is to develop efficient (and inexpensive) catalyst that can promote the reduction of oxygen to water and prevent its termination at the peroxide stage.


Hydrogen evolution (Equation [8]) can be a relatively fast reaction, comparable to or even faster than the reduction of O2 to H2O2. However, its reversible potential is 0.682 V more negative. Therefore oxygen reduction to peroxide is found to occur first. The second reduction wave of oxygen (Equation [6]), associated with the reduction of H2O2 that is formed as an intermediate step, is at a high overpotential in the region of hydrogen evolution and can occur before, together with, or after the onset of hydrogen evolution.


In summary, the sequence of reactions occurring at the cathode in an aqueous solution containing oxygen is:

O2→H2O2→H2O→H2  [15]


If the current density applied is small and the concentration of oxygen in the solution is high enough, so that its concentration at the cathode surface is not significantly depleted, the first step, i.e., the production of H2O2 and the reduction of nitrite and nitrate to nitric oxide will probably be the main processes taking place at the cathode.


Example 4
Electrode Kinetic Considerations

Given an active metal, such as zinc, immersed in an electrolyte, operative as an anode, different second electrode selections and configurations will effect the reaction rate, as follows:


i. When no second electrode is provided, the anodic and the cathodic reactions occur on different parts of the active-metal surface, perhaps at locations very close to each other, but possibly further away, depending on the degree of inhomogeneity of the surface. This situation is illustrated in FIG. 1.


ii. When a second electrode, such as stainless steel, which is not a catalyst, is provided, for example, when a stent, formed of stainless steel, is partly coated with an active metal, the cathodic reaction may take place on the second electrode. However, the reaction rate will not be substantially affected by the presence of the second metal.


iii. When a second electrode, such as platinum, which is a known catalyst, is provided, for example, when a stent, formed of platinum, is partly coated with an active metal, with no electrical insulation between the two metals, the cathodic reaction will be preferential to the second electrode, and the reaction rate will greatly increase. This situation is illustrated in FIGS. 2 and 3.


iv. When a second electrode, whether operative as a catalyst or not (e.g., platinum or stainless steel) is provided, connected by an electronic conductor, such as a variable resistor, to the active metal, the reaction rate may be controlled, by controlling the rate of electron transfer between the cathode and the anode. This situation is illustrated in FIG. 4.


It will be appreciated that combinations of the above are possible.


It will be appreciated that the stent or anchor may be formed of inert materials that do not participate in the reactions and an anode, or an anode and a cathode, which may be further operative as a catalyst, may be attached to the stent or anchor.


Example 5
The Rate of Corrosion of an Active Metal in the Blood

The rate of the active metal corrosion determines the concentration of the electrochemical reaction products. The rate is controlled by the reversible potential of the metal at the given condition and by the reactant concentration (e.g., dissolved oxygen).


The following corrosion rate estimation is given for zinc, although other active metals can be used, such as iron.


The standard reversible potential for the Zn+2/Zn couple is −0.76 volts versus SHE (Standard Hydrogen Electrode). The reversible potential will depend on the concentration in the solution according to the Nernst equation. It is common, in considering corrosion problems, based on the Pourbaix's potential—pH diagrams, to assume that the concentration of the corrosion product (Zn+2 in the present case) is 1 micro molar. The reversible potential will be:

Erev=E0+(0.0295RT)log|Zn+2|=−0.937 SHE  [16]


The above is independent of pH. For the reduction of O2 to H2O2 at pH=7.4, one has Erev=0.68 V and for NO3 Erev=0.350 V.


As will be shown, the open circuit corrosion potential will be very close to the reversible potential for zinc, perhaps less than 50 mV anodic to it. At such a negative potential, the reduction of both oxygen and the nitrate ion will be almost equal to the rate of anodic dissolution of the metal.


The concentration of oxygen and nitrate in the blood are approximately 0.13 mM and 0.038 mM respectively. The diffusion coefficient of oxygen is 2×10−5 cm2/s. That of nitrate is probably somewhat lower, but since this ion is at a lower concentration, one can use the same value for both species as a good approximation.


The limiting current density will be given by:









i
=



FD


(



n

o
2




C

o
2



+


n

NO
3
-




C

NO
3
-




)


δ

.





[
17
]







The Nernst diffusion-layer thickness, δ, depends on many factors, including the rate of flow of the blood and the accumulative deposition of cells or any other substance, such as blood proteins that may cover the surface. A value of 0.01 cm is a good estimate for a bare surface. Using this value yields:









i
=







96.485
·

10
3


×

2
·

10

-
5



×






(


2
×

1.3
·

10

-
7




+

3
×

0.38
·

10

-
7





)





1
·

10

-
2




=


72.2
·

10

-
6





A
/

cm
2








[
18
]








Converting this rate into mg/cm2sec results in:













72

μ





A


/



cm
2


=



72
·

10

-
6




96.485
·

10
3



×
32.7







=


24.4
·

10

-
9




gr


/



cm
2


sec








[
19
]







This value corresponds to a rate of about 2.1 mg/cm2 in a 24 hour period.


Note that this is only a gross estimation. The actual rate of zinc dissolution will be probably lower than the calculated value. The reasons for that are twofold. First, the diffusion coefficient in blood is lower than the values based on diffusion in diluted aqueous solution. Second, cells, platelets and proteins may cover metallic surfaces, resulting in a reduction of the reactants (oxygen and nitrate) flow rate and (or) their diffusion rate.


Example 6
An Estimate of the Concentration of No Produced at the Surface of the Stent

The total rate of corrosion, according to Equation [18], is 72.2×10−6 A/cm2. Assuming that all of this current is consumed in the 1-electron reduction of NO2 to NO, the rate of production of NO will be:











72.2
×

10

-
6




96.5
×

10
3



=


0.76
×

10

-
9



mole


/


s

=

22.6
×

10

-
9



g


/


s






[
20
]







The diffuse double layer thickness at the surface is given by:

δ=√{square root over (πDt)}  [21]


Using the values of D=2×10−5 cm2/s and t=1 sec, one gets, δ=8×10−3 cm, hence the average concentration of NO in the surface layer will be:

22.6×10−9/8×10−3=2.86 ppm  [22]


Note that if the source of NO will be the nitrate ion NO3, the above number will be divided by three, since three electrons are needed to reduce each nitrate ion to NO, while only one electron is needed to reduce a nitrite ion to NO.


Example 7
Zinc-Coated Coronary Stent

Taking a typical coronary stent 15 mm long expanded to 3 mm diameter with a metal coverage percentage of 15%. This stent has a metallic surface area of:

Sstent=π·D·L·2·0.15=0.424 cm2  [23]

where:


Sstent is the stent internal and external surfaces;


D is the stent diameter; and


L is the stent length.


The rate of zinc dissolution from the surface of such a device (assuming a corrosion rate calculated in Equation [19]) results in:

Rate=(24.4×10−9 gr/cm2s)×(0.424 cm2=1.0×10−8 gr/s  [24]

Assuming that the stent will be coated with 40 μm of zinc (density=7.14 gr/cc) resulting in a total of:










W
Zn

=


0.424
×
40
×

10

-
4




cm
3

×
7.14

gr


/



cm
3


=


12


mg










T
corrosion



=



12
·


10

-
3


/
1.0

·

10

-
8




s

=



1.2
·

10
6



s



14





days









[
25
]







Corrosion





rate

=


1
×

10

-
8



gm


/


s

=


8.6
×

10

-
4



gm


/


d



1





mg


/


d







[
26
]







It will be appreciated in this context that by selecting the amount of active metal, one can control the time by which electrode depletion will result is cessation of the reactions.


Example 8
Biological Effect of the Dissolved Metal

Zinc is an essential element in our diet. Too little zinc can cause health to problems, but too much zinc is also harmful.


Based on the Agency for Toxic Substances and Disease Registry (ATSDR). 1994, Toxicological profile for zinc, (Atlanta, Ga.: U.S. Department of Health and Human Services, Public Health Service), the recommended dietary allowance (RDA) for zinc is 15 milligrams a day for men; 12 mg/day for women; 10 mg/day for children; and 5 mg/day for infants. Insufficient zinc in one's diet can result in a loss of appetite, a decreased sense of taste and smell, slow wound healing and skin sores, a damaged immune system, poorly developed sex organs, in men and growth retardation of fetuses.


Too much zinc, however, can also be damaging to one's health. Harmful health effects generally begin at levels from 10-15 times the RDA (in the 100 to 250 mg/day range). As can be appreciated the zinc amount released by the implant is far lower than these levels. Thus, a systemic or a local damage due to a high zinc level is highly improbable.


It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub combination.


Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

Claims
  • 1. A stent adapted to be implanted in a blood vessel comprising: a stent body comprising a biologically inert metal selected from the group consisting of platinum, palladium, iridium, gold, and alloys thereof; anda coating of an active metal adapted to corrode when implanted in the blood vessel, the active metal comprising zinc or iron, wherein one or more portions of the stent body are uncoated to allow for direct exposure of the one or more portions of the stent body to body fluid when the stent is implanted within a body lumen, wherein the coating is upstream or downstream of at least one uncoated portion.
  • 2. The stent of claim 1, wherein the active metal comprises zinc.
  • 3. The stent of claim 1, wherein the active metal comprises iron.
  • 4. The stent of claim 1, wherein the biologically inert metal comprises platinum.
  • 5. The stent of claim 1, wherein the biologically inert metal comprises palladium.
  • 6. The stent of claim 1, wherein the biologically inert metal comprises gold.
  • 7. The stent of claim 1, wherein the active metal acts as an anode and the biologically inert metal acts as a cathode when the stent is implanted within a blood vessel.
  • 8. The stent of claim 7, wherein the active metal and the biologically inert metal are both directly exposed to the flow of body fluid in a blood vessel when the stent is implanted in a blood vessel.
  • 9. The stent of claim 1, wherein the stent comprises a body of the biologically inert metal and a coating of the active metal.
  • 10. The stent of claim 9, wherein the coating of the active metal is a partial coating such that the active metal acts as an anode and uncoated portions of the body act as a cathode.
  • 11. The stent of claim 10, wherein the uncoated portions of the body are upstream of the coated portions of the body.
  • 12. The stent of claim 1, wherein the active metal is adapted to electrochemically convert, in a body fluid stream environment, at least one substance present in the body fluid into a therapeutic agent.
  • 13. The stent of claim 12, wherein the at least one substance is a normal body fluid constituent.
  • 14. The stent of claim 13, wherein the normal body fluid constituent is selected from the group consisting of water, moledular oxygen, nitrite and nitrite ions and L-arginine.
  • 15. The stent of claim 12, wherein the at least one substance is a substance administered to the body.
  • 16. The stent of claim 15, wherein the at least one substance is selected from the group consisting of nitrite ions, nitrate ions, and a combination thereof.
  • 17. The stent of claim 12, wherein the therapeutic agent is an oxidizing agent.
  • 18. The stent of claim 12, wherein the therapeutic agent is the vasodilating agent, nitric oxide.
  • 19. A stent adapted to be implanted in a blood vessel comprising: a stent body comprising a biologically inert metal selected from the group consisting of palladium and alloys thereof; anda coating of an active metal adapted to corrode when implanted in the blood vessel, the active metal comprising iron, wherein one or more portions of the stent body are uncoated to allow for direct exposure of the one or more portions of the stent body to body fluid when the stent is implanted within a body lumen, wherein the coating is upstream or downstream of at least one uncoated portion.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of and claims priority to U.S. application Ser. No. 10/477,514, filed on Nov. 19, 2003, now U.S. Pat. No. 7,727,221. The above noted application is hereby incorporated by reference in its entirety.

