The invention relates to a method of engine control, more particularly a method for controlling the fuel/air ratio in a motor vehicle according to the preamble of claim 1. The invention further relates to a device which functions according to the method, namely a control device which can be integrated into the engine electronics of a combustion engine or can be realised as a separate control device.
Controlling the fuel/air ratio is known per se. The invention suggests a method for regulating this ratio instead of the control in order to achieve better results with regard to energy use and with regard to unavoidable exhaust gas production, where “regulating” is used in the sense of closed-loop control and “control” is used in the sense of feed-forward or open-loop control. An optimal fuel/air ratio is namely accompanied by minimal pollutant production.
Further aspects of the invention deal with adaptation methods which enable optimal regulation of the fuel/air ratio even in varying conditions, e.g. due to the duration of operation of the combustion engine. In addition, the adaptation should make it possible to quickly adapt the regulating method to different vehicle and engine types.
The problem of the invention consists in improving the adjustment of the fuel/air ratio. This problem is solved by the method in claim 1 and with a device functioning according to the method.
The dependent claims are aimed at preferred embodiments of the present invention and individual aspects of the invention and preferred embodiments thereof.
An example of the invention and other preferred embodiments will be described hereafter in greater detail with reference to the drawing. Corresponding objects or elements are given the same reference numbers in all figures.
In the drawing
Hitherto known engine control methods provide an algorithm, implemented in the engine control, for calculating the duration of injection pulses, as schematically depicted in
By way of an example,
Instead of the hitherto known mere control of pulse duration, as depicted in
Using a schematically simplified block diagram,
A further input for the AFR observer 28 is derived from the instantaneously necessary fuel amount 21. For this purpose, the air/fuel ratio is calculated in an AFR calculation 30 using the fuel amount 21 and the respective air mass in the cylinder 11 and is provided as output value 32 for further processing. The AFR calculation is based on the air mass in cylinder 11, i.e. not on the constant air volume but rather on the air mass which varies depending on the ambient situation (temperature, ambient pressure). A value for the respective air mass is fed to the AFR calculation 30 as an input value 34 from the MAF sensor 19 (MAF=mass air flow) in the combustion engine 10. Preferably, this input value 34 is based on the speed density (unit: [g/s]) of the mass flow of the fresh air which is taken in.
The output value 32 can also be referred to as the AFR command and is subjected to preprocessing in a model 36 for reproducing the dynamics of the combustion process and the reaction time of the WRAF sensor 18. In particular, possible operating times, which arise from the position of the WRAF sensor 18 in the exhaust gas evacuation system 14, are thereby considered (cf.
In the theoretical ideal case both input signals of the AFR observer 28, i.e. MAFR (measured air fuel ratio) 26 and DAFR command 38 should correspond. In practice and in the operation of the combustion engine 10, there is normally no such correspondence. The remaining difference between the two input values of the AFR observer 28 is compensated by means of a PI controller which is linked to AFR observer 28 and which is not depicted separately in
A more detailed depiction of the AFR observer is shown in
The regulation of the pulse duration for triggering the fuel injectors using the AFR controller 42 causes it to be the case that when:
i.e. when the actual AFR is equal to the required/requested AFR, that the correction value 44 outputted from the AFR controller 42 is equal to “1.0” and that the pulse length for the opening times of the fuel injectors accordingly remains unchanged;
The regulation of the pulse duration for triggering the fuel injectors as described above is referred to as “fast regulation”. In addition to this fast regulation, i.e. in a complementary manner or, if applicable, also autonomously and independently thereof, an adaptation method for altering the pulse durations for triggering the fuel injectors is suggested which also has autonomous inventive quality. For the purpose of referencing, the adaptation method or the use thereof is accordingly referred to as “slow regulation”, in order to differentiate it from “fast regulation”.
The adaptation method is further illustrated using
In an analogous manner to the previously described situation with regard to the AFR observer 28, only the I portion 60 of the AFR controller 42 is used for the adaptation method. The low-pass characteristic of the I portion of the controller is used once again, in order to carry out the adaptation substantially on the basis of longer lasting errors.
The invention provides two basically independent adaptation methods, i.e. adaptation methods which can be used alternatively or in combination. One of the adaptation methods is referred to as “multiplicative learning” for the purpose of referencing and the other adaptation method is referred to as “starting point learning” or “offset learning”.
Multiplicative learning, which is carried out using a first function block 62 provided for it, is firstly described in greater detail. The tap of the I portion 60 of the AFR controller 42 is the input signal of the first function block 62. Depending on whether this I portion is less than zero, equal to zero or greater than zero, suitable amendments are carried out in an adaptation matrix 64 which is depicted in
If the tap of the I portion 60 of the AFR controller 42 is
The respective numerical value of the cell linked to the respective operating situation is multiplicatively linked with the established pulse duration 22 at output 66 of the first function block 62. The respective numerical value is a value in the order of “1.0”, i.e. at a numerical value greater than “1.0”, the pulse duration is extended by the adaptation method, whereas at a numerical value less than “1.0” the pulse duration is shortened accordingly by the adaptation method.
