The present invention relates to the field of functional balance training , methods and devices using altered gravity and virtual reality.
Balance control is the foundation of our ability to move and function independently. Various neurological diseases and injuries to the brain, spinal cord and other parts of the motor control system may lead to immobility loss of function and quality of life. With increasing age, the occurrence of clinical balance problems and the natural deterioration of balance function will increase the risk of balance loss and falls. In fact, falls are the leading cause of accidental death in the elderly population with over 11,000 deaths as a result of falls each year. Severe head injuries, hip and other fractures are common consequences of a fall that may lead to serious handicap. Every year some 350,000 hip fractures occur in the US of which more than 90 percent are the consequence of falls. Hip fractures are the leading fall-related injury that causes prolonged hospitalization and 25% of elderly persons who sustain a hip fracture die within six months of the injury. Hip fracture survivors experience a 10 to 15 percent decrease in life expectancy and a significant decline in overall quality of life. The scope of this problem is expected to grow as the number of elderly individuals will increase dramatically over the next 25 years.
Early mobilization following any injury or disease that leads to immobility is crucial for recovery and in the case of hip fractures, early ambulation has even been shown to be directly predictive of extended survival. Gait training using partial body weight support (BWS) is a neurorehabilitation technique that is becoming increasingly popular and is being used to enhance locomotor recovery following a range of motor disorders related to brain injury including stroke, spinal cord injury, cerebral palsy, Parkinson's disease as well as for early mobilization following total hip arthroplasty. However, improvement in balance function following BWS training only occurs in patients with minimal function prior to treatment suggesting that BWS training is not sufficiently challenging for more functional patients. Consequently, the challenge to the balance is either too small to stimulate improvement or is not sufficiently specific to balance function. Another issue associated with the BWS technique is that the harness supporting the subject decreases the need for natural automatic postural adjustments that are required for independent gait because the harness provides a lateral as well as vertical support. During gait the main site for an active control of balance is the step-to-step mediolateral placement of the foot. When supported by a harness the patient's mediolateral movement will be limited by a medially directed reaction force component that will help stabilize the body in the frontal plane and decrease or even eliminate the need for automatic postural adjustments that are required for independent gait. This restriction on automatic postural adjustments limits the full advantage of unloaded gait training.
Therefore, a need exists for a device that incorporates the principals of BWS but overcomes the problems associated with a harness that decreases the need for natural postural adjustments including mediolateral movements. There also exists a need for a device and method that provides unloaded gait training that allows automatic postural adjustments. There is also a need for a device and method that overcomes the aforementioned limitations that is completely mobile and therefore easily transportable into a patient's hospital room or placed in an outpatient clinic or in a patient's home, if necessary. The benefits of such a device would also extend to injured athletes to enhance their functional rehabilitation.
The present invention overcomes the aforementioned problems by providing a device and method that allows a patient to incorporate natural automatic postural adjustments directly in the BWS training. We have discovered that upright balance function improves after training in a 90 degree tilted visual environment with the subject in a supine position strapped to a device that freely moves on air-bearings and a gravity-like load of preferred magnitude provided with a weight stack. For movements in the frontal plane, this tilted room environment requires the subject to perform associated postural adjustments as if in an upright environment. The foregoing is accomplished by providing a bed and exercise module including a modified hospital bed with an attachment for various exercise devices such as a treadmill, stepper, cycle or balance board; a virtual environment module that includes three-dimensional displays; a gravity force module that includes an open- or closed-loop control pneumatic force actuator system; a linear bearing assembly; and an air-bearing and support module including a light-weight mounting frame or harness with air bearings, back-pack harness and substantially flat surface plate. The device and method of the present invention may also be used for functional balance training for athletes, in-home gyms, and for gaming and entertainment purposes.
