The invention relates to a method for generating a jet of dry ice particles, wherein liquid carbon dioxide is expanded in an expansion space in order to form the dry ice particles which are then introduced into a flow of a carrier gas, and to a device for carrying out this method.
Such a method and device have been disclosed in WO 2004/033154 A1. The device forms part of a blasting equipment which serves to remove firmly adhering incrustations from larger surfaces such as the internal surfaces of pipes or boilers in industrial plants. The liquid carbon dioxide is introduced from a supply line that is formed by a capillary, for example, into an expansion space having a larger cross-section, so that, by expansion, a portion of the carbon dioxide is evaporated while another portion of the carbon dioxide condenses to dry ice particles due to the evaporation chill. The expansion space opens, preferably laterally, into a blasting line through which a carrier gas such as compressed air or nitrogen is passed. Thanks to the drag of the carrier gas flowing past the mouth of the expansion space, the dry ice particles are, so to say, sucked out of the expansion space and are suspended in the flow of carrier gas. A nozzle, preferably a Laval nozzle, is provided at the end of the blasting line, so that the jet is accelerated to high speeds, preferably supersonic speeds.
In one embodiment described in this document, the expansion space is formed by a pipe section that has an internal thread. This internal thread is supposed to form disturbance edges at which a crust of dry ice shall be formed by the impinging dry ice particles. This is based on the theory that larger dry ice particles would be formed by crumbling of the crust. As an alternative to the internal thread, disturbance edges are mentioned, that are formed by inserts such as an impeller wheel or a worm in the interior of the expansion space. In this context, it has heretofore been assumed that the disturbance edges shall serve as targets for the dry ice to impinge on, but, on the other hand, shall not hamper the discharge of the dry ice particles and the gas from the expansion space, because, otherwise, the pressure in the expansion space would become too large and hence the expansion and evaporation of the liquid carbon dioxide would be compromised.
It is an object of the invention to further improve this known method and device in order to achieve a more efficient generation of dry ice particles and a high cleaning effect.
This object is achieved by the method according to the invention, wherein the discharge of the dry ice particles from the expansion space is throttled by a constriction of the cross-section.
It has been shown that, contrary to what was expected, the throttling of the discharge flow out of the expansion space does not compromise the creation of dry ice particles, but, on the contrary, promotes the same. Presumably, this is due to the fact that the throttling of the discharge flow promotes the growth of the dry ice particles through condensation, in particular since the throttling increases also the dwell time of the dry ice particles in the expansion space. Experiments in which the cleaning effect of the jet generated in this way has been evaluated, have shown that, with this measure, an increase in performance by 50 to 100% can be achieved. In addition to the creation of larger and harder dry ice particles, it has been found to be another advantageous effect of the invention that a more uniform jet profile is formed at the exit of the blasting nozzle, and all this with a non-changed or even reduced consumption of liquid carbon dioxide.
In the document mentioned above, it is also mentioned that the expansion space should have a certain minimum length. By the constriction according to the invention, this minimum length can be reduced without loss of performance, so that a more compact and habile construction of the device is made possible.
A device for carrying out the method according to the invention is characterized in that a constriction in cross-section is provided at the exit of the expansion space.
Useful details of the invention are indicated in the dependent claims.
Preferably, the constriction should amount to at least 20% of the cross-sectional area of the expansion space.
The constriction is preferably achieved by approximately streamlined structures around which the dry ice particles may well flow around and which do not present a substantial impact surface to the dry ice particles.
According to an embodiment of the invention, a squeeze body shaped as a cone, a sphere or a semi-sphere is provided on the central axis of the expansion space, this squeeze body having its rounded or tipped side pointing in the upstream direction. Then, the exit cross-section of the expansion space is formed by an annular gap between the wall of the expansion space and the squeeze body. In addition, axial bores may be provided in the squeeze body.
According to another embodiment, the constriction in cross-section is achieved by a tapered configuration of the exit end of the expansion space. These measures may also be combined by providing a squeeze body essentially in the tapered exit portion of the expansion space.
