This application claims priority from German Patent Application No. DE 10 2014 104 873.3, filed on Apr. 4, 2014 in the German Patent and Trademark Office, the disclosure of which is incorporated herein by reference in its entirety.
The present invention relates to filling a container with a filling product in a beverage bottling plant, for example, for bottling a carbonated filling product, such as beer, soft drinks or mineral water, for example.
A large number of different methods and devices for bottling filling products in beverage bottling plants are known. In order to bottle carbonated filling products, such as beer, mineral water or soft drinks, for example, it is known for example to pressurize the container to be filled to a positive pressure by way of a pressurizing gas before it is filled with the respective filling product, and only then to fill the filling product into the container pressurized in such a way. The pressurizing gas used here is, for example, CO2. Accordingly, while it is filled into the container to be filled, the CO2 bound in the carbonated filling product is filled in counter to the increased CO2 pressure so that liberation of the CO2 from the filling product can be reduced or completely prevented. This method is also referred to as the counterpressure filling method. In this way, foaming of the filling product in the container to be filled can be reduced or avoided, and so the filling operation as a whole is sped up in this way.
Usually, before the container to be filled is pressurized with the pressurizing gas, the container is first of all evacuated, then purged with the pressurizing gas, and then evacuated again in order then to be brought to the corresponding pressurizing pressure by way of the pressurizing gas before the actual filling operation, before the filling product is fed in. As a result of the evacuation and purging, a defined gas atmosphere can be created in the container, in particular, a largely oxygen-free atmosphere which is desired specifically in the case of beer or other oxygen-sensitive products.
Depending on the configuration of the counterpressure method, a filling level correction can also be carried out in a pressurized and filled container in that the filling product is pushed back into the filling-product reservoir via a return gas pipe which dips into the filling product filled into the container. This can be achieved for example by further subjecting the filled container to a pressurizing gas, for example CO2, under increased pressure. The filling product is then accordingly pushed out of the container via the return gas pipe until the return gas pipe no longer dips into the filling product and accordingly the pressurizing gas escapes from the filled container into the filling-product reservoir directly via the return gas pipe.
As a result of the provision of the return gas pipe in such a counterpressure filling method, the interior of the container and the pressure in the gas space over the filling product in the filling-product reservoir can be kept at the same positive pressure level, while the filling product flows into the container.
Also known is what is referred to as a vacuum filling method, in which still liquids are introduced into a pre-evacuated container to be filled. Exact filling-level correction takes place in such a way that a suction pipe dips into the container filled with the filling product and the filling product is drawn back out of the container by way of a negative pressure applied to the suction pipe until the desired filling level, which is defined by the bottom edge of the suction pipe, is reached. The suction pipe is in this case fluidically connected to the negative pressure applied above the filling product in the filling-product reservoir, such that the liquid can be sucked out quickly and the filling product can be held in the suction pipe in a droplet-free manner. Examples of such vacuum fillers can be found in DE 83 08 618 U1 and DE 83 08 806 U1.
Vacuum fillers, such as the Krones types VV, VVHK, VVHL, for example, allow a correction phase following completion of the filling phase. In this case, the vacuum applied in the ring bowl is connected to a return air pipe. The filling level can be controlled via the dipping level of the return air pipe into the respective container to be filled. By the return air pipe being fluidically connected to the vacuum in the ring bowl, the filling product present at the bottom end of the return air pipe is accordingly sucked back into the ring bowl. In this case, losses of flavor and/or alcohol can unfavourably occur, for example during the bottling of spirits.
As a result of the provision of the suction pipe in a vacuum filling method, the container interior and the space located above the filling product in the filling-product reservoir can be brought to the same negative pressure level.
The vacuum filling devices or vacuum filling methods were not used for bottling carbonated beverages, since on account of the applied negative pressure or the applied vacuum, the CO2 in the respective carbonated beverages would be immediately liberated and accordingly a filling operation having a very high foaming tendency and thus a long filling time would result. Accordingly, the filling of carbonated filling products by way of vacuum filling methods was ruled out in the prior art.
DE 199 11 517 A1 discloses a beverage bottling machine in which CO2-free, i.e. non-carbonated, beverages can be bottled in containers. In order to achieve sterility and protection against oxygen of the bottled CO2-free beverage, the filling stations of the beverage bottling machine run in an evacuated interior of the filler housing. The containers are evacuated just by introducing the respective container into the filler housing. In other words, the containers are evacuated by the negative pressure prevailing in the filler housing, then supplied to the respective filling locations and then filled. Since the containers are introduced into the interior of the filler housing via a transfer wheel and discharged from the filler housing after being filled, the negative pressure that is achievable in the filler housing is very limited.
Bottling a filling product in a pressurized container is also known in order to maintain sterility, as described for example in DE 41 26 136 A1.
Methods and devices for filling a container with a filling product, such as a carbonated filling product, are provided. The methods and devices exhibit an improved filling behavior.
Accordingly, a method for filling a container with a filling product in a beverage bottling plant is described, which includes the provision of the filling product under a positive pressure and the evacuation of the container to be filled in order to achieve a negative pressure. According to the present disclosure, the filling product, which is under positive pressure, is fed into the container, which is under negative pressure.
As a result of the filling product, which is under positive pressure, being fed into the container, which is under negative pressure, the flow of the filling product into the container can be sped up. In particular, abrupt filling of the container to be filled with the filling product is possible in this way.
On account of the negative pressure in the container to be filled, during the filling of the container, first of all no gas is displaced from the container interior, but rather only the negative pressure is reduced. Accordingly, no fluid flow directed counter to the filling product flowing in takes place and in particular no gas is displaced out of the container to be filled by the filling product, said gas then having to flow out through the mouth of the container. Accordingly, in order to fill the container, the entire mouth cross section is available for the filling product to flow in. In the prior art, the return gas pipe required for this purpose disadvantageously also takes up part of the maximum available free mouth cross section of the container.
In conventional filling methods, for example the counterpressure method, it is by contrast necessary for the gas displaced out of the container by the filling-product flow flowing in to escape through the mouth again at the same time as the filling product flows in. Accordingly, two fluid flows that are directed in opposite directions share the mouth cross section of the container to be filled, specifically on the one hand the fluid flow directed into the container of the filling product, and on the other hand, the fluid flow directed out of the container of the displaced gas.