Referring to
Patient Support and Exercise Module
Referring to
Virtual Environment Module
A class of disorientation illusions occur in most individuals when placed in a 90 or 180 degrees tilted room that contains “polarized” objects meaning that they are familiar to the subject and that they have tops and bottoms that align with our common perception of vertical in relation to the direction of gravity, for example tables, chairs, cups on tables etc. In this environment some 90% of subjects experienced the illusion of being upright with respect to gravity illustrating that the perception of upright is heavily dominated by vision. Therefore, the design of the inventive system includes a virtual environment module for balance training and may include for example, at least one wall 24 or a plurality of walls that simulate a room built over the bed module. The room may include a window 26, a door, a wall-clock, a table with a table cloth, a wastebasket with some trash and framed pictures on the walls and other such desirable objects, which may be fastened in place to help convey the illusion to the subject of a vertical orientation, in other words “standing upright.” In yet a further alternative embodiment, and as described in detail below, the patient may view an automultiscopic display 16 that shows three-dimensional images, such as images of the patient's own home, office, or other familiar environment. Similar images can be displayed through a stereoscopic head-mounted display that provides an immersed 3D environment. While in a supine position on the bed, patients perceive they are standing in the room while attached to a lightweight frame 28 that is in operable communication with and thereby connected to the surface plate 30 as described in detail below.
Referring to
In a further alternative embodiment, the Virtual Environment Module may include a multi-camera still-image display for balance training using three-dimensional automultiscopic displays. Visual cues to convey a perception of being in an upright environment are provided through state of the art display techniques with 3-D images of a virtual environment. Typically, stereoscopic 3-D displays require polarized or shutter glasses to deliver the projected images separately to each eye. Inconvenience, often discomfort, and, in the case of shutter glasses, cost, are some of the reasons that eyewear-based 3-D displays are far from practical. Additionally, stereoscopic systems render 3-D environment from one single viewpoint thus making any viewer movement in front of the screen unnatural (static 3-D objects rotate with lateral head motion). Automultiscopic displays require no glasses and project multiple views; a viewer can clearly experience depth and even see a little around objects. These displays are capable of projecting several, typically nine (based on nine different images), views of a 3-D scene. The present invention may optionally use two- and three-dimensional virtual reality systems having displays that can be placed in front of the subject and/or on the side, or both in front and the side, or so called Head Mount Displays worn by the subject. Still images displayed on these screens represent virtual “Windows” to an outside environment or show other surrounding environment and thereby promote a visually induced reorientation illusion where subjects perceive themselves as being upright with respect to gravity.
G-Force Module
The G-Force Module includes a pressure controlled pneumatic linear force actuator system 18, which includes a compressor 35, a pneumatic linear actuator 18, an electro-pneumatic pressure control valve (not shown) and a motion control PCI board (not shown). In an alternative embodiment, the linear force actuator may comprise a simple weight stack so long as it is capable of exerting a pseudo-gravitational force on the subject. The pneumatic actuator may be of “sure-fit” kind meaning that it has NFPA (National Fluid Power Association) industry-standard mounting footprint to ensure easy interchangeability with the ability to handle high forces. The bore diameter is 2 ½ to provide up to ˜300 lbs of force at 50 psi air pressure for the proposed model actuator. Compressed air is provided from the on-board air compressor 35 or through a wall outlet commonly available in hospital treatment rooms as in the case in which the present invention is being used to rehabilitate a patient. The actuator is double acting, i.e. it has two compressed air ports. The first extends in the “push” direction and serves to supply compressed air to the air bearings 34. The second retracts in the “pull” direction which exerts force via cable 62 on the subject through frame 28 worn by the subject. The actuator allows constant pressure (force) control by using an electro-pneumatic pressure control valve, known to those skilled in the art. The pressure-control valve converts an electrical signal proportionally into pneumatic pressure allowing for closed-loop control of pneumatic pressure or force electronically. The proposed valve has an integral pressure sensor for closed-loop control allows a flow rate of over 28 SCFM, output pressure up to 150 psi, and a hysteresis of less than one psi. The motion control PCI card will be mounted in the PC that will be running servo tuning and analysis software for proportional control of the force module. The PCI card and software package supports advanced PID compensation with velocity and acceleration if needed for an improved control of the force module.
In yet a further alternative embodiment an open-loop air pressure control system may be employed. The open-loop control system includes the foregoing air compressor and a control valve system but further includes an air tank 37 connected in series with the pneumatic actuator 18. Those skilled in the art will appreciate that in this alternative embodiment the force output of the actuator is passively regulated. The open-loop control system with the added air tank provides a substantially larger volume than the closed-loop control system alone and better “absorbs” fluctuations in applied G-force level during movements by the subject. A given change in position of the piston in the air cylinder due to vertical subject movements will be “diluted” across the larger volume when the tank is present and G-force fluctuations will therefore be smaller. As a result, the subject is exposed to a more constant load as set with the control valve.
