In general, this invention relates to a downloadable software system, and more particularly, to a method and device implementing a downloadable software system for an electronic gaming machine communications network.
In general, conventional gaming machine networks typically include a central system operatively connected to one or more individual gaming machines via intermediate communication site controllers. Although the gaming machines communicate with the central system, each gaming machine or site controller contains a central chipset which locally stores the computer code to be is executed by the device to perform gaming related functions. These chipsets typically consist of electronic programmable read only memory (EPROM) which permanently store the computer code. EPROM chipsets are conventionally preferred because the electronic memory can be controlled in a secured manner without giving unauthorized access to the gaming machine code. For example, in the event the computer code needs to be upgraded, service personnel are required to manually change the chipset for each gaming machine and/or site controller.
Because a service technician must perform the same operation for each machine or controller, the current method of upgrading gaming machine/site controller or PC software typically takes a long time to accomplish at a substantial cost, including the cost of the technician time and the cost of a new chipset for each machine.
Accordingly, there is a need for a system which can upgrade computer code within a networked device without requiring a manual change in the device components or requiring a high cost of implementation.
Generally described, a gaming machine system is provided. The gaming machine system includes a central system and one or more gaming devices having at least one storage component operable to receive an executable software image and in communication with the central system. Additionally, the gaming device receives the software image from the central system.
In another aspect of the present invention, a method in a computer system for implementing a gaming machine system including a central system in communication with one or more gaming devices is provided. In accordance with the method, a software image to be downloaded to the one or more gaming devices is obtained. The software image is downloaded to a selected group of the one or more gaming devices.
In a further aspect of the present invention, a method is a computer system for implementing a download of a software image is provided. In accordance with the method, a central process obtains a software image to be downloaded and transfers the software image to one or more device processes. The one or more device processes receives and stores the software image. At least one of the one or more device processes executes the software image.
In yet another aspect of the present invention, a gaming machine system is provided. The gaming machine system includes a central system and one or more gaming devices having storage means for receiving an executable software image. The one or more gaming devices are in communication with the central system. Additionally, the gaming machine system includes downloading means for transferring the software image from the central system to the one or more gaming devices.
A method and device implementing a downloadable software delivery system for an electronic gaming machine communications network is provided. A central system is operatively connected to a plurality of gaming machines either by a direct communications link or through the use of one or more site controllers. In this regard, it is contemplated that a PC or suitable computing device could be substituted for a site controller and that the downloadable software delivery still be effected. Each gaming machine and site controller or PC contains two executable spaces, one of which typically contains the software image currently being implemented by the device. The other executable space is designated to receive from the central system a new software image that will be utilized by the device. The central system transfers a new image to be executed, via packet encrypted communications, to a networked device which stores the image in an executable space, while continuing to run the currently designated image. Upon instruction from the central system, the device switches over to the new image, allowing one or more machines to implement a software upgrade on a continuous basis.
The present invention is described in detail below with reference to the attached figures, wherein:
In essence, the present invention enables a central system operatively connected to a plurality of gaming machines and site controllers (or PC's) to upgrade one or more software images via a communications link without requiring a manual change of the device chipset.
Preferably, one executable space 26 is typically designated to store the software code, or image, currently being executed by the device 18. The other executable space is typically designated to receive a new image transferred by the central system. As would be understood, although the two executable spaces are preferably separate, the same effect is accomplished through the use of a single, larger executable space. In this embodiment, each device uses a portion of the executable space 26 to assist in receiving and storing incoming images from the central system.
As an alternative embodiment, the present invention may also be implemented with one executable space and sufficient other memory, which can include memory 22, to temporarily store a downloaded image. In this embodiment, the image would be downloaded to the temporary memory and then transferred to the more permanent executable space 26.
Generally, the present invention facilitates the implementation and replacement of a software image on a device in a gaming machine network by allowing the transmittal of a new image to a device while the device continues to execute and/or process a previous software image. Additionally, because the present invention may utilize one or more existing communication lines, the transfer of a new image can include various security and error checking features to ensure and preserve the secured character of the executable code.
