This application claims the priority, under 35 U.S.C. §119, of German patent application DE 10 2010 041 643.6, filed Sep. 29, 2010; the prior application is herewith incorporated by reference in its entirety.
The invention relates to a method for frequency compression of an input signal entering a hearing aid device, wherein a frequency range that can be transmitted by the hearing aid device is split into a number of frequency bands and wherein at least one source frequency band is moved to a target frequency band.
The invention also relates to a hearing aid device for performing such a method.
To compensate for a user's individual hearing loss, frequency-dependent amplification of an input signal entering the hearing aid device normally takes place in the hearing aid device. The dynamic range, i.e. the range between the hearing threshold and the discomfort threshold, is generally very limited for a hearing-impaired person compared with a person with normal hearing. Therefore modern hearing aid devices generally also perform dynamic compression by means of an automatic amplification or gain control AGC.
However there are hearing losses, with which hearing loss cannot be compensated for in a satisfactory manner by simple frequency-dependent amplification of an acoustic input signal. Examples of this are hearing losses with dead frequency ranges, in which spectral components of the acoustic input signal cannot be made audible even with a high level of amplification.
Commonly assigned Patent Application Publication US 2007/0253585 A1 and its counterpart German published patent application DE 10 2006 019 728 A1 describe a method for setting a hearing aid apparatus in which a portion of an input signal spectrum at a first frequency is amplified and shifted to a second frequency as a function of time, in order on the one hand to achieve a high level of spontaneous acceptance of the hearing system due to an almost undistorted sound pattern of the hearing system between two adaptation steps and on the other hand to assist the learning and acclimatization process of the hearing-impaired person in respect of the new frequency pattern.
One possibility for resolving the last-mentioned problem is so-called frequency compression. Here, spectral components within a source frequency range (typically at higher frequencies) are shifted to a target frequency range (typically at lower frequencies). Unlike the signal components of the acoustic input signal in the source frequency range, the signal components shifted to the target frequency range can be made audible to the user in question by amplification in this frequency range.
A prior art frequency compression method provides for the following method steps:
splitting a frequency range that can be transmitted by the hearing aid device into a number of frequency bands (channels);
selecting certain frequency bands above a predefined threshold frequency based on a sound energy criterion; and
moving the selected frequency bands to target frequency bands based on a channel assignment function.
The algorithm here searches above the threshold frequency for a predefined number N of local energy maxima in the frequency spectrum above the threshold frequency. The width of an energy maximum above the frequency is not taken into account here. “Narrow” maxima can occur, which only lie in one frequency band. “Wide” maxima can also extend over several frequency bands. The frequency band in which it has the greatest energy is then selected for the local energy maximum. This frequency band is then shifted according to the channel assignment function to another, generally lower, frequency range.
The disadvantage here is that the number N is difficult to set. If the value of N is selected too low, gaps result in the target frequency range. If the value of N is selected too high, there will be selected frequency bands with energy maxima, which have to be shifted into the same target frequency band.
It is accordingly an object of the invention to provide a hearing aid with frequency compression which overcome the above-mentioned disadvantages of the heretofore-known devices and methods of this general type and which provides for a solution that achieves a better assignment between the channels of the source frequency range and the target frequency range.
With the foregoing and other objects in view there is provided, in accordance with the invention, a frequency compression method for an input signal of a hearing aid device, the method which comprises:
splitting a frequency range that can be transmitted by the hearing aid device into a plurality of frequency bands;
combining a number of mutually adjacent frequency bands into at least one group of frequency bands;
selecting one frequency band from the group of frequency bands, by selecting the frequency band with a greatest sound energy and/or a highest signal level within the group of frequency bands; and
moving the selected frequency band to a target frequency band.
In other words, the basic concept of the invention is to combine a number of adjacent frequency bands of the source frequency range in each instance into a group of frequency bands and from each group of frequency bands to select just one frequency band, the “selected” frequency band or “winning” frequency band of the group, and move it to just one target frequency band assigned to the respective group. It is preferable here for the frequency band in which the energy maximum of the relevant group lies to be selected from each group of frequency bands.
In theory it is sufficient for the execution of the inventive method for only one group of frequency bands to be formed, from which one frequency band is shifted into the target frequency range. The advantages of the invention are however revealed in particular when two or more groups of frequency bands are formed.
The method can advantageously be employed in conjunction with a polyphase filter bank, which only generates the complex-valued, analytical signal (positive frequency component of a Fourier transformation) in the channels.
The invention predefines the number N of frequency bands to be shifted from the source frequency range to the target frequency range. Also combining adjacent frequency bands into groups of frequency bands prevents a number of frequency bands from the source frequency range being shifted to the same target frequency band.
With the above and other objects in view there is also provided, in accordance with the invention, a hearing aid that is specifically configured for performing the above-summarized method. The device comprises:
a filter bank (e.g., a polyphase filter bank) configured for splitting a frequency range that can be transmitted by the hearing aid device into a plurality of frequency bands;
means for dividing certain frequency bands into different groups of frequency bands;
means for selecting one frequency band from each group of frequency bands as a function of signal components of an input signal entering the hearing aid device in the individual frequency bands of the respective group of frequency bands, wherein the frequency band with a greatest sound energy and/or a highest signal level is selected within the group of frequency bands; and
means for moving the respectively selected frequency band to a target frequency band.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a hearing aid device for frequency compression, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
Generally the signal component shifted from the selected frequency band W1, W2, W3 to the target frequency band is overlaid on the signal component of the input signal that is present anyway in the target frequency band. This can be done by simply adding the two signals but it is also possible to set a certain mixing ratio or different weighting of the signals. This can even mean that, for example, the signal component resulting directly from the input signal is entirely suppressed (filtered out) in the relevant frequency band and only the signal shifted out of the source frequency range to the target frequency band is processed further.
The inventive hearing aid device furthermore comprises means for moving the respectively selected frequency band W1, W2, etc. to a specific target frequency band D1, D2, D3, etc. of the target frequency range D. In the exemplary embodiment the frequency shifting units FS1 and FS2 are present for this purpose, each shifting or moving a certain frequency range to a different frequency range.
In a first method step S1 a frequency range that can be transmitted by the hearing aid device is split into a number of frequency bands. This causes an input signal entering the hearing aid device to be split into signal components in the respective frequency bands. Then in a method step S2 a number of adjacent frequency bands are respectively combined into at least one group of frequency bands. This is followed in a method step S3 for each group of frequency bands by the selection of one frequency band from the respective group. In the following method step S4 the selected frequency band is shifted to a target frequency band assigned to the respective group. The frequency bands of each group that are not selected are not processed further and are therefore suppressed.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 041 643.6 | Sep 2010 | DE | national |