US Referenced Citations (1328)
Number Name Date Kind
2950187 Ototani Aug 1960 A
3560362 Kasamatsu et al. Feb 1971 A
3569660 Houldcroft Mar 1971 A
3687135 Stroganov et al. Aug 1972 A
3758396 Vieth et al. Sep 1973 A
3868578 Oldham Feb 1975 A
3910819 Rembaum et al. Oct 1975 A
3948254 Zaffaroni Apr 1976 A
3952334 Bokros et al. Apr 1976 A
3993072 Zaffaroni Nov 1976 A
4002877 Banas Jan 1977 A
4101984 MacGregor Jul 1978 A
4143661 LaForge et al. Mar 1979 A
4202055 Reiner et al. May 1980 A
4237559 Borom Dec 1980 A
4308868 Jhabvala Jan 1982 A
4334327 Lyman et al. Jun 1982 A
4401546 Nakamura et al. Aug 1983 A
4532929 Mattei et al. Aug 1985 A
4539061 Sagiv Sep 1985 A
4542539 Rowe, Jr. et al. Sep 1985 A
4585652 Miller et al. Apr 1986 A
4634502 Callahan et al. Jan 1987 A
4655771 Wallsten Apr 1987 A
4657544 Pinchuk Apr 1987 A
4665896 LaForge et al. May 1987 A
4705502 Patel Nov 1987 A
4713070 Mano Dec 1987 A
4725273 Kira Feb 1988 A
4733665 Palmaz Mar 1988 A
4767418 Deininger et al. Aug 1988 A
4784659 Fleckenstein et al. Nov 1988 A
4800882 Gianturco Jan 1989 A
4804382 Turina et al. Feb 1989 A
4886062 Wiktor Dec 1989 A
4954126 Wallsten Sep 1990 A
4976692 Atad Dec 1990 A
4994071 MacGregor Feb 1991 A
5024671 Tu et al. Jun 1991 A
5059211 Stack et al. Oct 1991 A
5061275 Wallsten et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5073365 Katz et al. Dec 1991 A
5079203 Pinnavaia Jan 1992 A
5091024 DeBold et al. Feb 1992 A
5091205 Fan Feb 1992 A
5102403 Alt Apr 1992 A
5120322 Davis et al. Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5147370 McNamara et al. Sep 1992 A
5163958 Pinchuk Nov 1992 A
5195969 Wang et al. Mar 1993 A
5205921 Shirkanzadeh Apr 1993 A
5234457 Andersen Aug 1993 A
5236413 Feiring Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5270086 Hamlin Dec 1993 A
5279292 Baumann et al. Jan 1994 A
5290585 Elton Mar 1994 A
5292558 Heller et al. Mar 1994 A
5302414 Alkhimov et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5306286 Stack et al. Apr 1994 A
5314453 Jeutter May 1994 A
5322520 Milder Jun 1994 A
5342348 Kaplan Aug 1994 A
5348553 Whitney Sep 1994 A
5356433 Rowland et al. Oct 1994 A
5360440 Andersen Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5380298 Zabetakis et al. Jan 1995 A
5383935 Shirkhanzadeh Jan 1995 A
5385776 Maxfield et al. Jan 1995 A
5397307 Goodin Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5421955 Lau et al. Jun 1995 A
5439446 Barry Aug 1995 A
5443458 Eury Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5458627 Baranowski, Jr. et al. Oct 1995 A
5462575 Del Corso Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5468574 Ehrenberg et al. Nov 1995 A
5474797 Sioshansi et al. Dec 1995 A
5500013 Buscemi et al. Mar 1996 A
5514154 Lau et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5536573 Rubner et al. Jul 1996 A
5545208 Wolff et al. Aug 1996 A
5549664 Hirata et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5578075 Dayton Nov 1996 A
5587200 Lorenz et al. Dec 1996 A
5587507 Kohn et al. Dec 1996 A
5591222 Susawa et al. Jan 1997 A
5591224 Schwartz et al. Jan 1997 A
5599352 Dinh et al. Feb 1997 A
5603556 Klink Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607463 Schwartz et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5614549 Greenwald et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5628787 Mayer May 1997 A
5629077 Turnlund et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5649951 Davidson Jul 1997 A
5658327 Altman et al. Aug 1997 A
5674192 Sahatjian et al. Oct 1997 A
5674242 Phan Oct 1997 A
5676685 Razavi Oct 1997 A
5679440 Kubota Oct 1997 A
5690670 Davidson Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5693928 Egitto et al. Dec 1997 A
5697967 Dinh et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5721049 Marcolongo et al. Feb 1998 A
5725570 Heath Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5744515 Clapper Apr 1998 A
5749809 Lin May 1998 A
5749880 Banas et al. May 1998 A
5758562 Thompson Jun 1998 A
5759192 Saunders Jun 1998 A
5761775 Legome et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5769884 Solovay Jun 1998 A
5773925 Kimura et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5779904 Ruderman et al. Jul 1998 A
5780807 Saunders Jul 1998 A
5788626 Thompson Aug 1998 A
5788687 Batich et al. Aug 1998 A
5788979 Alt et al. Aug 1998 A
5797898 Santini, Jr. et al. Aug 1998 A
5800511 Mayer Sep 1998 A
5815904 Clubb et al. Oct 1998 A
5817046 Glickman Oct 1998 A
5824045 Alt Oct 1998 A
5824048 Tuch Oct 1998 A
5824077 Mayer Oct 1998 A
5830217 Ryan Nov 1998 A
5833715 Vachon et al. Nov 1998 A
5837007 Altman et al. Nov 1998 A
5837275 Burrell et al. Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843172 Yan Dec 1998 A
5852277 Gustafson Dec 1998 A
5854382 Loomis Dec 1998 A
5858556 Eckert et al. Jan 1999 A
5869140 Blohowiak et al. Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876756 Takada et al. Mar 1999 A
5879697 Ding et al. Mar 1999 A
5880661 Davidson et al. Mar 1999 A
5882335 Leone et al. Mar 1999 A
5891108 Leone et al. Apr 1999 A
5891191 Stinson Apr 1999 A
5899935 Ding May 1999 A
5902266 Leone et al. May 1999 A
5906759 Richter May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5922005 Richter et al. Jul 1999 A
5922021 Jang Jul 1999 A
5928247 Barry et al. Jul 1999 A
5935506 Schmitz et al. Aug 1999 A
5938903 Broderick Aug 1999 A
5941843 Atanasoska et al. Aug 1999 A
5951458 Hastings et al. Sep 1999 A
5951881 Rogers et al. Sep 1999 A
5954706 Sahatjian Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5958440 Burrell et al. Sep 1999 A
5961547 Razavi Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5972192 Dubin et al. Oct 1999 A
5976169 Imran Nov 1999 A
5976454 Sterzel et al. Nov 1999 A
5977204 Boyan et al. Nov 1999 A
5980554 Lenker et al. Nov 1999 A
5980564 Stinson Nov 1999 A
5980566 Alt et al. Nov 1999 A
6001125 Golds et al. Dec 1999 A
6013591 Ying et al. Jan 2000 A
6017553 Burrell et al. Jan 2000 A
6017577 Hostettler et al. Jan 2000 A
6021347 Herbst et al. Feb 2000 A
6025036 McGill et al. Feb 2000 A
6027742 Lee et al. Feb 2000 A
6034295 Rehberg et al. Mar 2000 A
6042597 Kveen et al. Mar 2000 A
6056776 Lau et al. May 2000 A
6063101 Jacobsen et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6080190 Schwartz Jun 2000 A
6086773 Dufresne et al. Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096175 Roth Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6107004 Donadio, III Aug 2000 A
6117592 Hoshino et al. Sep 2000 A
6120260 Jirele Sep 2000 A
6120535 McDonald et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6123861 Santini, Jr. et al. Sep 2000 A
6132463 Lee et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6139574 Vacanti et al. Oct 2000 A
6139913 Van Steenkiste et al. Oct 2000 A
6140740 Porat et al. Oct 2000 A
6143370 Panagiotou et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159142 Alt Dec 2000 A
6162238 Kaplan et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6165211 Thompson Dec 2000 A
6167307 Hess Dec 2000 A
6168602 Ryan Jan 2001 B1
6170488 Spillman, Jr. et al. Jan 2001 B1
6174329 Callol et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6180222 Schulz et al. Jan 2001 B1
6185455 Loeb et al. Feb 2001 B1
6185457 Kroll et al. Feb 2001 B1
6190404 Palmaz et al. Feb 2001 B1
6192271 Hayman Feb 2001 B1
6201991 Chekanov Mar 2001 B1
6203536 Berg et al. Mar 2001 B1
6206914 Soykan et al. Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6206916 Furst Mar 2001 B1
6212434 Scheiner Apr 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6217607 Alt Apr 2001 B1
6231597 Deem et al. May 2001 B1
6240616 Yan Jun 2001 B1
6241762 Shanley Jun 2001 B1
6245103 Stinson Jun 2001 B1
6245104 Alt Jun 2001 B1
6249952 Ding Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6251980 Lan et al. Jun 2001 B1
6253252 Schofield Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6258117 Camrud et al. Jul 2001 B1
6264687 Tomonto Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273908 Ndondo-Lay Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6280385 Melzer et al. Aug 2001 B1
