The invention concerns a method for collecting and removing runoff water from the inner arc of the strand guide of a beam blank casting machine, in which the cast strand is solidified, and the necessary heat dissipation is achieved by, among other means, sprayed water, during which operation, runoff water can possibly collect on the inner arc of the strand. The invention also concerns a device for carrying out this method.
In beam blank or rail blank casting machines, the cast section is solidified within the strand guide. An outer, solid strand shell already solidifies in the mold by heat conduction to water-cooled copper plates. The beam blank preliminary section is produced in a casting radius.
Further heat dissipation is achieved within the strand guide by roller contact, overspray water, and heat radiation. Excess or runoff water basically collects on the inner arc of the strand and accumulates in greater and greater amounts in the direction of strand offtake as each row of nozzles is passed.
On the one hand, the accumulated water hinders heat transfer by spray cooling, and, on the other hand, it would lead to accumulation of water in front of the oxygen-cutting machine if it were not removed from the web of the strand or the web of the beam blank.
The present state of the art is characterized, for example, by blowing out the water from the inner arc of the strand by compressed air. This blowing requires the use of a large amount of power and is associated with high maintenance costs for the compressors needed to produce the required amounts of compressed air. Furthermore, the uncontrolled water blown over the flange edges of the beam blank preliminary profile damages the quality of the section that is produced, which can cause material losses.
The removal of web water from beam blanks by suction is basically already known from the document JP 58[1983]-157,559 A1. According to this document, excess water is picked up by a suction tube with a blade-shaped intake and sucked out by negative pressure at the end of a discharge tube with a round cross section. The negative pressure is produced by a concentric jacketed tube, by means of which air under pressure flows past the end of the discharge tube, with which it interacts to produce the negative pressure. However, the pressure difference is relatively small and only allows residual cooling water to be sucked up. In addition, an oblique surface for diverting excess cooling water is mounted above the intake suction tube and splits into opposite transverse directions above the intake suction tube, so that residual cooling water runs off to both sides of the cast strand and must be collected separately.
Beam blank sections or preliminary section strands, such as beam blanks or rail blanks, are basically shaped in such a way that residual amounts of water cannot independently flow off over the lateral flange edges. Because the space conditions are already very confined by the conditions in the cooling chamber and within the strand guide, there is not enough room to allow the installation of complicated devices for removing the web water. Diverting the water by suitable devices for feeding it into suction tubes is made extremely difficult by the continuously moving rough strand surface. Therefore, presently practiced methods that involve simply blowing out the water use relatively large amounts of power and damage the product.
Proceeding on the basis of the above state of the art, the objective of the invention is to specify a method and a device that should satisfy the following criteria:
In accordance with the invention, to achieve this objective, it is proposed, in a method for collecting and removing runoff water from the inner arc of the strand guide of a beam blank casting machine with the features specified in the introductory clause of claim 1, that the runoff water be collected with the use of a suction head, that the runoff water collected in the suction head be fluidized with the use of fluidizers or momentum inhibitors, that the fluidized runoff water be removed by suction, and that the water-air mixture be separated into water and air. With these measures, the runoff water is fluidized and made pneumatically conveyable within the suction head. Due to the fluidization of the runoff water, the runoff water can be sucked off with the use of only a small amount of power and then fed to a separating device for water and air. The development of a suction head means an uncomplicated and space-saving design, which can be installed in the beam blank casting machine with little expense.
In a refinement of the method, it is proposed that fluidizers be designed with a large number of air jets distributed in the suction head, and that the suction head be shaped in such a way that a fluidizing chamber is formed for the expansion of the water to be sucked up. An advantageous refinement also provides that loose metal pieces or chains can be arranged as fluidizers in the receiving chamber of the suction head.
In a further development of the method of the invention, it is proposed that the suction head be guided and/or positioned in or on the strand by means of a manipulator, thereby making it possible to control the suction head from a considerable distance and from a control room for optimum use.