In a vacuum filling method, the entire mouth cross section is likewise not available, since the return gas pipe, via which a filling level correction, as is known from the prior art, is carried out, is guided through the mouth cross section. Thus, two fluid flows in opposite directions are provided in a vacuum filling method according to the prior art, too, specifically on the one hand the filling-product flow flowing into the container to be filled and the return gas flow or vacuum flow, directed in the opposite direction, through the return gas pipe, said return gas flow or vacuum flow then being replaced in the correction phase by the filling-product flow flowing back.
In exemplary embodiments, before the filling product is fed in, the container is evacuated to a negative pressure at an absolute pressure of about 0.5 bar to 0.05 bar, in a further embodiment about 0.3 bar to 0.1 bar, and in another embodiment about 0.1 bar. On account of the filling product being filled into a corresponding negative pressure in the container, the interior of the container has been evacuated such that, during filling with the filling product, no gas is displaced by the filling product and accordingly no gas also has to flow out of the interior of the container. Rather, the entire mouth cross section of the container can be used for the filling product to flow in. In other words, only a filling-product flow directed into the container occurs here. The filling of the filling product into the container is furthermore supported by the provided pressure difference between the negative pressure in the container to be filled and the positive pressure in the filling-product reservoir.
In a further advantageous configuration of the method, the filling product is provided under a positive pressure which corresponds to the ambient pressure, for example under an absolute pressure of 1 bar. The positive pressure is accordingly in the form of a positive pressure compared with the negative pressure in the container, and so there is a pressure gradient between the provided filling product and the container.
The positive pressure can also correspond to the saturation pressure of the filling product and in some embodiments, be at an absolute pressure of about 1.1 bar to 6 bar. As a result of the positive pressure at the respective saturation pressure, liberation of the CO2 from a carbonated filling product can be counteracted.
In a development, the positive pressure is above the saturation pressure of the filling product and is in some embodiments, at an absolute pressure of about 1.6 bar to 9 bar. As a result of a high positive pressure, which is in particular above the saturation pressure of the filling product, it is possible for the CO2 in the filling product to be in saturation and at the same time for the pressure gradient between the provided filling product and the container to be even greater in order to speed up the filling operation even more.
Via the pressure gradient provided between the filling product and the container, abrupt filling of the container can be achieved. In this case, a conventional beer bottle can be filled with the filling product in about 0.3 seconds, for example, compared with the conventional filling time of about 4.5 seconds. In this case, the abrupt filling takes place substantially at the start of the filling operation. Towards the end of the filling operation, when the container is already largely filled with the filling product, equalization of the pressures between the pressure in the headspace of the container and the pressure of the filling product provided under positive pressure can take place, since the residual gas in the container can now rise to atmospheric pressure or to the pressure provided by the filling product. However, the pressure difference achieved or the equalization of the pressures depends on the starting pressures and in particular on the initial negative pressure in the container to be filled.
In other words, the pressure progression in the container to be filled during filling is dependent on the pressure in the container to be filled at the start of the filling operation and thus also on the residual gas in the container. By way of the filling product, the container is filled such that the filling product shares the remaining space with the residual gas. Accordingly, the pressure in the container rises. From the resulting pressure curve, it is therefore also possible to determine the respective filling state of the container and for example also to determine the end of filling to be reached on this basis.
In order to achieve particularly hygienic and low-oxygen filling of the filling product into the container to be filled, the container to be filled is in some embodiments already initially evacuated once prior to the actual evacuation for filling the container with the filling product, and then purged with a purge gas, whereupon the container is then evacuated again to the abovementioned negative pressure and then the filling product is filled into the container thus evacuated. In this way, it is possible for the residual gas in the container to be a largely defined gas, for example CO2, in order to allow the container to be filled in a defined atmosphere and in particular in a low-oxygen atmosphere. As a result, an extended storage time can be achieved and thus even oxygen-sensitive products, such as beer, for example, can be bottled.
In certain embodiments, after the filling product has been fed in, the filled container is subjected to a pressurizing gas at an absolute pressure of about 2 bar to 9 bar, in some embodiments at an absolute pressure of about 3.5 bar to 7 bar, and in other embodiments at an absolute pressure of about 3.8 bar to 5.5 bar. In this case, the pressurizing gas used can be an inert gas, for example CO2.
When the filled container is subjected to a pressurizing gas under increased pressure, for example to CO2, filling-product foam in the headspace of the filled container can be forced back and pushed into the container. Furthermore, the filling-product line can be emptied of foam and residual filling product. Moreover, as a result of the container being subjected to the pressurizing gas, renewed binding or dissolving of the CO2 in the filling product can be favored such that the settling time for the filling product in the filled container can be reduced and accordingly the filled container can be prepared for discharging or capping.
The positive pressure of the pressurizing gas to which the filled container is subjected after the filling product has been fed in some embodiments corresponds to the positive pressure at which the filling product is provided.
By way of the mentioned method, carbonated beverages are typically bottled. Contrary to the preconception in the prior art that it is not possible to fill a container to be filled with a carbonated filling product when the container exhibits a negative pressure or a vacuum, abrupt filling of the container with a filling product is possible by way of the method described here when the container is under a negative pressure or exhibits a vacuum and the filling-product reservoir is under a positive pressure.
In order to shorten the settling time of the filling product in the filled container and to prevent the filling product from foaming or foaming over when the container is brought to ambient pressure after filling, the filled container is usually capped without an exchange of the container interior with the environment taking place. In some embodiments, the filled container is capped after being filled and optionally after the container has been subjected to a pressurizing gas, without the pressure conditions in the headspace of the filled container being changed and in particular without the filled container being brought into contact with the environment.
After being filled with the filling product, the container is capped, generally without depressurization of the container to ambient pressure, in order to prevent the filling product from foaming, running over or shooting out. Thus, it is not necessary to wait for the filling product to settle, but rather capping can be carried out directly. The filled container is in this case capped in one embodiment at a positive pressure at an absolute pressure of about 2 bar to 9 bar, in a further embodiment at a positive pressure at an absolute pressure of about 2.5 bar to 6 bar, or at a positive pressure which corresponds to the saturation pressure of the filling product, which in certain embodiments is at an absolute pressure of about 1.1 bar to 6 bar, or at a positive pressure which is above the saturation pressure of the filling product, which in some embodiments is at an absolute pressure of about 1.6 bar to 9 bar. The positive pressure at which the filled container is capped is typically the positive pressure provided by the pressurizing gas.
The actual capping of the filled containers can be carried out with well-known caps by means of well-known cappers. The filled containers can accordingly be capped for example with crown caps, stoppers, screw caps or roll-on caps.