According to another embodiment, the supply line for the liquid carbon dioxide and the expansion space are arranged coaxially inside of the blasting line, so that the constricted exit of the expansion space is arranged essentially inside of the blasting line. In this case, it is convenient that the portion of the blasting line located between the exit of the expansion space and the blasting nozzle is widened to form a chamber. The squeeze body may then project into this chamber and into the blasting line, respectively.
Embodiments of the invention will now be explained in detail in conjunction with the drawings, wherein:
The device shown in
Via a supply line 14, liquid carbon dioxide is supplied from a high pressure tank or a cold tank that has not been shown. The supply line is for example formed as a capillary or is throttled by an adjustable baffle, so that the flow rate of liquid carbon dioxide will be in the order of magnitude of 0.1 to 0.4 kg per m3 carrier gas (volume under atmospheric pressure), for example.
The supply line 14 opens into an expansion space 16 which has an enlarged cross-section and is formed by the interior of a pipe section 18 that merges obliquely into the blasting line 12. When the liquid carbon dioxide is expanded at entry into the expansion space 16, a part of the carbon dioxide is evaporated, and the evaporation chill created thereby causes another part of the carbon dioxide to condense to dry snow, i.e. to solid dry ice particles. These dry ice particles are entrained into the blasting line 12 by the gaseous carbon dioxide created simultaneously therewith or are sucked out of the expansion space 16 by the dynamic pressure of the carrier gas and are thus dispensed in the flow of carrier gas and are finally discharged with high speed from the blasting nozzle 10 onto a work piece to be cleaned. Preferably, the flow rate of liquid carbon dioxide and the flow rate of the carrier gas are adjustable.
In the downstream portion of the expansion space 16, i.e. at the location where the expansion space opens into the blasting line 12, a cone-shaped squeeze body 20 is arranged on the central axis of the pipe section 18, the squeeze body being oriented coaxially with the pipe section 18 and having its tip facing towards the mouth of the supply line 16 opening into the expansion space 16. The mixture of gaseous and solid carbon dioxide flowing out of the expansion space 16, possibly still mixed with a certain amount of liquid carbon dioxide, is squeezed by the squeeze body 20 and thus exits into the blasting line 12 only in a throttled manner, because a constriction is formed by the squeeze body 20 and the walls of the pipe section 18. Thanks to this, the dwell time of the dry ice particles in the expansion space 16 which is saturated with cold, gaseous carbon dioxide, is increased, so that the dry ice particles have time to grow by condensation. At the same time, the constriction creates a non-uniform flow profile with a flow speed that increases from the expansion space 16 towards the annular gap formed between the squeeze body 20 and the wall of the pipe section 18. Further, the constriction increases the density with which the dry ice particles are suspended in the gaseous medium. All this promotes the growth of very firm dry ice particles which will then show a high cleaning effect because of their size and hardness. At the same time, the streamlined shape of the conical squeeze body 20 prevents the dry ice particles, that have grown in size, from being crushed by impacting onto the squeeze body 20.
In
In the examples shown, the constriction in cross-section at the exit of the expansion space amounts typically to between 20 and 50% of the cross-sectional area inside of the expansion space 16. The exact amount of the constriction depends on the respective process parameters, in particular the pressure and the flow rate of the carrier gas, the flow rate of liquid carbon dioxide, the temperature of the liquid carbon dioxide and the like. In general, a constriction in the order of magnitude of 40% is convenient. The diameter of the blasting line 12 may vary, for example, between 8 and 32 mm.
Number | Date | Country | Kind |
---|---|---|---|
20 2004 011 090 U | Jul 2004 | DE | national |
10 2004 051 005 | Oct 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/000031 | 1/3/2005 | WO | 00 | 1/4/2007 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/005377 | 1/19/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4253610 | Larkin | Mar 1981 | A |
5125979 | Swain et al. | Jun 1992 | A |
5779523 | Mesher | Jul 1998 | A |
5975996 | Settles | Nov 1999 | A |
6315639 | Kipp | Nov 2001 | B1 |
7143967 | Heinrich et al. | Dec 2006 | B2 |
20020182987 | Shaw | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
0509132 | Oct 1992 | EP |
2002-143731 | May 2002 | JP |
2004033154 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20080287040 A1 | Nov 2008 | US |