The present invention relates to a method of generating twin lamellas in a metal body, comprising the steps of introducing said metal body into a chamber, filling said chamber with a cooling medium having a temperature that will enable generation of twin lamellas in the metal body upon deformation thereof, and deforming said metal body while the latter is surrounded by said cooling medium.
The present invention also relates to a device for generating twin lamellas in a metal body, said device comprising a chamber, a chamber inlet connected to a cooling medium source, and a deformation device for deforming said metal body, said deformation device being positioned inside said chamber.
Deformation of metal, in particular wire drawing, in cryogenic media has been suggested by prior art for the purpose of enabling the formation of so called twin lamellas in the metal that is deformed. Twin lamellas are formed through a phenomenon known as “nano-twinning,” in which, during deformation, the atomic arrangements in adjacent crystalline regions of a material, such as a metal, form mirror images of one another. These nano-twins, or twin lamellas, are formed when the material undergoes plastic deformation at cryogenic temperatures. Liquid nitrogen has been suggested as a suitable cooling means. Thereby, metal wire which is subjected to a drawing operation in a die, in which the diameter of the metal wire is reduced, is positioned in liquid nitrogen, having a temperature of approximately −196° C. At such temperature, generation of twin lamellas in the metal wire is assumed to take place upon deformation thereof.
However, a drawback of prior art is that the efficiency of liquid nitrogen as a quench coolant is limited, as it will immediately boil when in contact with a warmer object (nitrogen boils at −195.8° C. at atmospheric pressure), thus enclosing the object in an insulating nitrogen gas. Another drawback is that there is a lack of possibility of adjusting the cooling temperature depending on the deformation conditions and the material to be deformed.
It is therefore an aspect of the present invention to suggest an alternative method and device for generating twin lamellas in a metal body which method provides improvement of the possibility of adjusting the cooling temperature applied to the metal body being deformed.
The aspect of the present disclosure is obtained by means of a method of generating twin lamellas in a metal body, comprising the steps of
Cooling of the metal body by means of a cooling medium in a gaseous state will improve the possibility of adjusting the temperature of the cooling medium and, thereby, the metal body which is being deformed. The cooling of the metal body may be performed by using a cold gaseous medium, a gas mixed with liquid cooling medium, a direct metal to metal coolant system, or a combination thereof.
According to one embodiment of the method as defined hereinabove or hereinafter, the temperature inside said chamber is controlled by means of controlled introduction of said cooling medium into the chamber. In other words, control of the temperature in the chamber, and thereby of the metal body being deformed therein, is performed through an active and purposive control of the flow of cooling medium into the chamber.
According to one embodiment, the temperature inside the chamber is controlled by means of controlled introduction of said cooling medium into the chamber on at least two different locations within the chamber, wherein the cooling medium is on a first location directed directly onto the metal body being deformed, and on a second location directed onto a deformation device used to deform said metal body. Efficient cooling is thereby achieved, since cooling medium is on one hand used to directly cool the metal body, and on the other hand used to cool the deformation device such that indirect cooling of the metal body can be achieved.
According to one embodiment, the cooling medium has a temperature in the range of about −80° C. to about −195° C. In other words, the cooling medium surrounding said metal body during deformation of the latter has a temperature in the range of about −80° C. to about −195° C. According to another embodiment, the cooling medium has a temperature in the range of about −150° C. to about −195° C.
According to one embodiment, said cooling medium consists essentially of nitrogen. According to one embodiment, essentially is referred to as at least 50 atomic %. According to yet other embodiments, essentially is referred to as at least 60 atomic %, such as to at least 70 atomic %, such as to at least 80 atomic %, such as to at least 80 atomic %, such as to at least 90 atomic %.
According to one embodiment of the method as defined hereinabove or hereinafter, said cooling medium may be introduced in a liquid state into the chamber and is then, as result of the temperature and pressure reigning in the chamber, permitted to change to a gaseous state once introduced into said chamber. Also, the introduction technique affects the transition into gaseous phase. According to one embodiment, the cooling medium is sprayed into the chamber through nozzles. Thus, the cooling medium may be stored in liquid state, but may have its effect on said metal body in a gaseous state. Introducing the cooling medium into the chamber in a liquid state, as compared to introducing it in a gaseous state, also has the advantage of resulting in a better cooling efficiency.
According to one embodiment, said metal body is an elongated body which is continuously introduced into said chamber through an opening in the latter, and part of the cooling medium in a gaseous state may be removed from the chamber and used for pre-cooling of parts of said metal body that have yet not been introduced into the chamber. Pre-cooling of the said metal body contributes to a more precise temperature control thereof and improved cooling efficiency.