To seal the suction head against the strand- or beam blank preliminary section, it is advantageous to provide sealing devices, such as brushes or rubber sealing strips.
Since beam blank casting machines can be used for different strand formats, in accordance with another proposal of the invention, it is advantageous to design the suction head to be adaptable to different strand formats and to be able to mount it with the use of quick disconnection or connection devices for connection to the suction device.
In accordance with another especially advantageous proposal, the runoff water is sucked off by the suction head in one or more places along the metallurgical length of the cast strand or beam blank below the mold.
The invention also concerns a device for carrying out the method. This device, which has the features specified in the introductory clause of claim 7, is characterized by at least one suction head, which is arranged or can be driven along the strand guide, can be connected to a suction device, and has fluidizers and means for guiding it along the beam blank preliminary profile. With the use of suction heads designed in this way, the runoff water is made pneumatically conveyable, and the water that has been sucked off can be conveyed by the induced draft through suitable tubes or lines to water separators, from which it can be further conveyed or, after suitable purification, returned to the cooling unit of the casting machine.
In a refinement of the device, the suction head is designed in the form of a bell-shaped receiving chamber, which contains the fluidizers, such as nozzles, loose pieces of metal, or chains, for fluidizing the collected water. This arrangement allows a very compact design of the suction head, so that it can be accommodated in the strand guide with a very small space requirement. It is advantageous if suction heads are installed in several regions of the continuous casting plant, so that the runoff water can be sucked off the inner arc of the beam blank in a timely fashion.
An especially advantageous refinement of the suction device provides that the suction head is realized as an exchangeable head by means of quick disconnection and connection devices, so that it can be adapted to other beam blank formats. Since especially in the rolling of girders, different beam blank preliminary sections are used, this proposed measure for adapting the suction head is especially interesting.
Optimized use of the suction device is achieved if a manipulator is provided for positioning the suction head, and the suction head can be positioned at a distance of 0 to 40 mm front the surface of the beam blank section. This measure makes it possible to prevent the suction head from coming into contact with the surface of the beam blank, which can be very rough in individual cases, and thus from damaging either the beam blank itself or the suction head.
Additional refinements of the device of the invention are described in the dependent claims.
Details, features, and other advantages of the invention are described in the following explanation of the embodiment of the invention schematically illustrated in the drawings.
The suction head 1 is positioned in the resulting bone-shaped strand section 9 for the purpose of sucking off the excess or runoff water collecting in it. The suction head can be connected to the suction device 4 with quick disconnection or connection devices 3. The suction device consists of the suction line 10 and a water separator 13. The pneumatically conveyable water-air mixture produced in the suction head 1 is removed through the suction line 10, which can be connected to the suction head. As mentioned above, the suction line 10 is connected to a separating device, in which the collected water-air mixture is separated into water and air. The water fraction is then prepared for reuse, i.e., separated from entrained solids and other substances, and returned to the beam blank casting machine to be reused.
The suction head 1 is designed in the shape of a bell with a suction intake at the bottom and encloses a fluidizing chamber for the expansion of the water to be sucked in. In addition, the inside of the suction head 1 is provided with so-called fluidizers or momentum inhibitors for fluidizing the runoff water collected in the suction head and making it pneumatically conveyable. The fluidization of the collected runoff water is preferably improved by providing air jets distributed in the suction head inside the bell-shaped fluidizing chamber for the purpose of expanding the water to be sucked in. The air jets produce powerful turbulence in the collected water, which makes it pneumatically conveyable. The fluidizers can also comprise chains or similar mechanical devices.
As
The suction head 1 fits flexibly against the strand 2 by means of brushes (not shown). Different suction heads 1, which are to be adapted to different formats of the beam blank preliminary section 9, can be coupled with the suction line 10 by means of a quick disconnection or connection device.
Number | Date | Country | Kind |
---|---|---|---|
102 17 907.7 | Apr 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/02470 | 3/11/2003 | WO | 5/23/2005 |