Evacuation of a soft-wall container, for example a polyethylene terephthalate (PET) container or some other thin-walled plastics container, is enabled in that the container is introduced into an evacuable chamber and the chamber is likewise evacuated before or during the evacuation of the container to be filled. To this end, either a filler chamber can be evacuated or a separate space enclosing the respective container can be provided, said space allowing evacuation such that the pressure conditions on the inner side and on the outer side of the evacuated container to be filled are identical. Accordingly, it is also possible to subject soft-wall containers to filling by way of the described method.
In some embodiments, before being evacuated, the container is connected in a fluid-tight manner to a filling-product line for supplying the vacuum, the pressurizing gas and the filling product.
Generally, at least one flavoring and/or a beverage additive and/or a beverage ingredient is metered into the interior of the plastics container before and/or during and/or after the feeding of the filling product into the interior of the plastics container. Beverage additives are understood here as including syrup and/or preservatives.
As a result of the flavoring and/or the beverage additive and/or the beverage ingredient being metered into the interior of the plastics container, flexible metering in of flavorings and/or beverage additives and/or beverage ingredients can be achieved, this making a rapid change between different flavorings and flavors possible. As a result of the rapid filling operation, as described above, a part of the treatment angle in a carousel filler can be taken up by other functions. Accordingly, the above-described method makes it possible to additionally provide a flavoring metering means for metering in flavorings and/or beverage additives and/or beverage ingredients, and so an advantageous change between different flavors becomes possible.
A device for filling a container with a filling product by the above-described methods is also described, which includes a filling-product supply for supplying the filling product and a filling-product line which is able to be brought into contact in a fluid-tight manner with the container to be filled, a vacuum device for evacuating a container to be filled and furthermore a control device. According to the present disclosure, the control device is designed first of all to evacuate the container by means of the vacuum device and then to introduce the filling product into the evacuated container.
In some embodiments, provision is made of a capper by means of which the filled container is cappable without depressurization of the container to ambient pressure. In this way, depressurization of the filled container can be avoided and thus the filling operation can be sped up, since it is not necessary to wait for the filling product to settle prior to capping in order to avoid the filling product foaming over, shooting out and running over. Rather, capping takes place under the same conditions, in particular at the same pressure conditions, as filling.
The actual capping of the filled containers can be carried out with well-known caps by means of well-known cappers. The capper can accordingly be for example a crown capper, a stopper capper, a screw capper or roll-on capper.
Advantageously, provision is made of a capping head which has a capping-head space that is sealed off from the environment, said capping-head space accommodating the filling-product line and a capper together with the mouth of the container. In some embodiments, the capping-head space is openable and closable in order to accommodate the container, and generally has two capping-head jaws which are openable and closable in order to accommodate the container and in various embodiments to supply a container cap. By way of such a capping head, filling and capping can be carried out in the same gas atmosphere and at the same pressure in the capping-head space.
The filling-product supply is advantageously subjectable to a positive pressure and is in one embodiment configured as a filling-product reservoir having a gas space which is present above a filling-product level and is under pressure or as a line which is filled with the filling product and is under pressure, which in some embodiments is a voidlessly filled line which is under pressure.
In an advantageous embodiment, the filling-product line has the same cross section as the mouth cross section of the container to be filled, and in particular the entire mouth cross section of the container to be filled is usable for filling the filling product into the latter. By using the entire cross section of the mouth, particularly quick filling of the filling product into the container can be achieved.
In a further advantageous embodiment, a flavoring metering means for metering a flavoring and/or a beverage additive and/or a beverage ingredient into the interior of the plastics container is provided. The flavoring metering means can be for example in the form of a peristaltic pump, by means of which the flavoring and/or the beverage additive and/or the beverage ingredient is pumped from a corresponding reservoir and metered in.
A filling plant for bottling a filling product in a container is further described, which includes a filler having filling stations for filling the containers with the filling product according to the above-described method and a capper, arranged downstream of the filler, having capping stations for capping the filled containers. According to the present disclosure, the number of filling stations corresponds substantially to the number of capping stations.
Accordingly, cappers and fillers can have the same dimensions and in certain embodiments be integrated with one another. Such an arrangement is allowed by the substantially increased filling speed of the method, since the timescales for filling the containers to be filled and for capping the containers to be filled approximate to one another.
In this way, a compact filling plant can be constructed, since on account of the possibility of abruptly filling the containers by way of the proposed method, the filling operation can proceed in a similarly quick manner to the capping operation.
In this way, a much more compact filling plant can be provided than those known from the prior art, in which the number of filling stations is much greater than the number of capping stations.
In one embodiment, the number of filling stations corresponds to 1 to 3 times, generally 1 to 2 times, the number of capping stations. The capper can thus be configured to be only marginally smaller than the filler.
In another embodiment, the number of capping stations corresponds to 1 to 3 times, typically 1 to 2 times, the number of filling stations. The filler can thus be configured to be smaller than the capper. This configuration, too, can be realized on account of the much shorter filling times.
Further embodiments and aspects of the present invention are explained in more detail by the following description of the figures.
Examples of embodiments are described in the following text with reference to the figures. Here, identical, similar or functionally identical elements are designated by identical reference signs in the various figures and a repeated description of these elements is to some extent dispensed with in the following description, in order to avoid redundancies.
Depending on the respective filling product 110 to be bottled, an appropriate gas or gas mixture is present in the gas space 20. For example, in the case of a carbonated beverage to be bottled, the gas space 20 may contain CO2, which is generally under positive pressure, with the result that the CO2 bound in the carbonated beverage is not liberated. Furthermore, the oxygen can be displaced from the gas space 20 by the CO2, such that scarcely any oxygen or no oxygen is present in the filling-product reservoir 2, this being generally in the case of oxygen-sensitive filling products such as beer, for example. When still beverages are bottled, it is also possible for a different inert gas to be present in the gas space 20, this allowing a particularly gentle handling of the filling product 110.
A filling-product line 3, which includes a centering bell 30, is schematically shown in the figure. The container 100 to be filled is pressed against the centering bell 30 in a sealing manner by way of its mouth 102, such that a gastight and liquid-tight connection is formed. Accordingly, a gastight and liquid-tight connection exists between the filling-product line 3 and the interior of the container 100 by means of the centering bell 30.
Via a filling-product valve 32, the filling product 110 can pass from the filling-product reservoir 2 via the filling-product line 3 and into the interior of the container 100. The filling-product valve 32 controls the start and end of filling such that the container 100 is filled with a predetermined quantity of filling product 110.