Air-Bearing Support Frame Module
Referring to
Linear Bearing Assembly
Referring to
In yet a further embodiment of the system in accordance with the present invention the system can be adapted for use with BWS systems when the subject is in a standing position and upright with respect to gravity, as best seen in
Two groups of healthy subjects; 1) Strength and Balance Training (hereinafter “S&B,” consisting of 6 female and 6 male, 20-21 yrs, 170.1±9.2 cm, 68.6±10.8 kg individuals) and; 2) Strength Training (hereinafter “S,” consisting of 5 female and 6 male, 19-25 yrs, 173.5±9.0 cm , 68.7±10.8 kg individuals) participated in the study. The S&B group performed “squats” in a tilted room environment, on a balance board that required them to balance in the mediolateral direction, whereas the S group performed squats without balance requirement (sliding on fixed rails and no balance board). The strength program was progressive (50%-75% of 1 RM) and each session consisted of 6 sets of 10 repetitions.
The following measures were conducted before and after training; 1) Maximal Voluntary Contraction (MVC) during an isokinetic squat extension (10 deg/s & 35 deg/s) using a computerized exercise system (CES, Ariel Dynamics, CA, USA); 2) Stationary stance on one leg with eyes open and with eyes closed while standing on a force platform. Ten trials of 30s standing were performed under each condition. Subjects rested between as needed between trials to minimize effects of fatigue. Subjects were instructed to stand as still as possible during each trial and to actively minimize their perceived body sway. Center of pressure (COP) data were recorded at 100 Hz. Summary statistics and Stabilogram-Diffusion parameters were extracted from the COP data.
The combined S&B training appeared to alter the relationship between balance performances under eyes closed vs. eyes open (Romberg ratio). The
Critical Displacement parameter, indicating the average COP displacement at which the postural control process becomes mainly antipersistent, was five times higher under eyes closed compared to eyes open pre-training for the S&B group and decreased by 30% to 3.5 post-training (p<0.04). There was a small non-significant decrease in the S group (6%). A post-training decrease in the S&B group of 21% (p<0.03) was seen for the ratio between mediolateral short-term diffusion coefficients indicating a relatively lower short-term stochastic activity under eyes closed conditions as a result of the training. This was mainly related to a 40% increase in mediolateral short-term stochastic activity under open eyes conditions (p<0.012). No change was observed for the S group.
The foregoing results support the view that combined strength and balance training in a tilted environment, where the vestibular tilt orientation mechanism cannot be used for balancing, can improve balance function during upright while balancing against gravity in addition to muscular strength. Thus patients undergoing rehabilitation can target postural control and may improve training efficiency by a multimodal regimen where strength training is performed under conditions where balance is challenged.
The present invention has been described with reference to several embodiments. The foregoing detailed description and examples have been given for clarity of understanding. No unnecessary limitations are to be understood therefrom. It will be apparent to those skilled in the art that many changes can be made in the embodiments described without departing from the scope of the invention. Thus, the scope of the invention is not intended to be limited to the structures described herein, but only the language of the claims and its equivalents.
This application is a U.S. national stage application of international application Serial No.: PCT/US2008/009190, filed Jul. 30, 2008, which claims the benefit of priority to U.S. Provisional Patent Application Ser. No.: 60/962,573, filed Jul. 30, 2007.
This invention was made with U.S. Government Support under Contract No. HD050655 awarded by the National Institutes of Health. The U.S. Government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/009190 | 7/30/2008 | WO | 00 | 1/6/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/017747 | 2/5/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6162189 | Girone et al. | Dec 2000 | A |
20040248713 | Campanaro et al. | Dec 2004 | A1 |
20060287173 | Guadagno | Dec 2006 | A1 |
Entry |
---|
Oddsson et al., A Rehabilitation Tool for Functional Balance Using Altered Gravity and Virtual Reality. Journal of NeuroEngineering and Rehabilitation, Jul. 10, 2007, pp. 1-7, vol. 4, No. 25; BioMed Central, United Kingdom. |
Lars I.E. Oddsson, et al., “A Rehabilitation Tool for Functional Balance Using Altered Gravity and Virtual Reality,” IEEE Engineering in Medicine and Biology Journal, with IEEE International Workshop on Virtual Rehabilitation,(Aug. 29-30, 2006), pp. 193-196; Aug. 29, 2006, New York, USA. |
Number | Date | Country | |
---|---|---|---|
20100210978 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60962573 | Jul 2007 | US |