6280411 Lennox Aug 2001 B1
6283386 Van Steenkiste et al. Sep 2001 B1
6287331 Heath Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287335 Drasler et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6290722 Wang Sep 2001 B1
6291076 Nakatsugawa Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6299755 Richter Oct 2001 B1
6306144 Sydney et al. Oct 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312463 Rourke et al. Nov 2001 B1
6315708 Salmon et al. Nov 2001 B1
6323146 Pugh et al. Nov 2001 B1
6325825 Kula et al. Dec 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6331312 Lee et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6337076 Studin Jan 2002 B1
6338739 Datta et al. Jan 2002 B1
6342507 Naicker et al. Jan 2002 B1
6344055 Shukov Feb 2002 B1
6348960 Etori et al. Feb 2002 B1
6358276 Edwin Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6364856 Ding et al. Apr 2002 B1
6364903 Tseng et al. Apr 2002 B2
6366808 Schroeppel et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6369355 Saunders Apr 2002 B1
6375826 Wang et al. Apr 2002 B1
6379379 Wang Apr 2002 B1
6379382 Yang et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6379392 Walak Apr 2002 B1
6383214 Banas et al. May 2002 B1
6387121 Alt May 2002 B1
6387124 Buscemi et al. May 2002 B1
6390967 Forman et al. May 2002 B1
6391033 Ryan May 2002 B2
6391052 Bulrge et al. May 2002 B2
6395326 Castro et al. May 2002 B1
6398806 You Jun 2002 B1
6409754 Smith et al. Jun 2002 B1
6419692 Yang et al. Jul 2002 B1
6423092 Datta et al. Jul 2002 B2
6425855 Tomonto Jul 2002 B2
6436133 Furst et al. Aug 2002 B1
6440166 Kolluri Aug 2002 B1
6440487 Delfino et al. Aug 2002 B1
6440503 Merdan et al. Aug 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6451871 Winterton et al. Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468304 Dubois-Rande et al. Oct 2002 B1
6471721 Dang Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6475477 Kohn et al. Nov 2002 B1
6478815 Alt Nov 2002 B1
6479146 Caruso et al. Nov 2002 B1
6486588 Doron Nov 2002 B2
6488702 Besselink Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6491720 Vallana et al. Dec 2002 B1
6492096 Liu et al. Dec 2002 B1
6503556 Harish et al. Jan 2003 B2
6503921 Naicker et al. Jan 2003 B2
6506437 Harish et al. Jan 2003 B1
6506972 Wang Jan 2003 B1
6514283 DiMatteo et al. Feb 2003 B2
6517571 Brauker et al. Feb 2003 B1
6517888 Weber Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524334 Thompson Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527938 Bales et al. Mar 2003 B2
6529774 Greene Mar 2003 B1
6530949 Konya et al. Mar 2003 B2
6530951 Bates et al. Mar 2003 B1
6533905 Johnson et al. Mar 2003 B2
6537310 Palmaz et al. Mar 2003 B1
6537312 Datta et al. Mar 2003 B2
6544582 Yoe Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B2
6549811 Stewart et al. Apr 2003 B2
6554854 Flanagan Apr 2003 B1
6558422 Baker et al. May 2003 B1
6558733 Hossainy et al. May 2003 B1
6565602 Rolando et al. May 2003 B2
6569489 Li May 2003 B1
6584349 Sage, Jr. et al. Jun 2003 B1
6585764 Wright et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6586705 Schell Jul 2003 B1
6589286 Litner Jul 2003 B1
6599558 Al-Lamee et al. Jul 2003 B1
6602287 Millare et al. Aug 2003 B1
6607598 Schwarz et al. Aug 2003 B2
6613077 Gilligan et al. Sep 2003 B2
6613083 Alt Sep 2003 B2
6613432 Zamora et al. Sep 2003 B2
6616765 Wu et al. Sep 2003 B1
6626933 Lau et al. Sep 2003 B1
6626936 Stinson Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6627321 Ellingsen et al. Sep 2003 B1
6628989 Penner Sep 2003 B1
6629992 Bigus et al. Oct 2003 B2
6635082 Hossainy et al. Oct 2003 B1
6638302 Curcio et al. Oct 2003 B1
6641607 Hossainy et al. Nov 2003 B1
6652575 Wang Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6652581 Ding Nov 2003 B1
6652582 Stinson Nov 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663664 Pacetti Dec 2003 B1
6669980 Hansen Dec 2003 B2
6673105 Chen Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6673999 Wang et al. Jan 2004 B1
6676987 Zhong Jan 2004 B2
6676989 Kirkpatrick et al. Jan 2004 B2
6689160 Okuda et al. Feb 2004 B1
6689803 Hunter Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6696666 Weber et al. Feb 2004 B2
6696667 Flanagan Feb 2004 B1
6699281 Vallana et al. Mar 2004 B2
6699282 Sceusa Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709397 Taylor Mar 2004 B2
6709451 Noble et al. Mar 2004 B1
6710053 Naicker et al. Mar 2004 B2
6712844 Pacetti Mar 2004 B2
6712845 Hossainy Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6719987 Langford et al. Apr 2004 B2
6720402 Langer et al. Apr 2004 B2
6723120 Yan Apr 2004 B2
6723350 Burrell et al. Apr 2004 B2
6725901 Kramer et al. Apr 2004 B1
6726712 Raeder-Devens Apr 2004 B1
6730117 Tseng et al. May 2004 B1
6730120 Berg et al. May 2004 B2
6730699 Li et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6740077 Brandau et al. May 2004 B1
6743388 Sridharan et al. Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6752829 Kocur et al. Jun 2004 B2
6753071 Pacetti Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6764505 Hossainy et al. Jul 2004 B1
6764579 Veerasamy et al. Jul 2004 B2
6764709 Flanagan Jul 2004 B2
6765144 Wang et al. Jul 2004 B1
6767360 Alt et al. Jul 2004 B1
6770086 Girton Aug 2004 B1
6770729 Van Antwerp Aug 2004 B2
6774278 Ragheb et al. Aug 2004 B1
6776022 Kula et al. Aug 2004 B2
6776094 Whitesides et al. Aug 2004 B1
6776793 Brown et al. Aug 2004 B2
6780424 Claude Aug 2004 B2
6783543 Jang Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6793877 Pettersen et al. Sep 2004 B1
6796435 Izumi Sep 2004 B2
6803070 Weber Oct 2004 B2
6805709 Schaldach et al. Oct 2004 B1
6805898 Wu et al. Oct 2004 B1
6807440 Weber Oct 2004 B2
RE38653 Igaki et al. Nov 2004 E
6815609 Wang et al. Nov 2004 B1
6820676 Palmaz et al. Nov 2004 B2
6827737 Hill et al. Dec 2004 B2
6827966 Qiu et al. Dec 2004 B2
6833004 Ishii et al. Dec 2004 B2
6846323 Yip et al. Jan 2005 B2
6846841 Hunter et al. Jan 2005 B2
6847837 Melzer et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6849089 Stoll Feb 2005 B2
6852122 Rush Feb 2005 B2
6854172 Kaese et al. Feb 2005 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6866805 Hong et al. Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6869701 Aita et al. Mar 2005 B1
6875227 Yoon Apr 2005 B2
6878249 Kouyama et al. Apr 2005 B2
6884429 Koziak et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887857 Naimark et al. May 2005 B2
6896697 Yip et al. May 2005 B1
6899731 Li et al. May 2005 B2
6899914 Schaldach et al. May 2005 B2
6904658 Hines Jun 2005 B2
6908506 Zimmermann Jun 2005 B2
6908622 Barry et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6913617 Reiss Jul 2005 B1
6913765 Li et al. Jul 2005 B2
6918869 Shaw et al. Jul 2005 B2
6918927 Bates et al. Jul 2005 B2
6921390 Bucay-Couto et al. Jul 2005 B2
6923996 Epstein et al. Aug 2005 B2
6926735 Henderson Aug 2005 B2
6932930 DeSimone et al. Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6938668 Whicher et al. Sep 2005 B2
6939320 Lennox Sep 2005 B2
6945993 Kveen et al. Sep 2005 B2
6951053 Padilla et al. Oct 2005 B2
6953560 Castro et al. Oct 2005 B1
6953594 Lee et al. Oct 2005 B2
6954977 Maguire et al. Oct 2005 B2
6955661 Herweck et al. Oct 2005 B1
6955685 Escamilla et al. Oct 2005 B2
6962822 Hart et al. Nov 2005 B2
6964817 Date et al. Nov 2005 B2
6971813 Shekalim et al. Dec 2005 B2
6972130 Lee et al. Dec 2005 B1
6973718 Sheppard, Jr. et al. Dec 2005 B2
6979346 Hossainy et al. Dec 2005 B1
6979347 Wu et al. Dec 2005 B1
6979348 Sundar Dec 2005 B2
6981986 Brown et al. Jan 2006 B1
6984404 Talton et al. Jan 2006 B1
6986899 Hossainy et al. Jan 2006 B2
6989156 Gillis Jan 2006 B2
6991709 Gopalraja et al. Jan 2006 B2
7001421 Cheng et al. Feb 2006 B2
7004968 Lootz et al. Feb 2006 B2
7011670 Radisch, Jr. Mar 2006 B2
7011678 Tenerz et al. Mar 2006 B2
7011680 Alt Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7022334 Ding et al. Apr 2006 B1
7041130 Santini, Jr. May 2006 B2
7048767 Namavar May 2006 B2
7048939 Elkins et al. May 2006 B2
7052488 Uhland May 2006 B2
7056338 Shanley et al. Jun 2006 B2