The end of filling and thus the closing of the filling-product valve 32 can be determined for example by the reaching of a predetermined filling level N in the container 100, by the reaching of a predetermined filling weight and/or by the reaching of a predetermined filling volume. As a further possibility, provision can also be made of a metering chamber into which the filling product is pre-metered and then is likewise present in this metering chamber under the positive pressure. When the metering chamber has been emptied, the filling operation ends.
As a further possibility for determining the end of filling, the pressure progression in the container 100 to be filled can be taken into consideration during the operation of filling with the filling product 110 and the filling operation and the end of filling can be controlled on the basis of the pressure progression. For example, the end of filling can be reached when a particular pressure in the interior of the container 100 is exceeded. To this end, a pressure sensor 38 which monitors the pressure conditions in the container 100 during the filling operation can be provided in the filling-product line 3.
A flow control valve 36 by means of which the maximum flow rate with the filling-product valve 32 opened can be controlled can be provided upstream of the filling-product valve 32 in the product-conducting line. By means of the flow control valve 36, the course of the filling operation can be influenced deliberately and for example only a reduced flow can be provided towards the end of the filling operation, in order for example to allow the end of filling to be reached in a precise manner.
Provision is furthermore made of a vacuum device 4 which is likewise able to be brought into communication with the filling-product line 3, and thus also with the interior of the container 100, via a vacuum valve 40. By means of the vacuum device 4, the interior of the container 100 can be evacuated and accordingly the gas in the interior of the container 100 pumped out. The pressure that is able to be provided in the interior of the container 100 by way of the vacuum device 4 is in one embodiment at an absolute pressure of about 0.5 bar to 0.05 bar, in a further embodiment about 0.3 bar to 0.1 bar, and in another embodiment about 0.1 bar. Accordingly, a large part of the gas located in the container interior can be pumped out by means of the vacuum device 4.
The gas space 20 of the filling-product reservoir 2 is subjectable to a positive pressure via a pressure line 22, such that the filling-product reservoir 2 as a whole is under pressure. The gas accommodated in the gas space 20 of the filling-product reservoir 2 is typically an inert gas and in certain embodiments CO2, in particular when the filling product 110 is a carbonated beverage, for example beer, a soft drink or mineral water.
When the filling product 110 is a carbonated filling product, such a pressure can be provided in the gas space 20 above the filling product 110 by the supply of CO2 via the pressure line 22 that the CO2 is prevented from being liberated from the filling product 110. Provision is generally made here of an absolute pressure of about 1 bar to 9 bar, in one embodiment an absolute pressure of about 2.5 bar to 6 bar, and in another embodiment, an absolute pressure of about 2.8 bar to 3.3 bar is maintained in the gas space 20.
In one embodiment, the filling product 110 is provided in the filling-product reservoir 2 at a positive pressure that corresponds to the ambient pressure, generally at an absolute pressure of 1 bar. The filling product 110 can also be provided in the filling-product reservoir 2 at a positive pressure that corresponds to the saturation pressure of the filling product 110, such as at an absolute pressure of about 1.1 bar to 6 bar. In a further embodiment, the filling product 110 can also be provided in the filling-product reservoir 2 at a positive pressure that is above the saturation pressure of the filling product 110, such as at an absolute pressure of about 1.6 bar to 9 bar.
By means of the vacuum device 4, which is able to be brought into fluid connection with the interior of the container 100 via the filling-product line 3, the container 100 can be evacuated prior to the actual operation of filling with the filling product 110. To this end, when the vacuum valve 40 has been opened, the gas which is located in the container 100 is drawn off via the vacuum device 4. When the container 100, for example coming from the ambient atmosphere, is connected to the centering bell 30 the ambient air located in the container 100 is drawn off via the vacuum device 4. If the container 100 has already been subjected to a gas atmosphere, for example an inert gas or CO2, the vacuum device 4 accordingly pumps this gas atmosphere out of the container 100. The vacuum device 4 is generally configured such that it can provide a considerable negative pressure, for example in the region of an absolute pressure of about 0.5 bar to 0.05 bar, in the container 100.
The valves, in particular the filling-product valve 32 and the vacuum valve 40, are actuated via a control device 7. The control device 7 can be embodied either as an analogue controller or expediently as a programmed controller, for example in the form of a PC or industrial PC. The control device 7 can also be a module of the overall plant controller of a carousel filler, of a carousel capper or of a filling plant.
The control device 7 is designed to carry out the method described below and is in particular programmed to carry out this method and to control the corresponding plant components. Accordingly, the valves and components are actuated one after another such that the method proceeds in the form described.
In some embodiments, but not shown in the figures, the control device 7 is connected to sensors and transducers which monitor for example the pressure conditions in the container 100 or in the filling-product line 3 connected to the container 100 and in the filling-product reservoir 2.
The filling method which can be carried out by means of the device 1 according to
In an embodiment that is not shown in the figure, the filling-product supply 2 can also be provided in the form of a line in which the filling product 110 is conducted under pressure. Use can in some embodiments be made here of what is referred to as a voidlessly filled line, e.g., a line that is filled completely and without a gas space.
In order to fill a container 100 with the filling product 110, the interior of the container 100 is evacuated via the vacuum device 4 with the filling-product valve 32 closed and the vacuum valve 40 opened and accordingly brought to a negative pressure. Once the predetermined negative pressure, for example about 0.1 bar, in the container 100 has been reached, the vacuum valve 40 is closed and the filling-product valve 32 opened. On account of the large pressure difference between the interior of the container 100, in which a negative pressure prevails, and the filling-product reservoir 2, in which a positive pressure prevails, the container 100 is abruptly filled with the filling product 110. The filling operation can thus be carried out very quickly and is accordingly also ended quickly.
Since, during the filling operation, on account of the negative pressure already provided in the container 100, no gas is displaced out of the container 100, at least in the first phase of filling, when the filling product 110 flows in, but rather only the negative pressure is reduced, the filling product can also flow into the container 100 via the entire mouth cross section d of the mouth 102 of the container 100.
