The invention relates to a method and a device for evaluating defects in textile fabrics.
WO00/06823 discloses a method and a device which enable a repeatable and unambiguous evaluation of defects in textile fabrics to be carried out. In this case an image of a fabric is formed and at least two representations of defects in the fabric appear in the image, these differing with regard to length and contrast or intensity of the defect. Taking these representations as a starting point, a decision as to the admissibility and inadmissibility of a defect in the fabric is made on the basis of the visual impression. A table- or matrix-like arrangement of representations of defects of differing conspicuousness is created for this purpose. An image of the flawless fabric serves as a background here. Sensitivity curves which are incorporated into the image may serve as additional aids for distinguishing between inadmissible and admissible defects.
In technical terms, this method or this device may give rise to an unnecessary flood of acquired data if all possible defects which can be classified are recorded. This prevents the defects from being evaluated quickly and results in unnecessarily generous dimensioning of the elements of which the device is to consist.
The object of the invention is therefore to provide a method and a device for evaluating defects in fabrics which also enable defects in different types of fabrics to be evaluated quickly and in a standard manner and therefore also different types of fabric to be compared with one another in terms of quality.
This is achieved in that, taking two selected parameters as a basis, a classifying matrix for the defects is created in which class limits divide the classifying matrix into fields, and values of two parameters such as, for example, the extent and the intensity of the defects, determine the class limits. The classifying matrix is additionally divided into at least two areas, for example for admissible and inadmissible defects.
The defects in the fabric are to be recorded according to a known method, and values for the two above-mentioned parameters are to be established. The recorded defects are assigned to the fields or classes in the classifying matrix according to values of the parameters which are measured for them.
A particular proposal lies in selecting a classifying diagram or a classifying matrix in which pixels and defects of a fabric which are represented by pixels can be arranged or classified according to their intensity and extent. Values for the intensity are to be plotted along an axis in an area which is independent of a fabric under consideration and may apply, as far as possible, to all possible fabrics. The zero point of this axis or the lower boundary of this area may optionally be located such that, given highly homogeneous fabrics, irregularities in the imaging can hardly be considered as defects. Pixels which, for example, are associated with the normal woven fabric structure of a woven fabric are to be recorded between this zero point and an upper limit, which depends on the relevant fabric which is to be examined. Events with intensity values above this limit are either only counted or, as from a predeterminable intensity, rated as defects which are unacceptable. Pixels which do not reach the limit are not further processed, for example, and therefore also do not load the system. This limit is calculated separately for bright pixels and dark pixels in a learning step, this taking place from a group of the brightest pixels for dark fabrics and a group of the darkest pixels for bright fabrics or from the brightest and darkest pixels in the same fabric, as, for example, a woven fabric always comprises 50% grey pixels.
The advantages which are obtained by the invention are to be seen in particular in the fact that the defects in the textile fabrics can be assessed irrespective of properties which may vary from fabric to fabric and therefore usually render the evaluation difficult or invalidate it. Thus all defects are recorded according to the same standard values. The recording of non-disturbing defects is automatically adapted to the textile fabric under consideration. The method according to the invention also allows the assessment of examined fabrics to be automated and carried out without human intervention.
The invention is illustrated in detail in the following on the basis of an example and with reference to the accompanying drawings, in which:
The mode of operation of the invention can be explained in two parts, i.e. firstly the creation of a suitable classifying matrix and secondly the classification of the defects recorded in the fabric by means of this classifying matrix.