7056339 Elkins et al. Jun 2006 B2
7060051 Palasis Jun 2006 B2
7060240 Costa et al. Jun 2006 B2
7063748 Talton Jun 2006 B2
7067606 Mather et al. Jun 2006 B2
7070576 O'Brien et al. Jul 2006 B2
7078108 Zhang et al. Jul 2006 B2
7099091 Taniguchi et al. Aug 2006 B2
7101391 Scheuermann et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7105018 Yip et al. Sep 2006 B1
7105199 Blinn et al. Sep 2006 B2
7108716 Burnside et al. Sep 2006 B2
7157096 Zhang et al. Jan 2007 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169173 Hossainy et al. Jan 2007 B2
7169178 Santos et al. Jan 2007 B1
7195640 Falotico et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198675 Fox et al. Apr 2007 B2
7208011 Shanley et al. Apr 2007 B2
7208172 Birdsall et al. Apr 2007 B2
7220816 Pacetti May 2007 B2
7226475 Lenz et al. Jun 2007 B2
7229471 Gale et al. Jun 2007 B2
7235096 Van Tassel et al. Jun 2007 B1
7235098 Palmaz Jun 2007 B2
7238199 Feldman et al. Jul 2007 B2
7241295 Maguire Jul 2007 B2
7244272 Dubson et al. Jul 2007 B2
7261732 Justino Aug 2007 B2
7261735 Llanos et al. Aug 2007 B2
7267960 Galibert et al. Sep 2007 B2
7279174 Pacetti Oct 2007 B2
7279175 Chen Oct 2007 B2
7294409 Lye et al. Nov 2007 B2
7311727 Mazumder et al. Dec 2007 B2
7323189 Pathak Jan 2008 B2
RE40122 Thompson Feb 2008 E
7331993 White Feb 2008 B2
7335375 Li et al. Feb 2008 B2
7344560 Gregorich et al. Mar 2008 B2
7344563 Vallana et al. Mar 2008 B2
7393589 Aharonov et al. Jul 2008 B2
7402173 Scheuermann et al. Jul 2008 B2
7416558 Yip et al. Aug 2008 B2
7432327 Glasgow et al. Oct 2008 B2
7462366 Lanphere Dec 2008 B2
7498385 Swetlin et al. Mar 2009 B2
7507433 Weber Mar 2009 B2
7537610 Reiss May 2009 B2
7547445 Chudzik et al. Jun 2009 B2
7563277 Case et al. Jul 2009 B2
7637941 Manicka et al. Dec 2009 B1
7651527 Krivoruchko et al. Jan 2010 B2
7691401 Castro et al. Apr 2010 B2
7713297 Alt May 2010 B2
7713573 Owens et al. May 2010 B2
7722805 Hao et al. May 2010 B2
7749264 Gregorich et al. Jul 2010 B2
7758635 Parsonage Jul 2010 B2
7771773 Namavar Aug 2010 B2
7776926 Claude et al. Aug 2010 B1
20010001834 Palmaz et al. May 2001 A1
20010002000 Kumar et al. May 2001 A1
20010002435 Berg et al. May 2001 A1
20010013166 Yan Aug 2001 A1
20010021871 Stinson Sep 2001 A1
20010021873 Stinson Sep 2001 A1
20010027299 Yang et al. Oct 2001 A1
20010029398 Jadhav Oct 2001 A1
20010029660 Johnson Oct 2001 A1
20010032011 Stanford Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010032014 Yang et al. Oct 2001 A1
20010044650 Simso et al. Nov 2001 A1
20020000175 Hintermaier et al. Jan 2002 A1
20020000406 Izumi Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020007102 Salmon et al. Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020010505 Richter Jan 2002 A1
20020016623 Kula et al. Feb 2002 A1
20020016624 Patterson et al. Feb 2002 A1
20020028827 Naicker et al. Mar 2002 A1
20020032477 Helmus et al. Mar 2002 A1
20020035394 Fierens et al. Mar 2002 A1
20020038146 Harry Mar 2002 A1
20020042039 Kim et al. Apr 2002 A1
20020049495 Kutryk et al. Apr 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020051846 Kirkpatrick et al. May 2002 A1
20020065553 Weber May 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020090313 Wang et al. Jul 2002 A1
20020091375 Sahatjian et al. Jul 2002 A1
20020098278 Bates et al. Jul 2002 A1
20020099434 Buscemi et al. Jul 2002 A1
20020099438 Furst Jul 2002 A1
20020103527 Kocur et al. Aug 2002 A1
20020103528 Schaldach et al. Aug 2002 A1
20020111694 Ellingsen et al. Aug 2002 A1
20020121497 Tomonto Sep 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020133222 Das Sep 2002 A1
20020133224 Bajgar et al. Sep 2002 A1
20020138100 Stoll et al. Sep 2002 A1
20020138131 Solovay et al. Sep 2002 A1
20020138136 Chandresekaran et al. Sep 2002 A1
20020138154 Li et al. Sep 2002 A1
20020144757 Craig et al. Oct 2002 A1
20020151964 Smith et al. Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165265 Hunter et al. Nov 2002 A1
20020165578 Sawitowski et al. Nov 2002 A1
20020165600 Banas et al. Nov 2002 A1
20020165607 Alt Nov 2002 A1
20020169493 Widenhouse et al. Nov 2002 A1
20020178570 Sogard et al. Dec 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020183682 Darvish et al. Dec 2002 A1
20020193336 Elkins et al. Dec 2002 A1
20020193682 Torchia et al. Dec 2002 A1
20020193869 Dang Dec 2002 A1
20020197178 Yan Dec 2002 A1
20020198601 Bales et al. Dec 2002 A1
20030003127 Brown et al. Jan 2003 A1
20030003220 Zhong et al. Jan 2003 A1
20030004563 Jackson et al. Jan 2003 A1
20030004564 Elkins et al. Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030018380 Craig et al. Jan 2003 A1
20030018381 Whitcher et al. Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030028242 Vallana et al. Feb 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030032892 Erlach et al. Feb 2003 A1
20030033007 Sirhan et al. Feb 2003 A1
20030044446 Moro et al. Mar 2003 A1
20030050687 Schwade et al. Mar 2003 A1
20030050692 Sirhan et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030060871 Hill et al. Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030064095 Martin et al. Apr 2003 A1
20030068355 Shanley et al. Apr 2003 A1
20030069631 Stoll Apr 2003 A1
20030074053 Palmaz et al. Apr 2003 A1
20030077200 Craig et al. Apr 2003 A1
20030077310 Pathak et al. Apr 2003 A1
20030083614 Eisert May 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083731 Kramer et al. May 2003 A1
20030087024 Flanagan May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030088312 Kopia et al. May 2003 A1
20030099684 Domb May 2003 A1
20030100815 Da Silva et al. May 2003 A1
20030100830 Zhong et al. May 2003 A1
20030104030 Igaki et al. Jun 2003 A1
20030105511 Welsh et al. Jun 2003 A1
20030108659 Bales et al. Jun 2003 A1
20030114917 Holloway et al. Jun 2003 A1
20030114921 Yoon Jun 2003 A1
20030118692 Wang et al. Jun 2003 A1
20030120339 Banik et al. Jun 2003 A1
20030124055 Li et al. Jul 2003 A1
20030125803 Vallana Jul 2003 A1
20030130718 Palmas et al. Jul 2003 A1
20030139799 Ley et al. Jul 2003 A1
20030143330 Loomis et al. Jul 2003 A1
20030144728 Scheuermann et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030153901 Herweck et al. Aug 2003 A1
20030158598 Ashton et al. Aug 2003 A1
20030170605 Long et al. Sep 2003 A1
20030181975 Ishii et al. Sep 2003 A1
20030185895 Lanphere Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030195613 Curcio et al. Oct 2003 A1
20030199993 Gellman et al. Oct 2003 A1
20030204239 Carlyle et al. Oct 2003 A1
20030211135 Greenhalgh et al. Nov 2003 A1
20030216803 Ledergerber Nov 2003 A1
20030219562 Rypacek et al. Nov 2003 A1
20030221307 Kaese et al. Dec 2003 A1
20030228523 DeLongchamp et al. Dec 2003 A1
20030236513 Schwarz et al. Dec 2003 A1
20040000046 Stinson Jan 2004 A1
20040000540 Soboyejo et al. Jan 2004 A1
20040004063 Merdan Jan 2004 A1
20040006382 Sohier Jan 2004 A1
20040018296 Castro et al. Jan 2004 A1
20040019376 Alt Jan 2004 A1
20040022939 Kim et al. Feb 2004 A1
20040024448 Chang et al. Feb 2004 A1
20040029303 Hart et al. Feb 2004 A1
20040030218 Kocur et al. Feb 2004 A1
20040030377 Dubson et al. Feb 2004 A1
20040030379 Hamm et al. Feb 2004 A1
20040034409 Heublein et al. Feb 2004 A1
20040039438 Alt Feb 2004 A1
20040039441 Rowland et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040059407 Escamilla et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040067301 Ding Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040073155 Laufer et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040073293 Thompson Apr 2004 A1
20040073297 Rohde et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040078071 Escamilla et al. Apr 2004 A1
20040082682 Loomis et al. Apr 2004 A1
20040088038 Dehnad et al. May 2004 A1
20040088041 Stanford May 2004 A1
20040093071 Jang May 2004 A1
20040093075 Kuehne May 2004 A1
20040093076 White et al. May 2004 A1
20040098089 Weber May 2004 A1
20040098108 Harder et al. May 2004 A1
20040098119 Wang May 2004 A1
20040106975 Solovay et al. Jun 2004 A1
20040106984 Stinson Jun 2004 A1
20040106985 Jang Jun 2004 A1