In this way, when the container 100 is being filled with the filling product 110, the filling operation can be effected, at least over the greatest part of the filling operation, with a fluid flow in only one direction, namely a fluid flow which is directed only into the container 100. No counterflow of fluid, for example of a gas, takes place, since no displacement of gas out of the container 100 into the filling-product line 3 and/or into the filling-product reservoir 2 takes place. Rather, as a result of the filling of the container 100 only the negative pressure in the container 100 is slowly reduced. Only towards the end of the filling operation, when the pressure slowly rises in the headspace K of the container 100, i.e., the space located above the filling level N of the filling product 110 in the container 100, and possibly the pressure conditions in the container 100 are equalized with the pressure conditions in the filling-product line 3, will the inflow of the filling product 110 out of the filling-product reservoir 2 slow down.
Depending on the respective negative pressure provided in the container 100, such slowing down can be avoided, however. The lower the pressure in the container 100 to be filled, the less significant the slowing down will turn out to be, since at a lower pressure of the container 100 to be filled, a significant negative pressure still prevails in the container 100 even at the time that the filling-product valve 32 is closed.
Therefore, the time at which slowing down occurs depends on the negative pressure in the container 100 and thus on the design of the vacuum device 4. The lower the pressure in the container 100 is, the later equalization of the pressure conditions occurs; or, in the extreme case of a particularly high vacuum in the container 100, equalization of the pressure conditions does not occur at all, but rather a negative pressure will still exist in the headspace K even when the desired filling level N has already been reached and the filling-product valve 32 has already been closed.
The positive pressure in the filling-product reservoir 2 remains substantially constant over time. By contrast, during filling, the pressure in the container 100 rises on account of the filling product 100 flowing in. If the negative pressure in the container 100 to be filled is selected such that towards the end of the filling operation the pressure in the container 100 and in particular in the headspace K has exceeded a particular level, regulation of the filling-product flow flowing into the container 100 can be achieved as a result of the rising pressure. Accordingly, the filling-product flow slows down towards the end of the filling operation, such that the reaching of an end of filling can be easily supported and the filling-product valve 32 can then be closed.
Accordingly, by means of the device 1 shown in
As a result, it is possible to achieve the filling of the container 100 in very short filling times, for example when a conventional 0.5 L beer bottle is filled in a filling time of 0.3 seconds. By comparison, the filling times for an identical beer bottle in the counterpressure method are in the region of 4.5 seconds on account of a hydrostatic pressure. Accordingly, abrupt filling of the container 100 to be filled can be achieved with the described method, and so the filling process as a whole can be carried out more quickly. This can result either in greater capacity for a given filler size, or a filler, for example a rotary filler, can be configured with smaller dimensions and a reduced number of filling stations.
In various embodiments, the number of filling stations corresponds substantially to the number of capping stations. In one embodiment, the number of filling stations corresponds to 1 to 2 times the number of capping stations. In this way, a particularly compact filling plant can be provided.
By means of the pressurizing-gas device 5, with the pressurizing-gas valve 50 opened, CO2, for example, can be introduced into the container 100 via the filling-product line 3. The pressurizing gas used can also be some other inert gas. The pressurizing gas can be applied to the filled container 100 at an absolute pressure of about 2 bar to 9 bar, generally at an absolute pressure of about 3.5 bar to 7 bar, and in some embodiments at an absolute pressure of about 3.8 bar to 5.5 bar.
In some embodiments, the pressurizing-gas device 5 is connected to the gas space 20 of the filling-product reservoir 2. The gas to be supplied to the container 100 in this way is accordingly under the same pressure as the gas accommodated in the gas space 20 and is accordingly also the same gas.
A filling method, which represents a development of the filling method described with respect to
Once the pressurizing gas has been fed in via the pressurizing-gas device 5, the pressurizing-gas valve 50 is closed again and the vacuum valve 40 is opened again, such that the gas mixture can again be drawn out of the container 100 via the vacuum device. In this way, when the pressure in the container 100 is again reduced to about 0.1 bar, a 99% reduction in the oxygen content in the container 100, compared with the initial state, is achieved.
Then, the container 100 evacuated in this way and accordingly under negative pressure is abruptly filled with the filling product 110 from the filling-product reservoir 2 after the vacuum valve 40 is closed and the filling-product valve 32 opened, as described with respect to
In certain embodiments, after the filling-product valve 32 has been closed, the pressurizing-gas valve 50 can be opened again and pressurizing gas fed into the filling-product line 3 via the pressurizing-gas device 5. As a result, the negative pressure still present in the headspace K or in the container 100 is reduced and instead a positive pressure is built up or a positive pressure already present in the headspace K is increased further. At the same time, residual filling product located in the filling-product line 3 is pushed into the container 100 by the pressurizing gas flowing in. In particular in the case of filling a filling product 110 with a high foaming tendency, following the abrupt filling of the container 100 with the filling product it is possible for filling-product foam still to be present in the filling-product line 3 and the headspace K of the container 100. As a result of the pressurizing-gas valve 50 being opened and the filling-product line 3 and the headspace K being subjected to the pressurizing gas, this foam can be pushed back into the container 100, such that essentially no filling product, and in particular no filling-product foam, is present in the filling-product line 3 anymore.
When the container 100 or the headspace K of the container 100 is subjected to a pressurizing gas, for example CO2, at increased pressure, for example at about 1.1 to 3 bar, in one embodiment at 2 bar, it is furthermore possible to prevent the liberation of a carbonated filling product 110 in the container 100, or renewed binding of CO2 liberated during the filling operation can be supported by the increased pressure.
Filling is then concluded.
This results, at a filling level N that has been reached, in a headspace K which is between the maximum filling height A of the container 100 and the filling level N. A foam space C, which corresponds to the volume between the filling level N and the filling-product valve 32 and the shut-off valve 34, is furthermore formed. Accordingly, the foam space C has a volume which corresponds to the headspace K plus the portion of the filling-product line 3 between the mouth 102 of the filled container 100 and the filling-product valve 32 and the shut-off valve 34.
The foam space C should generally be kept as small as possible in order, in the case of the abrupt filling of the container 100 with the filling product 110, for only a limited quantity of foam to be present in particular when a carbonated filling product 110 is bottled. As a result of the foam space C or the filling-product line 3 being subjected to the pressurizing gas, for example CO2, from the pressurizing-gas device 5, said pressurizing gas being under positive pressure, it is accordingly possible for the foam to be pushed out of the foam space C into the container 100. By minimizing the foam space C it is possible here for all of the foam to already be pushed into the container 100 by means of a moderate predetermined positive pressure via the pressurizing-gas device 5. Furthermore, the filling precision is also increased when the foam space C contains only a moderate volume. The residual filling product located in the foam space C then only insignificantly influences the filling level N after the filling-product valve 32 is shut-off, and so precise filling becomes possible.