Above all, the adaptation method has the advantage that conditions in the engine which have been changed by the adaptation, such as signs of wear and tear and the like for example, can be taken into consideration and can be compensated for. Insofar as this would also be possible by means of regulation using the AFR controller 42, this at least basically has the undesired effect that the AFR controller must be constantly active in order to compensate for permanent errors. It would, however, be desirable if the output 44 of the AFR controller always remains near “1.0” when in continuous operation, i.e. the AFR controller 42 itself hardly engages. This is possible if a potential error can be steadily decreased as a result of adaptation so that the AFR error 40 thus remains small. In the case of small or disappearing AFR error 40, the output 44 of the AFR controller 42 remains in the region of the desired value “1.0” such that the dynamics of the overall system are optimised by minimising the influence of the AFR controller 42 on this dynamic.
With regard to the method described above for changing the numerical values of the respectively relevant cells of the adaptation matrix 64, minimum and maximum values can be considered such that the numerical value of a cell is not permitted to fall below or exceed the respective minimum or maximum values or the minimum or maximum values which are specified for individual rows of the adaptation matrix 64 or for the adaptation matrix 64 as a whole. Sensible minimum and maximum values are, for example, “0.8” or “0.9” and “1.1” or “1.2” respectively. Of course, depending on the situation, i.e. engine type or vehicle type, for example, other minimum and maximum values, which differ from “1.0” by more than 10% or 20%, come into consideration.
Some example values are entered into the adaptation matrix 64 in
As an alternative to or in addition to Multiplicative Learning with the adaptation matrix 64 and the first function block 62, the use of a further adaptation process comes into consideration, namely “Offset Learning”. It is thereby taken into account that the pulse for triggering the injection valves always has substantially the same amplitude, but that for an injection valve reaction, i.e. the actual opening of the injection aperture, depending on the operating situation and particularly depending on the prevailing pressure ratios, the availability of the pulse for a certain time (offset) is necessary until the injection valve reacts and actually opens the injection aperture. This is depicted in
It is important that the adaptation process of Offset Learning is preferably carried out only in certain operating situations of the combustion engine, i.e., for example, only in the case of a low load (low torque delivered) and/or in the case of idle speeds or in the case of speeds in the region of the idle speed, referred to collectively as “low load”, and upon obtaining the limit or threshold value in the case of Multiplicative Learning. On the one hand, there arises in the case of low load the need for comparably large offset portions 72 of the pulse 70. On the other hand Offset Learning should preferably be used if compensation with Multiplicative Learning does not lead to the desired results. The duration of the offset portion 72 of the pulse 70 is established within the framework of Offset Learning according to the subsequently described formula:
A specified or specifiable initial duration of the offset portion 72 is assumed. Depending on the instantaneous value of the tap of the I portion 60 of the AFR controller 42, i.e. depending on the input signal for the Offset Learning, this initial duration is multiplicatively or additively acted upon with a constant factor or summand. Thus, if the duration of the offset portion 72 of the pulse 70 is referred to as y, there arises, for example, —in a situation which is analogous to that in the case of Multiplicative Learning above—the following connection in the form of a formula:
If the tap of the I portion 60 of the AFR controller 42 is
In order to adapt the duration of the offset portion 72 of the pulse 70 to different injection pressures, it can preferably be arranged that above-mentioned initial value and the instantaneous value y which is established from it initially does not directly represent a time value, but rather a “fuel amount”. Using the table already available to the engine electronics to map fuel amounts in respect of injection durations as shown in
If the numerical value directly represents a time value, scaling can also be carried out using specified or specifiable scaling factors, but in this case the non-linear connection between the fuel amount and the pulse duration necessary for it cannot be mapped to as high a standard.
The change in the numerical value adapted in Offset Learning can also be limited by suitably chosen limits.
The offset learning is carried out by means of a second function block 68 which realises the functionality described above, is arranged parallel to the first function block 62, and to which the tap of the I portion 60 of the AFR controller 42 is fed as the input signal. The output signal of the second function block is a time value 74 which is added to the established pulse duration 22.
An adaptation of the regulating method to different engines and vehicles is also possible, in that an adaptation matrix 64 is maintained for each of such engines and vehicles, this adaptation matrix not being defaulted in all cells with the neutral value e.g. “1.0” but rather has, in individual cells, values which differ from the neutral value and which arise as experimental values or as a result of appropriate calculations. The respective engine can then operate with an adaptation method of which the parameters are already the result of “prior training”. The optimal operating situation of the engine is achieved more quickly in this manner because individual sections of the adaptation, of the “training”, have already been anticipated.
The first and the second function blocks 62, 68 represent an algorithm which is preferably implemented in the engine electronics. The implementation of the respective algorithms is particularly preferably carried out as a software task such that the respective algorithm can be accessed in a set time-pattern. A set time-pattern, i.e. equidistant access times, has the advantage that instability or oscillating is avoided as soon as possible.
In short, the invention can be represented as follows:
A method is specified for controlling a combustion engine 10—engine control—in a motor vehicle, namely for optimally adjusting an air/fuel ratio which is distinguished in that the air/fuel ratio is the result of a regulation process. Individual aspects of the invention further address a regulation method particularly suitable for such regulation in consideration of the input values and readings available. For the purposes of supporting regulation, an adaptation method is specified which can also be used independently of the regulation method or with other regulation methods and which enables the regulation to be continuously adapted to the respective operating conditions, such as, for example, the engine operational performance, and signs of wear and tear and disruptions due to deposits which accompany it.
Number | Date | Country | Kind |
---|---|---|---|
102004061462.8 | Dec 2004 | DE | national |