20040111150 Berg et al. Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117005 Gadde et al. Jun 2004 A1
20040117008 Wnendt et al. Jun 2004 A1
20040122504 Hogendijk Jun 2004 A1
20040126566 Axen et al. Jul 2004 A1
20040133270 Grandt Jul 2004 A1
20040134886 Wagner et al. Jul 2004 A1
20040137039 Sukhishvili et al. Jul 2004 A1
20040138738 Stinson Jul 2004 A1
20040142014 Litvack et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040143321 Litvack et al. Jul 2004 A1
20040148010 Rush Jul 2004 A1
20040148015 Lye et al. Jul 2004 A1
20040153138 Murphy Aug 2004 A1
20040157073 Burrell et al. Aug 2004 A1
20040158308 Hogendijk et al. Aug 2004 A1
20040158310 Weber et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167609 Majercak Aug 2004 A1
20040167612 Grignani et al. Aug 2004 A1
20040172124 Vallana et al. Sep 2004 A1
20040181252 Boyle et al. Sep 2004 A1
20040181275 Noble et al. Sep 2004 A1
20040181276 Brown et al. Sep 2004 A1
20040181278 Tseng et al. Sep 2004 A1
20040182511 Rakos et al. Sep 2004 A1
20040186553 Yan Sep 2004 A1
20040191293 Claude Sep 2004 A1
20040191404 Hossainy et al. Sep 2004 A1
20040202692 Shanley et al. Oct 2004 A1
20040204750 Dinh Oct 2004 A1
20040211362 Castro et al. Oct 2004 A1
20040219214 Gravett et al. Nov 2004 A1
20040220510 Koullick et al. Nov 2004 A1
20040220659 Girton Nov 2004 A1
20040220660 Shanley et al. Nov 2004 A1
20040220662 Dang et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040225346 Mazumder et al. Nov 2004 A1
20040228905 Greenspan et al. Nov 2004 A1
20040230176 Shanahan et al. Nov 2004 A1
20040230225 Penner et al. Nov 2004 A1
20040230290 Weber et al. Nov 2004 A1
20040230293 Yip et al. Nov 2004 A1
20040234737 Pacetti Nov 2004 A1
20040236415 Thomas Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040237282 Hines Dec 2004 A1
20040242106 Rabasco et al. Dec 2004 A1
20040243217 Andersen Dec 2004 A1
20040243237 Unwin et al. Dec 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20040247671 Prescott et al. Dec 2004 A1
20040249440 Bucker et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040249444 Reiss Dec 2004 A1
20040249445 Rosenthal et al. Dec 2004 A1
20040249449 Shanley et al. Dec 2004 A1
20040254419 Wang et al. Dec 2004 A1
20040254635 Shanley et al. Dec 2004 A1
20050004661 Lewis et al. Jan 2005 A1
20050010275 Sahatjian Jan 2005 A1
20050010279 Tenerz et al. Jan 2005 A1
20050015142 Austin et al. Jan 2005 A1
20050019265 Hammer et al. Jan 2005 A1
20050019371 Anderson et al. Jan 2005 A1
20050021127 Kawula Jan 2005 A1
20050021128 Nakahama et al. Jan 2005 A1
20050022627 Chen Feb 2005 A1
20050025804 Heller Feb 2005 A1
20050027350 Momma et al. Feb 2005 A1
20050033407 Weber et al. Feb 2005 A1
20050033411 Wu et al. Feb 2005 A1
20050033412 Wu et al. Feb 2005 A1
20050033417 Borges et al. Feb 2005 A1
20050037047 Song Feb 2005 A1
20050037050 Weber Feb 2005 A1
20050038134 Loomis et al. Feb 2005 A1
20050038501 Moore, Jr. et al. Feb 2005 A1
20050042288 Koblish et al. Feb 2005 A1
20050042440 Bach et al. Feb 2005 A1
20050055044 Kangas Mar 2005 A1
20050055080 Istephanous et al. Mar 2005 A1
20050055085 Rivron et al. Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050060021 O'Brien et al. Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070989 Lye et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050070996 Dinh et al. Mar 2005 A1
20050071016 Hausdorf et al. Mar 2005 A1
20050072544 Palmaz et al. Apr 2005 A1
20050074479 Weber et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050075714 Cheng et al. Apr 2005 A1
20050077305 Guevara Apr 2005 A1
20050079132 Wang et al. Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079356 Rathenow et al. Apr 2005 A1
20050092615 Birdsall et al. May 2005 A1
20050096731 Looi et al. May 2005 A1
20050100577 Parker et al. May 2005 A1
20050100609 Claude May 2005 A1
20050102025 Laroche et al. May 2005 A1
20050106212 Gertner et al. May 2005 A1
20050107869 Sirhan et al. May 2005 A1
20050107870 Wang et al. May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050119723 Peacock Jun 2005 A1
20050129727 Weber et al. Jun 2005 A1
20050129731 Horres et al. Jun 2005 A1
20050131509 Atanassoska et al. Jun 2005 A1
20050131521 Marton Jun 2005 A1
20050131522 Stinson et al. Jun 2005 A1
20050131527 Pathak Jun 2005 A1
20050131528 Buscemi et al. Jun 2005 A1
20050136090 Falotico et al. Jun 2005 A1
20050137677 Rush Jun 2005 A1
20050137679 Changelian et al. Jun 2005 A1
20050137684 Changelian et al. Jun 2005 A1
20050149169 Wang et al. Jul 2005 A1
20050149170 Tassel et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050149177 Weber et al. Jul 2005 A1
20050159804 Lad et al. Jul 2005 A1
20050159805 Weber et al. Jul 2005 A1
20050159809 Hezi-Yamit et al. Jul 2005 A1
20050160600 Bien et al. Jul 2005 A1
20050163821 Sung et al. Jul 2005 A1
20050163954 Shaw Jul 2005 A1
20050165301 Smith et al. Jul 2005 A1
20050165468 Marton Jul 2005 A1
20050165470 Weber Jul 2005 A1
20050169969 Li et al. Aug 2005 A1
20050171595 Feldman et al. Aug 2005 A1
20050177226 Banik et al. Aug 2005 A1
20050180919 Tedeschi Aug 2005 A1
20050182361 Lennox Aug 2005 A1
20050182478 Holman et al. Aug 2005 A1
20050186250 Gertner et al. Aug 2005 A1
20050187605 Greenhalgh et al. Aug 2005 A1
20050187611 Ding et al. Aug 2005 A1
20050187615 Williams et al. Aug 2005 A1
20050192657 Colen et al. Sep 2005 A1
20050192662 Ward Sep 2005 A1
20050192664 Eisert Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050208098 Castro et al. Sep 2005 A1
20050208100 Weber et al. Sep 2005 A1
20050209680 Gale et al. Sep 2005 A1
20050209681 Curcio et al. Sep 2005 A1
20050211680 Li et al. Sep 2005 A1
20050214951 Nahm et al. Sep 2005 A1
20050216074 Sahatjian Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050220853 Dao et al. Oct 2005 A1
20050221072 Dubrow et al. Oct 2005 A1
20050222671 Schaeffer et al. Oct 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050228483 Kaplan et al. Oct 2005 A1
20050228491 Snyder et al. Oct 2005 A1
20050232968 Palmaz et al. Oct 2005 A1
20050233965 Schwartz et al. Oct 2005 A1
20050234538 Litvack et al. Oct 2005 A1
20050240280 Aliski et al. Oct 2005 A1
20050244459 DeWitt et al. Nov 2005 A1
20050251245 Sieradzki et al. Nov 2005 A1
20050251249 Sahatjian Nov 2005 A1
20050252893 Shapovalov et al. Nov 2005 A1
20050255707 Hart et al. Nov 2005 A1
20050261760 Weber Nov 2005 A1
20050266039 Weber Dec 2005 A1
20050266040 Gerberding Dec 2005 A1
20050266041 Gerold et al. Dec 2005 A1
20050267560 Bates et al. Dec 2005 A1
20050267561 Jones et al. Dec 2005 A1
20050271706 Anderson et al. Dec 2005 A1
20050276837 Anderson et al. Dec 2005 A1
20050278016 Welsh et al. Dec 2005 A1
20050278021 Bates et al. Dec 2005 A1
20050281863 Anderson et al. Dec 2005 A1
20050283224 King Dec 2005 A1
20050283229 Dugan et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20060002979 Ashammakhi et al. Jan 2006 A1
20060009839 Tan Jan 2006 A1
20060013850 Domb Jan 2006 A1
20060014039 Zhang et al. Jan 2006 A1
20060015175 Palmaz et al. Jan 2006 A1
20060015361 Sattler et al. Jan 2006 A1
20060020742 Au et al. Jan 2006 A1
20060025848 Weber et al. Feb 2006 A1
20060035026 Atanassoska et al. Feb 2006 A1
20060036281 Patterson et al. Feb 2006 A1
20060036311 Nakayama et al. Feb 2006 A1
20060038027 O'Connor et al. Feb 2006 A1
20060040388 Bromberg et al. Feb 2006 A1
20060041182 Forbes et al. Feb 2006 A1
20060051397 Maier et al. Mar 2006 A1
20060052744 Weber Mar 2006 A1
20060052863 Harder et al. Mar 2006 A1
20060052864 Harder et al. Mar 2006 A1
20060058868 Gale et al. Mar 2006 A1
20060062820 Gertner et al. Mar 2006 A1
20060064160 Gerold et al. Mar 2006 A1
20060067908 Ding Mar 2006 A1
20060069427 Savage et al. Mar 2006 A1
20060075044 Fox et al. Apr 2006 A1
20060075092 Kidokoro Apr 2006 A1
20060079958 Stratford et al. Apr 2006 A1
20060085062 Lee et al. Apr 2006 A1
20060085065 Krause et al. Apr 2006 A1
20060088566 Parsonage et al. Apr 2006 A1
20060088567 Warner et al. Apr 2006 A1
20060088653 Chappa et al. Apr 2006 A1
20060088666 Kobrin et al. Apr 2006 A1
20060100696 Atanasoska et al. May 2006 A1
20060115512 Peacock et al. Jun 2006 A1