In some embodiments, the ratio of foam space C to the headspace K is about 1.1 to 3, for example about 2, such that it is possible to introduce all of the filling-product foam into the container 100 by feeding in the pressurizing gas.
The container 100 to be filled is held with its mouth region 102 against the capping head 6 in a sealed manner. To this end, the capping head 6 has a container seal 600 which accordingly comes into contact with the mouth region 102 of the container 100 in a sealing manner. The capping head 6 has a capping-head space 60 which is in communication with the interior of the container via the mouth projecting into the capping-head space 60.
Provision is likewise made of a filling-product line 3 which has a centering bell 30 that has a seal 300 which is placeable in a sealing manner against the mouth 102 of the container 100 in order to provide a gastight and fluid-tight connection. Accordingly, as is shown in other embodiments in the present figures, fluid-tight and gastight sealing of the filling-product line 3 with the interior of the container 100 can be carried out. The filling-product line 3 can be displaced in the displacement direction X together with the centering bell 30 such that the filling-product line 3 is advanced together with the centering bell 30 so that it is placed in a sealing manner directly on the mouth 102 of the container 100. However, in the state shown in
The passage of the filling-product line 3 into the capping-head space 60 is sealed via filling-product-line seals 620, such that the capping-head space 60 is sealed off from the environment even when the fluid-product line 3 is displaced in the displacement direction X.
In the exemplary embodiment shown, provision is furthermore made of a capper 62 which holds a container cap 104 via a magnet 622, wherein the container cap 104 is configured in the form of a crown cap in this case. The capper 62 can be lowered and raised in the stroke direction Y, wherein the capper seals the capping-head space 60 off from the environment via a capper seal 640.
The capper 62 is arranged coaxially with the container axis 106 of the container 100 and thus also coaxially with the mouth 102 of the container 100 in order to be able to apply the container cap 104 reliably to the container 100.
In the opened position, shown in
The filling method accordingly occurs in such a way that, as is shown schematically for example in
The actual filling operation then accordingly proceeds in the manner already described with respect to
Once the filling-product valve 32 has been closed again after the end of filling has been reached, a pressurizing gas is applied via the pressurizing-gas device 5 such that foam possibly located in the foam space is pushed completely into the container 100 and accordingly a positive pressure is built up in the headspace of the container 100.
When the desired positive pressure in the container 100 has been achieved, the sealing of the centering bell 30 with the interior of the container 100 is removed, for example by lifting off the centering bell 30. Then, the filling-product line 3 is retracted such that the centering bell 30 is retracted into the parked positioned shown for example in
The capping-head space 60 is now likewise subjected to the pressurizing gas, since when the filling-product line 3 is retracted, the filling-product line 3 then becomes fluidically connected to the capping-head space 60. Accordingly, in the retracted position of the centering bell 30, as is shown in
Accordingly, when the centering bell 300 is detached, the pressure present in the container 100 is not relieved, but rather the pressure applied by the pressurizing-gas device 5 continues to be maintained and applied to the interior of the container 100. This is achieved in particular in that the interior of the container 100 communicates with the capping-head space 60. Thus, it is accordingly possible to avoid CO2 being liberated or filling product shooting out of the mouth 102 of the container 100, and for the same state to be maintained which is achieved after the abrupt filling of the container 100 and the subsequent subjecting of the headspace of the container 100 to the pressurizing gas. In other words, it is possible to avoid the filling product running over or foaming over or shooting out, since the pressure level in the container 100 is not changed even when the connection of the filling-product line 3 is detached from the mouth 102.
Once the filling-product line 3 has then been retracted and the centering bell 30 accordingly arranged in the parked position shown in
As soon as the container cap 104 has been applied to the container 100, the pressure in the capping-head space 60 can be released. This is achieved in the exemplary embodiment shown in that the capping-head jaws 64, 66 are opened. Then, the fully filled and capped container 100 can be discharged.
The capping-head jaws 64, 66 are, as already described above, provided with a multiplicity of seals which make it possible to provide both secure sealing of the mouth region 102 of the container 100 and also secure sealing with respect to the movable filling-product line 3 or with respect to the capper 62 when the capping-head jaws 64, 66 are arranged in the closed position, as shown for example in
The filling-product line 3 together with the centering bell 30 and the capper 62 remain roughly in the same position when the capping-head jaws 64, 66 are opened and closed. In the opened position of the capping-head jaws 64, 66 it is not only possible for the container 100 to be filled to be received, but also for a new container cap 104 to also be transferred to the capper 62.
As a result of the arrangement of the capper 62 and of the filling-product line 3 together with the centering bell 30 in the closed-off capping-head space 60, it is accordingly possible for the container 100 to be able to be capped once the container 100 has been filled, without the container 100 being relieved of pressure or without the pressure conditions changing between filling and capping.
A positive pressure is generally present in the capping-head space 60. This positive pressure can be at an absolute pressure of about 2 bar to 9 bar, for example at a positive pressure with an absolute pressure of about 2.5 bar to 6 bar, or at a positive pressure which corresponds to the saturation pressure of the filling product 110, for example at an absolute pressure of about 1.1 bar to 6 bar, or at a positive pressure which is above the saturation pressure of the filling product 110, for example at an absolute pressure of about 1.6 bar to 9 bar. As a result of the abovementioned positive pressures, in particular when CO2 is used as pressurizing gas, it is possible to prevent the CO2 from being liberated from the carbonated, abruptly bottled filling product 110, and so accordingly the filling product 110 can be prevented from foaming over, running out or shooting out of the mouth 102 of the container 100 after the centering bell 30 is removed.
By way of the described arrangement, a combined system of capper and filler is provided, wherein the number of filling members corresponds substantially to the number of capping members. In some embodiments, the number of filling stations corresponds to 1 to 2 times the number of capping stations. In one embodiment, filling members and capping members can also be provided in different carousels, wherein, however, the number of filling members and of capping members is substantially the same.
The different method steps, for example the opening and closing of valves, the advancing or retracting or pivoting of the centering bell 30, the raising and lowering of the capper 62 or the opening and closing of the capping-head jaws 64, 66 are controlled as a whole, or at least to a significant extent, via the control device 7. The control device is designed and configured such that the method steps proceed as described.