According to one embodiment, said metal body is a wire or tube and said deformation thereof inside said chamber includes a reduction of the thickness thereof.
The above mentioned aspect of the present disclosure is also achieved by means of a device for generating twin lamellas in a metal body, said device comprising
According to on embodiment, said device comprises temperature control means for controlling the temperature inside said chamber by controlling the introduction of cooling medium into the chamber. Such temperature control means for controlling the temperature inside said chamber may include a control valve or similar equipment arranged in a conduit connecting the cooling medium source with said chamber inlet.
According to one embodiment, said temperature control means comprises at least a first and a second independently controllable nozzle positioned inside the chamber and configured to introduce cooling medium into the chamber, wherein the first nozzle is configured to direct cooling medium directly onto the metal body during deformation, and wherein the second nozzle is configured to direct cooling medium onto the deformation device during deformation. Thus, efficient cooling through direct cooling and indirect cooling of the metal body can be achieved. The temperature control means may also comprise three or more independently controllable nozzles, wherein a third nozzle is configured to direct cooling medium into the chamber, and not directly onto the metal body or the deformation device. If the device for generating twin lamellas in a metal body comprises more than one deformation device, such as two deformation devices, at least two nozzles may be provided per deformation device, wherein the deformation devices are configured as described above.
According to one embodiment, said metal body is an elongated body, and said device comprises means for continuous introduction of said metal body into the chamber. Such means for continuous introduction of said metal body into the chamber may include any kind of drawing equipment operating with a pulling effect on the metal body.
According to one embodiment, the means for continuous introduction of said metal body into the chamber is at least one drawing block positioned inside the chamber, wherein the first nozzle is configured to direct cooling medium directly onto the metal body being wound onto the drawing block, and wherein the second nozzle is configured to direct cooling medium onto an inner wall of the drawing block. Direct and indirect cooling, by heat transfer metal to metal of the metal body is thereby achieved during drawing. This is in the present disclosure also referred to as a direct metal to metal coolant system. The at least one drawing block may in this case form part of the deformation device, which may be in the form of e.g. a drawing machine.
According to one embodiment, said device comprises a channel through which said elongated metal body is continuously introduced into the chamber, and the chamber has an outlet through which cooling medium in a gaseous state is permitted to leave the chamber and be introduced into said channel for the purpose of pre-cooling said metal body before the latter is introduced into the chamber.
According to one embodiment, said chamber is a generally closed chamber, and the device comprises means for controlled evacuation of cooling medium in a gaseous state from said chamber. Said means for controlled evacuation may include a control valve or similar equipment. A closed chamber is referred to as a chamber having a limited space which space is large enough for housing the essential parts of a deformation device by means of which said metal body is deformed in said chamber, but the space is yet small enough for enabling efficient cooling of the metal body therein with a low consumption of cooling medium. According to one embodiment, the volume, V, of said chamber is below 5 m3, according to another embodiment, V is below 3 m3, and according to yet another embodiment, V is below 2 m3.
According to one embodiment, said cooling medium source is a liquid nitrogen source.
According to one embodiment, said metal body is a wire or tube and said deformation device comprises at least one die for reduction of the diameter of the wire or tube.
Further features and advantages of the present disclosure will appear from the following detailed description, presented with reference to the annexed drawing.
Hereinafter, by way of example, the method and the device of the present disclosure will be described more in detail with reference to the annexed drawing on which:
The device according to the present disclosure as presented in
Said chamber 2 is a generally closed chamber, at least during operation thereof, with a volume V of about 1.5 m3, wherein the device comprises means 8 for controlled evacuation of cooling medium in a gaseous state from said chamber 2. Here, said means 8 for controlled evacuation of cooling medium includes a control valve 8. The device includes a chamber outlet 9 and a channel 10 leading from said chamber outlet 9. The control valve 8 is positioned in said conduit 10. It should be emphasized that the control valve 8 is optional. The flow of cooling medium through the chamber 2 and through the channel 10 could be controlled solely by means of one or more valves, such as the previously mentioned valve 6, for controlling the flow of cooling medium from the cooling medium source 4 to the chamber 2.
In the embodiment shown in
As can be further seen in
In addition to the parts of the device mentioned above, the embodiment of the device of the present disclosure shown in
Although not shown in the drawing, there may be provided a fan inside the chamber 2, by means of which gaseous cooling medium inside the chamber is set into motion. An improved cooling effect on the metal body 1 is thereby achieved as the convection is increased.
Number | Date | Country | Kind |
---|---|---|---|
15165228.6 | Apr 2015 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/059112 | 4/25/2016 | WO | 00 |