20060118236 House et al. Jun 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060122694 Stinson et al. Jun 2006 A1
20060122697 Shanley et al. Jun 2006 A1
20060124472 Rokicki Jun 2006 A1
20060127266 Miura et al. Jun 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060129222 Stinson Jun 2006 A1
20060129225 Kopia et al. Jun 2006 A1
20060136048 Pacetti et al. Jun 2006 A1
20060136051 Furst et al. Jun 2006 A1
20060141156 Viel et al. Jun 2006 A1
20060149352 Schlun Jul 2006 A1
20060153729 Stinson et al. Jul 2006 A1
20060155361 Schomig et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060177480 Sung et al. Aug 2006 A1
20060178727 Richter Aug 2006 A1
20060184235 Rivron et al. Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193887 Owens et al. Aug 2006 A1
20060193888 Lye et al. Aug 2006 A1
20060193889 Spradlin et al. Aug 2006 A1
20060193890 Owens et al. Aug 2006 A1
20060193892 Furst et al. Aug 2006 A1
20060195142 Shalaby Aug 2006 A1
20060198869 Furst et al. Sep 2006 A1
20060199876 Troczynski et al. Sep 2006 A1
20060200229 Burgermeister et al. Sep 2006 A1
20060200231 O'Brien et al. Sep 2006 A1
20060200232 Phaneuf et al. Sep 2006 A1
20060200233 Kujawski Sep 2006 A1
20060204441 Atala et al. Sep 2006 A1
20060204445 Atala et al. Sep 2006 A1
20060210595 Singhvi et al. Sep 2006 A1
20060212108 Tittelbach Sep 2006 A1
20060222679 Shanley et al. Oct 2006 A1
20060222844 Stinson Oct 2006 A1
20060224237 Furst et al. Oct 2006 A1
20060229711 Yan et al. Oct 2006 A1
20060229713 Shanley et al. Oct 2006 A1
20060230476 Atanasoska et al. Oct 2006 A1
20060233941 Olson Oct 2006 A1
20060241739 Besselink et al. Oct 2006 A1
20060251701 Lynn et al. Nov 2006 A1
20060259133 Sowinski et al. Nov 2006 A1
20060264138 Sowinski et al. Nov 2006 A1
20060271156 Ledergerber Nov 2006 A1
20060271168 Kleine et al. Nov 2006 A1
20060271169 Lye et al. Nov 2006 A1
20060271192 Olsen et al. Nov 2006 A1
20060275554 Zhao et al. Dec 2006 A1
20060276877 Owens et al. Dec 2006 A1
20060276878 Owens et al. Dec 2006 A1
20060276879 Lye et al. Dec 2006 A1
20060276884 Lye et al. Dec 2006 A1
20060276885 Lye et al. Dec 2006 A1
20060280770 Hossainy et al. Dec 2006 A1
20060287709 Rao Dec 2006 A1
20060292388 Palumbo et al. Dec 2006 A1
20070003589 Astafieva et al. Jan 2007 A1
20070003596 Tittelbach et al. Jan 2007 A1
20070020306 Schultheiss Jan 2007 A1
20070027532 Wang et al. Feb 2007 A1
20070032858 Santos et al. Feb 2007 A1
20070032862 Weber et al. Feb 2007 A1
20070032864 Furst et al. Feb 2007 A1
20070034615 Kleine Feb 2007 A1
20070036905 Kramer Feb 2007 A1
20070038176 Weber et al. Feb 2007 A1
20070038289 Nishide et al. Feb 2007 A1
20070038290 Huang et al. Feb 2007 A1
20070045252 Kleine et al. Mar 2007 A1
20070048350 Falotico et al. Mar 2007 A1
20070050007 Kondyurin et al. Mar 2007 A1
20070050009 Flanagan Mar 2007 A1
20070052497 Tada Mar 2007 A1
20070055349 Santos et al. Mar 2007 A1
20070055354 Santos et al. Mar 2007 A1
20070055364 Hossainy et al. Mar 2007 A1
20070059435 Santos et al. Mar 2007 A1
20070065418 Vallana et al. Mar 2007 A1
20070073385 Schaeffer et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070077163 Furst et al. Apr 2007 A1
20070100385 Rawat et al. May 2007 A1
20070104753 Flanagan May 2007 A1
20070106347 Lin May 2007 A1
20070106363 Weber May 2007 A1
20070123131 Nguyen et al. May 2007 A1
20070123973 Roth et al. May 2007 A1
20070129789 Cottone, Jr. et al. Jun 2007 A1
20070129792 Picart et al. Jun 2007 A1
20070134288 Parsonage et al. Jun 2007 A1
20070135908 Zhao Jun 2007 A1
20070141106 Bonutti et al. Jun 2007 A1
20070142897 Consigny et al. Jun 2007 A1
20070142899 Lootz et al. Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070151093 Curcio et al. Jul 2007 A1
20070156231 Weber Jul 2007 A1
20070156248 Marco et al. Jul 2007 A1
20070160641 Jang Jul 2007 A1
20070168016 Gronemeyer et al. Jul 2007 A1
20070173923 Savage et al. Jul 2007 A1
20070178129 Flanagan Aug 2007 A1
20070181433 Birdsall et al. Aug 2007 A1
20070184083 Coughlin Aug 2007 A1
20070190104 Kamath et al. Aug 2007 A1
20070191923 Weber Aug 2007 A1
20070191928 Rolando et al. Aug 2007 A1
20070191931 Weber et al. Aug 2007 A1
20070191943 Shrivastava et al. Aug 2007 A1
20070197980 Barry et al. Aug 2007 A1
20070202466 Schwarz et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208412 Elmaleh Sep 2007 A1
20070219626 Rolando et al. Sep 2007 A1
20070224116 Chandrasekaran et al. Sep 2007 A1
20070224244 Weber et al. Sep 2007 A1
20070225799 Doty Sep 2007 A1
20070244541 Schulman Oct 2007 A1
20070244569 Weber et al. Oct 2007 A1
20070250155 Simpson Oct 2007 A1
20070250156 Palmaz Oct 2007 A1
20070250158 Krivoruchko et al. Oct 2007 A1
20070255388 Rudakov et al. Nov 2007 A1
20070255392 Johnson Nov 2007 A1
20070264199 Labhasetwar et al. Nov 2007 A1
20070264303 Atanasoska et al. Nov 2007 A1
20070270940 Doty Nov 2007 A1
20070270942 Thomas Nov 2007 A1
20070281073 Gale et al. Dec 2007 A1
20070281117 Kaplan et al. Dec 2007 A1
20070282432 Stinson et al. Dec 2007 A1
20070299509 Ding Dec 2007 A1
20070299512 Korzuschnik et al. Dec 2007 A1
20080003251 Zhou Jan 2008 A1
20080003256 Martens et al. Jan 2008 A1
20080003431 Fellinger et al. Jan 2008 A1
20080004691 Weber et al. Jan 2008 A1
20080031765 Gerold et al. Feb 2008 A1
20080033522 Grewe et al. Feb 2008 A1
20080033530 Zberg et al. Feb 2008 A1
20080033531 Barthel et al. Feb 2008 A1
20080033533 Borck Feb 2008 A1
20080033536 Wittchow Feb 2008 A1
20080033537 Tittelbach Feb 2008 A1
20080033538 Borck et al. Feb 2008 A1
20080033539 Sternberg et al. Feb 2008 A1
20080033576 Gerold et al. Feb 2008 A1
20080038146 Wachter et al. Feb 2008 A1
20080050413 Horvers et al. Feb 2008 A1
20080051335 Kleiner et al. Feb 2008 A1
20080051866 Chen et al. Feb 2008 A1
20080051872 Borck Feb 2008 A1
20080051881 Feng et al. Feb 2008 A1
20080057105 Atanasoska et al. Mar 2008 A1
20080058919 Kramer-Brown et al. Mar 2008 A1
20080058921 Lindquist Mar 2008 A1
20080058923 Bertsch et al. Mar 2008 A1
20080069854 Xiao et al. Mar 2008 A1
20080069858 Weber Mar 2008 A1
20080071348 Boismier et al. Mar 2008 A1
20080071349 Atanasoska et al. Mar 2008 A1
20080071350 Stinson Mar 2008 A1
20080071351 Flanagan et al. Mar 2008 A1
20080071352 Weber et al. Mar 2008 A1
20080071353 Weber et al. Mar 2008 A1
20080071355 Weber et al. Mar 2008 A1
20080071357 Girton et al. Mar 2008 A1
20080071358 Weber et al. Mar 2008 A1
20080082162 Boismier et al. Apr 2008 A1
20080086199 Dave et al. Apr 2008 A1
20080086201 Weber et al. Apr 2008 A1
20080090097 Shaw et al. Apr 2008 A1
20080097577 Atanasoska et al. Apr 2008 A1
20080103589 Cheng et al. May 2008 A1
20080103594 Loffler et al. May 2008 A1
20080107890 Bureau et al. May 2008 A1
20080109072 Girton May 2008 A1
20080113083 Sutermeister et al. May 2008 A1
20080124373 Xiao et al. May 2008 A1
20080131479 Weber et al. Jun 2008 A1
20080140172 Carpenter et al. Jun 2008 A1
20080140186 Grignani et al. Jun 2008 A1
20080145400 Weber et al. Jun 2008 A1
20080147175 Krivoruchko et al. Jun 2008 A1
20080147177 Scheuermann et al. Jun 2008 A1
20080148002 Fleming Jun 2008 A1
20080152929 Zhao Jun 2008 A1
20080160166 Rypacek et al. Jul 2008 A1
20080160259 Nielson et al. Jul 2008 A1
20080161906 Atanasoska et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080175885 Asgari Jul 2008 A1
20080177378 Asgari Jul 2008 A1
20080183269 Kaplan et al. Jul 2008 A2
20080183277 Atanasoska et al. Jul 2008 A1
20080183278 Atanasoska et al. Jul 2008 A1
20080188927 Rohde et al. Aug 2008 A1
20080195170 Asgari Aug 2008 A1
20080195189 Asgari Aug 2008 A1
20080195198 Asgari Aug 2008 A1
20080208308 Allen et al. Aug 2008 A1
20080208313 Yu et al. Aug 2008 A1
20080208352 Krivoruchko et al. Aug 2008 A1
20080213377 Bhatia et al. Sep 2008 A1
20080215129 Venturelli et al. Sep 2008 A1
20080215139 McMorrow et al. Sep 2008 A1
20080215140 Borck et al. Sep 2008 A1
20080241218 McMorrow et al. Oct 2008 A1
20080243113 Shastri et al. Oct 2008 A1
20080243230 Lootz et al. Oct 2008 A1
20080243231 Flanagan et al. Oct 2008 A1
20080243234 Wilcox Oct 2008 A1
20080243240 Doty et al. Oct 2008 A1
20080243242 Kappelt et al. Oct 2008 A1
20080249600 Atanasoska et al. Oct 2008 A1