In the exemplary embodiment shown, there continues to be a filling-product valve 32, which is configured as a bevel-seated valve, and a shut-off valve 34, likewise configured as a bevel-seated valve, which shuts off the combined gas line 45 which allows either the provision of a vacuum or the provision of a pressurizing gas via the filling-product duct 3. The lines and valves extend along the rotation axis 320 in order to achieve a connection of the fluid-conducting lines that is as simple as possible.
Once the filling-product line 3 has been pivoted into its parked position in the exemplary embodiment shown in
It is possible for the foam space C to have only a small volume as a result of the arrangement of the filling-product valve 32 and of the shut-off valve 34 very close to the centering bell 30, this volume allowing precise filling of the container 100 and also allowing complete clearing of the filling-product duct 3 with the pressurizing gas, and thus droplet-free filling.
In the exemplary embodiment shown in
In an exemplary embodiment that is not shown, a separate chamber is provided for each container 100, said chamber, independently of the capping-head space 60, receiving the container 100 in a space that is sealed off from the environment, but in this case leaving at least the mouth 102 of the container 100 free such that said mouth can dip into the capping-head space 60.
In the separate chamber, in which the container 100 is received, it is likewise possible to apply a negative pressure which can correspond to the negative pressure generated in the container 100. In this way, the same pressure conditions can be created on the inside and on the outside of the container 100 to be filled, such that it is also possible to evacuate containers 100 having soft or flexible walls and accordingly the filling product can be filled into the container subjected to a negative pressure.
The device 1 includes a filling-product line 3 which has a centering bell 30 which is provided to receive the mouth 102 of the container 100. The filling-product line 3 is displaceable in a displacement direction X in order to be positionable over the mouth 102 of the container 100 and, in the retracted position shown in
In
The filling-product line 3 and the capper 62 extend into a schematically illustrated capping head 6 which encloses a capping-head space 60. The feedthrough of the filling-product line 3 is sealed off in a pressure-tight manner via a filling-product-line seal 620, a pressure-tight feedthrough of the capper 62 is achieved by a capper seal 640 and pressure-tight reception of the mouth 102 of the container 100 is achieved by a container seal 600. In the exemplary embodiment shown in
Accordingly,
The capper 62 naturally moves in the stroke direction Y of the capper 62 along the container axis 106 in order to allow the container cap 104 to be applied to the mouth 102 of the container 100 in a known way. The capper 62 can in this case, as shown in
In order to allow the corresponding application of the container cap 104 to the container 100 or to the mouth 102 thereof, the container receptacle 68 of the capping head 6 is configured such that, together with the container seal 600, it holds the container 100 such that problem-free capping of the container 102 by way of the capper 62 is possible. Firstly, the container receptacle 68, which is indicated only schematically here, is configured such that the mouth 102 is arranged in a substantially centered manner with respect to the capper 62, such that as a result of the capper 62 being lowered in the stroke direction Y, the container cap 104 can be applied directly to the mouth 102. Furthermore, the container receptacle 68 is configured such that a closing force exerted by the capper 62 can be dissipated to the capping head 6 without the container 100 being substantially displaced in the container receptacle 68. In the case of the capper 62 configured as a crown-cap capper, the container 100 is accordingly held in the container receptacle 68 such that a force exerted by the capper 62 on the mouth 102 of the container 100 in the direction of the stroke direction Y can be absorbed.
If the capper 62 is configured as a screw capper for applying screw caps or as a roll-on capper for applying roll-on caps, the container receptacle 68 is accordingly configured such that it can also dissipate the torque introduced via the screw capper such that the container 100 does not rotate or rotates only insignificantly in the container receptacle 68.
Furthermore, the container receptacle 68 is configured such that the mouth 102 of the container 100 protrudes to such an extent into the capping-head space 60 that problem-free capping is allowed without the capper 62 or the container cap 104 butting against structures or internal surfaces of the capping head 6 defining the capping-head space 60.
As already described above, the filling-product line 3 is connected to a filling-product supply in the form of a filling-product reservoir 2 via a filling-product valve 32, to a vacuum device 4 via a vacuum valve 40, and to a pressurizing-gas device 5 via a pressurizing-gas valve 50.
A method for filling a container 100 with a filling product, in particular with a carbonated filling product such as beer, carbonated soft drinks, mineral water, sparkling wines etc., will now be described in the following text.
In
In
In the next step, which is shown in
Once the negative pressure has been achieved in the container 100 in the step shown in
If, in the method step in
Since the container 100 was not evacuated to an absolute vacuum but is at an absolute pressure of, in one embodiment, about 0.5 bar to 0.05 bar, as a result of the filling with the filling product, the negative pressure in the container 100 is gradually reduced. Since, however, a positive pressure, in one embodiment, of about 1 bar to 9 bar is present in the filling-product supply 2, the pressure gradient between the container 100 and the filling-product supply 2 is ensured even towards the end of the filling operation.
The end of filling and accordingly the closing of the filling-product valve 32 can be determined by various methods. For example, volumetric filling can be accomplished using a flowmeter, or temporal filling, in which the filling-product valve 32 is closed again after a particular opening time.
In an alternative, in order to determine the end of filling, the rise in pressure in the container 100 is determined, and when a particular pressure in the container 100 is exceeded, the filling-product valve 32 is closed.
Once the filling-product valve 32 is closed, the container 100 has been filled with the filling product. However, a carbonated filling product will also display a very high foaming tendency on account of the CO2 liberated on account of being filled into the container under negative pressure, such that foam is present in the filling-product line 3 and in the headspace K of the container 100.
In
As a result of the filling-product line and the container 100 and in particular the headspace K of the container 100 being subjected to the pressurizing gas, the foam which is still located in the filling-product line 3 is pushed into the container 100 in order in this way to achieve substantial emptying of the filling-product line 3. Furthermore, the headspace K of the container 100 is subjected to the pressurizing gas, with the result that the foam present here, too, is pushed back. Furthermore, on account of the high pressurizing-gas pressure, renewed dissolving of the CO2 in the filling product which is located in the container 100 is supported and so the filling product settles more quickly.
In the state shown in
Since, in the step shown in
Accordingly, on account of the capping-head space 60 being subjected to the pressurizing gas under an increased pressure, it is possible that even in the event of the preceding abrupt filling of the container 100 even with carbonated filling products, for example even with beer, foaming over even after a short dwell time of the filling product and a not yet settled or not yet completely settled filling product in which a part of the CO2 volume has not yet gone back into solution, lifting of the filling-product line 3 can be achieved without the filling product emerging from the mouth 102.