The creation of a classifying matrix or a classifying diagram according to
Various methods of procedure can be selected in order to distinguish between tolerable defects and intolerable defects. The simplest procedure would be to create a relatively high number of reference defects and to view each of these defects against the background of the given actual fabric to be evaluated, to compare them and possible classify them and in this respect decide on a subjective basis which defects have no disturbing effect or which defects definitely have a disturbing effect. If there are as many reference defects as fields or classes in the classifying matrix 1, it is possible, through the above-mentioned subjective comparison, to directly determine those classes whose defects either have or do not have a disturbing effect. This then produces a limit line between classes of disturbing defects and classes of non-disturbing defects, this being the step line 16, 28. As relatively small, low-contrast defects are also conspicuous in fine fabrics, the step line 16 according to
A further, more complex and precise way of also automatically determining the upper limit or step line 16, 28 may take place as follows. Firstly a minimal intensity is to be established, this being associated with the lowest intensity class (e.g. 0 or X%). This limit is to be located so low that it is also possible to record slight defects in highly homogeneous fabrics. Since the intensity in the case of small, punctiform defects corresponds approximately to the grey-scale value of the pixels, the intensity scale can be brought into line with the grey-scale value range of the pixels under consideration. The intensity scale may lie, for example, between ±64, 128, 256, etc., depending on the number of bits used in the calculation. The intensity 100% is assigned to the maximum grey-scale value, which corresponds, for example, to 64, 128 or 256. A value of 5% thereof may be appropriate as minimal intensity. It is thus possible, for example, to prevent, in the case of highly homogeneous woven fabrics, the lower limiting value from being reduced to such an extent that normal irregularities in the imaging result in pseudodefects.
Once scaling for the values of the intensity and the length of the defects has been determined, the step lines 16, 28 are to be established such that only a few events in the flawless woven fabric image are identified as so conspicuous that these exceed the step line and are counted. The step line 16, 28 must be determined for a fabric under consideration. The procedure in this respect may be as follows:
1) For example, a camera records the fabric and forms an image of it through pixels in the camera line 32. Intensity or brightness values are associated with the pixels recorded by the camera according to the predetermined scale. These values are to be plotted from a representative quantity of pixels from a flawless portion of the fabric such that they are arranged according to their magnitude or stored in a memory, as illustrated by
2) This is followed by the creation of a group 51 (
3) However the median value of the brightness, of the intensity or of the deviation may also be determined from the group 51 for the upper limit. This median value may then indicate a value for the intensity for the step line 16, 28 in its central area relating to the length of the defects. It applies to defects which are rather longer. If the deviation is taken as a basis, this must be related to the mean value 48 in order to obtain a value for the step line 16, 28. However this median value must also be converted to a % value which matches the scaling on the axis 3.
4) A further step is desirable for the step line in the area of short defects. According to previous experience, short defects are assessed differently to longer defects in known methods for identifying defects in textile fabrics, as are known, for example, from WO98/08080 and must also be applied in this connection. This procedure is provided by the device or the method by means of which the pixels are recorded and which may comprise special properties which result in this kind of differentiated treatment of defects.
It is therefore appropriate to provide a correction which increases the value for the step line 16, 28 for short defects. The above-mentioned properties can be represented by a characteristic as represented in
In order to find a measure of and also scaling for the intensity of a pixel or defect, it may be assumed, for example, that the intensity is in this case influenced by the width and by the contrast of a defect. In this respect
Once the classifying matrix 1, 26 with the step line 16, 28 has been established, it is then a question of identifying the defects in a predetermined fabric and classifying them according to the classifying matrix. A method as described in WO98/08080, for example, is used for this purpose. In this case each camera line is represented by its pixels and it is now possible to store these pixels according to their intensity or brightness in the classifying matrix 1, 26. As new camera lines are always being scanned, there may be a plurality of allocations in succession for certain fields or classes, so that these can also be counted, and a count can be entered in the relevant class.
The step lines 16, 28 therefore represent limits which depend on the woven or knitted fabric which is under consideration. Pixels in the fabric which do not reach these limits are not processed by the system. Pixels which lie above these limits need not necessarily denote defects. However they indicate particularly distinct irregularities. Viewed from the textile aspect, these may also be of interest, and it may therefore be appropriate to count these as events. For such reasons the classifying matrix may therefore even comprise three zones. The bottom zones, such as the areas 17 and 29, reach from the bottom intensity limit or axis 2 up to the step lines 16, 28. Above lies a zone of simple event counting and even higher the defect zone. The areas 18, 30 are divided as desired by the user, while the step lines 16, 28 may be automatically determined.
Number | Date | Country | Kind |
---|---|---|---|
1862/02 | Nov 2002 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH03/00316 | 11/3/2003 | WO | 6/29/2006 |