20080249615 Weber Oct 2008 A1
20080255508 Wang Oct 2008 A1
20080255509 Wang Oct 2008 A1
20080262589 Nagura Oct 2008 A1
20080268308 Schilling et al. Oct 2008 A1
20080269872 Lootz et al. Oct 2008 A1
20080288048 Rolando et al. Nov 2008 A1
20080290467 Shue Nov 2008 A1
20080294236 Anand et al. Nov 2008 A1
20080294246 Scheuermann Nov 2008 A1
20080306584 Kramer-Brown Dec 2008 A1
20090005862 Nakatani et al. Jan 2009 A1
20090012599 Broome et al. Jan 2009 A1
20090018639 Kuehling Jan 2009 A1
20090018647 Benco et al. Jan 2009 A1
20090018648 Wittchow Jan 2009 A1
20090022771 Lynn et al. Jan 2009 A1
20090024199 Birdsall et al. Jan 2009 A1
20090024209 Ozdil et al. Jan 2009 A1
20090024210 Klocke et al. Jan 2009 A1
20090024211 Wittchow Jan 2009 A1
20090028785 Clarke Jan 2009 A1
20090030494 Stefanadis et al. Jan 2009 A1
20090030500 Weber et al. Jan 2009 A1
20090030504 Weber et al. Jan 2009 A1
20090030506 Klocke et al. Jan 2009 A1
20090030507 Klocke et al. Jan 2009 A1
20090035351 Berglund et al. Feb 2009 A1
20090043330 To Feb 2009 A1
20090043374 Nakano Feb 2009 A1
20090043380 Blaha et al. Feb 2009 A1
20090048660 Adden Feb 2009 A1
20090062905 Moore, Jr. et al. Mar 2009 A1
20090069884 Mueller Mar 2009 A1
20090076588 Weber Mar 2009 A1
20090076596 Adden et al. Mar 2009 A1
20090081293 Murase et al. Mar 2009 A1
20090081450 Ascher et al. Mar 2009 A1
20090088831 Goto Apr 2009 A1
20090088834 Wang Apr 2009 A1
20090093871 Rea et al. Apr 2009 A1
20090095715 Sabaria Apr 2009 A1
20090118809 Scheuermann et al. May 2009 A1
20090118812 Kokate et al. May 2009 A1
20090118813 Scheuermann et al. May 2009 A1
20090118814 Schoenle et al. May 2009 A1
20090118815 Arcand et al. May 2009 A1
20090118818 Foss et al. May 2009 A1
20090118819 Merz et al. May 2009 A1
20090118820 Gregorich et al. May 2009 A1
20090118821 Scheuermann et al. May 2009 A1
20090118822 Holman et al. May 2009 A1
20090118823 Atanasoska et al. May 2009 A1
20090123517 Flanagan et al. May 2009 A1
20090123521 Weber et al. May 2009 A1
20090124956 Swetlin et al. May 2009 A1
20090131540 Hiromoto et al. May 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149942 Edelman et al. Jun 2009 A1
20090157165 Miller et al. Jun 2009 A1
20090157172 Kokate et al. Jun 2009 A1
20090164002 Becher et al. Jun 2009 A1
20090171452 Yamamoto et al. Jul 2009 A1
20090177273 Piveteau et al. Jul 2009 A1
20090182290 Harder et al. Jul 2009 A1
20090182337 Stopek et al. Jul 2009 A1
20090182425 Duda et al. Jul 2009 A1
20090192571 Stett et al. Jul 2009 A1
20090192594 Borck Jul 2009 A1
20090192595 Nagura et al. Jul 2009 A1
20090192596 Adden Jul 2009 A1
20090196899 Birdsall et al. Aug 2009 A1
20090198320 Mueller et al. Aug 2009 A1
20090202610 Wilson Aug 2009 A1
20090204203 Allen et al. Aug 2009 A1
20090208428 Hill et al. Aug 2009 A1
20090208555 Kuttler et al. Aug 2009 A1
20090214373 Stinson et al. Aug 2009 A1
20090220612 Perera Sep 2009 A1
20090228037 Rego Sep 2009 A1
20090240323 Wilcox Sep 2009 A1
20090254171 Heikkila Oct 2009 A1
20090259300 Dorogy, Jr. et al. Oct 2009 A1
20090270979 Adden Oct 2009 A1
20090274737 Borck Nov 2009 A1
20090281613 Atanasoska et al. Nov 2009 A1
20090287301 Weber Nov 2009 A1
20090287302 Thomas et al. Nov 2009 A1
20090306584 Schmidtlein et al. Dec 2009 A1
20090306756 Cho et al. Dec 2009 A1
20090306765 Weber Dec 2009 A1
20090306766 McDermott et al. Dec 2009 A1
20090311300 Wittchow Dec 2009 A1
20090312807 Boudreault et al. Dec 2009 A1
20090319035 Terry Dec 2009 A1
20090324684 Atanasoska et al. Dec 2009 A1
20090326638 Atanasoska et al. Dec 2009 A1
20100008970 O'Brien et al. Jan 2010 A1
20100010621 Klocke Jan 2010 A1
20100010640 Gerold et al. Jan 2010 A1
20100015206 Flanagan et al. Jan 2010 A1
20100016940 Shokoohi et al. Jan 2010 A1
20100021523 Scheuermann et al. Jan 2010 A1
20100023112 Borck et al. Jan 2010 A1
20100023116 Borck et al. Jan 2010 A1
20100028436 Ohrlander et al. Feb 2010 A1
20100030326 Radhakrishnan et al. Feb 2010 A1
20100034899 Harder et al. Feb 2010 A1
20100042205 Atanasoska et al. Feb 2010 A1
20100042206 Yadav et al. Feb 2010 A1
20100047312 Wittchow Feb 2010 A1
20100047324 Fritz et al. Feb 2010 A1
20100049146 Nielsen et al. Feb 2010 A1
20100049296 Sarasam et al. Feb 2010 A1
20100049299 Popowski et al. Feb 2010 A1
20100049300 Harder Feb 2010 A1
20100055151 Flanagan Mar 2010 A1
20100057188 Weber Mar 2010 A1
20100057197 Weber et al. Mar 2010 A1
20100070024 Venturelli et al. Mar 2010 A1
20100075162 Yang et al. Mar 2010 A1
20100076544 Hoffmann et al. Mar 2010 A1
20100076556 Tomantschger et al. Mar 2010 A1
20100081735 Mao et al. Apr 2010 A1
20100082092 Gerold Apr 2010 A1
20100087910 Weber Apr 2010 A1
20100087911 Mueller Apr 2010 A1
20100087914 Bayer et al. Apr 2010 A1
20100087915 Bayer et al. Apr 2010 A1
20100087916 Bayer et al. Apr 2010 A1
20100092535 Cook et al. Apr 2010 A1
20100106243 Wittchow Apr 2010 A1
20100119576 Harder et al. May 2010 A1
20100119581 Gratz et al. May 2010 A1
20100121432 Klocke et al. May 2010 A1
20100125325 Allen et al. May 2010 A1
20100125328 Flanagan May 2010 A1
20100131050 Zhao May 2010 A1
20100131052 Kappelt et al. May 2010 A1
20100161031 Papirov et al. Jun 2010 A1
20100217370 Scheuermann et al. Aug 2010 A1
Foreign Referenced Citations (122)
Number Date Country
739 507 Nov 1998 AU
2003 203 722 Nov 2003 AU
2 235 031 Oct 1998 CA
2 346 857 May 2000 CA
2 371 800 Aug 2000 CA
198 11 033 Aug 1999 DE
198 56 983 Dec 1999 DE
103 57 281 Jul 2005 DE
103 61 941 Jul 2005 DE
10 2006 38236 Feb 2008 DE
0 006 544 Jun 1979 EP
0 337 035 Nov 1993 EP
0 615 769 Sep 1994 EP
0 923 389 Jul 1998 EP
0 966 979 Dec 1999 EP
0 972 563 Jan 2000 EP
1 054 644 Nov 2000 EP
1 071 490 Jan 2001 EP
1 222 901 Jul 2002 EP
1 270 023 Jan 2003 EP
1 273 314 Jan 2003 EP
1 370 306 Dec 2003 EP
0 923 912 Feb 2004 EP
1 393 766 Mar 2004 EP
1 419 793 May 2004 EP
0 951 877 Jun 2004 EP
1 260 214 Jun 2004 EP
0 875 218 Feb 2005 EP
1 389 471 Aug 2006 EP
1 733 746 Dec 2006 EP
1 752 167 Feb 2007 EP
1 465 552 May 2007 EP
1 835 042 Sep 2007 EP
1 750 780 Oct 2007 EP
1 562 565 Mar 2008 EP
1 642 551 Dec 2008 EP
1 653 885 Apr 2009 EP
1 632 256 Sep 2009 EP
1 703 858 Oct 2009 EP
2 139 535 Jan 2010 EP
1 883 380 Mar 2010 EP
2 189 169 May 2010 EP
06-306298 Nov 1992 JP
06-292716 Oct 1994 JP
2003-052834 Feb 2003 JP
2003-169846 Jun 2003 JP
2003-250880 Sep 2003 JP
2003-526386 Sep 2003 JP
2004-121827 Apr 2004 JP
2 218 242 Dec 2003 RU
9304118 Mar 1993 WO
9711724 Apr 1997 WO
9829025 Jul 1998 WO
9848851 Nov 1998 WO
9933410 Jul 1999 WO
9947077 Sep 1999 WO
9964580 Dec 1999 WO
0025841 May 2000 WO
0048660 Aug 2000 WO
0051136 Aug 2000 WO
0054704 Sep 2000 WO
0066190 Nov 2000 WO
0132072 May 2001 WO
0149338 Jul 2001 WO
0178906 Oct 2001 WO
0180920 Nov 2001 WO
0187371 Nov 2001 WO
0239875 May 2002 WO
0245764 Jun 2002 WO
0247739 Jun 2002 WO
02053202 Jul 2002 WO
02076523 Oct 2002 WO
03002243 Jan 2003 WO
03013396 Feb 2003 WO
03035123 May 2003 WO
03035131 May 2003 WO
03035134 May 2003 WO
03035278 May 2003 WO
03046062 Jun 2003 WO
03063733 Aug 2003 WO
03068285 Aug 2003 WO
03094990 Nov 2003 WO
2004025332 Mar 2004 WO
2004026361 Apr 2004 WO
2004029313 Apr 2004 WO
2004043292 May 2004 WO
2004093643 Nov 2004 WO
2005025449 Mar 2005 WO
2005065576 Jul 2005 WO
2005079335 Sep 2005 WO
2005110395 Nov 2005 WO
2005118019 Dec 2005 WO
2006008739 Jan 2006 WO
2006060033 Jun 2006 WO
2006060534 Jun 2006 WO
2006065356 Jun 2006 WO
2006077154 Jul 2006 WO
2006080381 Aug 2006 WO
2006097503 Sep 2006 WO
2006104644 Oct 2006 WO
2006108065 Oct 2006 WO
2007005806 Jan 2007 WO
2007013102 Feb 2007 WO
2007018931 Feb 2007 WO
2007024552 Mar 2007 WO
2007035791 Mar 2007 WO
2007079363 Jul 2007 WO
2007079636 Jul 2007 WO
2007082147 Sep 2007 WO
2007139668 Dec 2007 WO
2008003450 Mar 2008 WO
2008034048 Mar 2008 WO
2008034066 Mar 2008 WO
2008036548 Mar 2008 WO
2008036549 Mar 2008 WO
2008036554 Mar 2008 WO
2008062414 May 2008 WO
2008092436 Aug 2008 WO
2008106271 Sep 2008 WO
2008117315 Oct 2008 WO
2008118606 Oct 2008 WO
2009045773 Apr 2009 WO
Related Publications (1)
Number Date Country
20100233237 A1 Sep 2010 US
Divisions (1)
Number Date Country
Parent 10477514 Nov 2003 US
Child 12784708 US