Accordingly, as schematically shown in
Following completion of the capping operation, as shown in
Subsequently, the capping head can be opened, as shown in
Prior to the venting of the capping-head space 60 in
In the exemplary embodiment shown, the flavoring metering means 39 leads into the filling-product line 3 such that the supplied flavoring and/or the beverage additive and/or the beverage ingredient passes into the interior of the container 100 along the same path as the filling product supplied via the filling-product line 3.
In the exemplary embodiment shown, the flavoring metering means 39 leads into the filling-product line 3 downstream of the filling-product valve 32, such that flavorings and/or beverage additives and/or beverage ingredients can be metered in even with the filling-product valve 32 closed. Metering in can therefore be carried out prior to the introduction of the filling product from the filling-product supply 2, during the filling of the filling product or following the conclusion of the filling operation. Metering in following the conclusion of the filling operation and after the filling product in the container 100 has settled is generally desired in this case.
The flavoring metering means 39 can in this case be configured for example in the form of a peristaltic pump by means of which precise metering of the respective flavoring or of the respective beverage additive from a corresponding reservoir is possible.
Provision can also be made of a number of flavoring metering means 39, or optionally different flavorings and/or beverage additives and/or beverage ingredients can be supplied by means of one flavoring metering means 39, such that the flavoring metering means 39 is or are designed and can be actuated such that, for each individual filling operation, a different flavoring concentration, beverage-additive concentration or combination of flavorings and/or beverage additives and/or beverage ingredients can be selected. During normal filling operation, however, for reasons of the operational procedure, batches of a first flavor are usually bottled first, before the flavor is changed. The same goes for a change between beverage types, such as between beverages with fruit fibers and beverages without fruit fibers, for example.
The flavoring metering means 39 can accordingly be positioned over the mouth of the container 100 in order to meter flavorings and/or beverage additives and/or beverage ingredients into the container 100. In this case, the flavoring metering means 39 can be positioned over the mouth prior to the filling of the container 100 with the filling product or following the conclusion of the filling operation. The filling-product line 3 and the flavoring metering means 39 accordingly alternate in position over the mouth of the container 100.
Where applicable, all individual features which are illustrated in the individual exemplary embodiments can be combined with one another and/or exchanged without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 104 873 | Apr 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
270434 | Hunt et al. | Jan 1883 | A |
931649 | Redington | Aug 1909 | A |
949479 | Hicks | Feb 1910 | A |
1770380 | Young | Jul 1930 | A |
2066356 | McCrosson | Jan 1937 | A |
2114964 | MacKenzie | Apr 1938 | A |
2124581 | Luthi | Jul 1938 | A |
2138355 | Ryan | Nov 1938 | A |
2660357 | Fechheimer | Nov 1953 | A |
2718345 | Howard | Sep 1955 | A |
2808856 | Tiano et al. | Oct 1957 | A |
2815621 | Carter | Dec 1957 | A |
2855006 | Geisler | Oct 1958 | A |
3321887 | Manas | May 1967 | A |
3350839 | Carter | Nov 1967 | A |
3356510 | Barnby | Dec 1967 | A |
3477192 | Brown | Nov 1969 | A |
3699740 | Knabe | Oct 1972 | A |
3741552 | Skoli | Jun 1973 | A |
3802471 | Wickenhauser | Apr 1974 | A |
3804133 | Copping | Apr 1974 | A |
3911972 | Hubers | Oct 1975 | A |
4060956 | Goble | Dec 1977 | A |
4103721 | Noguchi | Aug 1978 | A |
4637438 | Weiss | Jan 1987 | A |
4729204 | Weiss | Mar 1988 | A |
4989650 | Weiss | Feb 1991 | A |
5031673 | Clusserath | Jul 1991 | A |
5240048 | Diehl | Aug 1993 | A |
5558135 | Kronseder | Sep 1996 | A |
5642761 | Holbrook | Jul 1997 | A |
5682929 | Maginot | Nov 1997 | A |
5743311 | Crossdale | Apr 1998 | A |
6082418 | Naecker | Jul 2000 | A |
6220310 | Emmer | Apr 2001 | B1 |
6248138 | Lafave | Jun 2001 | B1 |
6267153 | Stocchi | Jul 2001 | B1 |
6457495 | Meheen | Oct 2002 | B1 |
6474368 | Clusserath | Nov 2002 | B2 |
7757896 | Carpenter | Jul 2010 | B2 |
8181429 | Iwashita | May 2012 | B2 |
9724868 | Chauvin | Aug 2017 | B2 |
20020083682 | Edwards | Jul 2002 | A1 |
20020092866 | Newman | Jul 2002 | A1 |
20070062160 | Stadlmayr | Mar 2007 | A1 |
20100275556 | Michelli et al. | Nov 2010 | A1 |
20110131933 | Livingston | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
83 08 618.8 | Jul 1983 | DE |
83 08 806.7 | Aug 1983 | DE |
39 27 491 | Feb 1991 | DE |
10 2012 013 320 | Feb 1993 | DE |
41 26136 | Feb 1993 | DE |
195 38 023 | Apr 1996 | DE |
19606465 | Oct 1997 | DE |
19806520 | Aug 1999 | DE |
199 11 517 | Sep 2000 | DE |
10008426 | Aug 2001 | DE |
100 64 954 | Jun 2002 | DE |
103 22 556 | Apr 2004 | DE |
0965524 | Dec 1999 | EP |
2604571 | Jun 2013 | EP |
1027597 | Apr 1966 | GB |
S61-115879 | Jun 1986 | JP |
H08-113291 | May 1996 | JP |
H08-282789 | Oct 1996 | JP |
H11-035003 | Sep 1999 | JP |
8701293 | Jan 1989 | NL |
WO 2010073118 | Jul 2010 | WO |
WO-2010106546 | Sep 2010 | WO |
Entry |
---|
Partial Search Report, dated Sep. 3, 2015, 5 pages, European Patent Application 15162338.6. |
European Patent Application No. 15162338.6, Extended European Search Report, 12 pages, dated Jan. 19, 2016. |
International Search Report dated Apr. 4, 2014 from corresponding priority German application DE 10 2014 104 873.3. |
Office Action issued in related European Patent Application No. 15162338.6 dated Dec. 8, 2017. |
Official Notification of Reason for Rejection, Japanese Patent Application No. 2015-077713, dated Jan. 28, 2019 (English translation is included), 8 pages. |
Office Action, European Patent Application No. 15 162 338.6-1017, dated Mar. 4, 2019, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20150284234 A1 | Oct 2015 | US |