Once the image has been downloaded to the central system, the user selects which devices are to receive the image. The user selection can include all of the devices or subsets of devices. Preferably, the central system includes some form of error checking that ensures that the designated device is compatible with the image to be downloaded. At S30, the central system generates a random encryption key for each device designated to receive the image and encrypts the image with each of the random keys at S32. The random keys and encrypted images are stored in the central system memory. Additionally, the central system stores a completed, unencrypted version of the image in memory to use a signature for verification that the download is complete.
Generally, the function of a site controller (or PC) download differs from the function of the gaming machine download. Accordingly, at S34 a determination of whether the download is for a site controller is made. With reference to
With reference to
With reference to
Preferably, the central system relies on package acknowledge signals from the site controller to ensure that each individual packet is received by the site controller. Accordingly, at S64, the central system determines whether all the packets have been received. If one or more package acknowledge signals are not received, the transfer is incomplete at S70. At this point, the central system may resend the individual packets not received or may attempt to resend the entire image. Alternatively, the central system may just declare the transfer a failure.
If the packets are received and acknowledged at S64, the central system completes the transfer at S66. At S68, the central system requests a signature of the image from the site controller to verify a proper transmission and decryption. With reference to
With reference to
If the gaming machine did not receive some portion of the frame, the transfer is incomplete at S82. The site controller preferably resends only those packets which are incomplete. Alternatively, the entire image may be resent or the transfer may be declared a failure. Accordingly, the gaming machine does not need to acknowledge receipt of each packet. As would be understood, however, alternative methods of grouping and sending the software image would be considered within the scope of the present invention.
Upon the transfer of the entire image to the gaming machine at S78, the central system requests an image signature to verify the transfer was successful at S80. If the signature is a match, the transfer is successful at S84. If the image is not a match, the image is incomplete at S82.
The above-described transfer protocols have been incorporated with reference to two separate encryption methods. As would be understood, a system implementing only a portion, different or no encryption methods would be considered within the scope of the present invention.
Once the image has been successfully transferred to the device, the image can be executed. Preferably, the central system sends a command to the device to begin using the new image in the executable space. This command typically includes separate instructions for configuring the system to accommodate the new image and preventing the future play of the current image while the switch is occurring. Upon the completion of the command, the device begins executing the new image and the switch is complete.
Because the device contains at least two separate executable spaces, the old image previously being executed remains in the device executable space after the switch is complete. In the event that the new image is corrupt or not functioning properly, the central system can execute a command to revert to the old image if it is still available and intact.
Although the devices specifically referenced in the present application refer solely to gaming machines or site controllers or PCs, the present invention allows images to be transferred to any device that is configured to receive an image. Such devices could include peripheral devices such as printers and bill acceptors or other intermediate communications devices. As would be understood, the images associated with each device would vary with the type of device and its function in the system.
In the foregoing specification, the present invention has been described with reference to the specific exemplary embodiments thereof. It will be apparent to those skilled in the art that a person understanding this invention may conceive of changes or other embodiments or variations, which utilize the principals of this invention without departing from the broader scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 09/586,522, filed Jun. 2, 2000, now abandoned, which claims benefit of U.S. Provisional Application No. 60/137,352, filed Jun. 3, 1999.
Number | Name | Date | Kind |
---|---|---|---|
5136644 | Audebert et al. | Aug 1992 | A |
5155837 | Liu et al. | Oct 1992 | A |
5410703 | Nilsson et al. | Apr 1995 | A |
5421009 | Platt | May 1995 | A |
5421017 | Scholz et al. | May 1995 | A |
5473772 | Halliwell et al. | Dec 1995 | A |
5555418 | Nilsson et al. | Sep 1996 | A |
5643086 | Alcorn et al. | Jul 1997 | A |
5654746 | McMullan, Jr. et al. | Aug 1997 | A |
5682533 | Siljestroemer | Oct 1997 | A |
5715462 | Iwamoto et al. | Feb 1998 | A |
5759102 | Pease et al. | Jun 1998 | A |
5845077 | Fawcett | Dec 1998 | A |
5845090 | Collins, III et al. | Dec 1998 | A |
5848064 | Cowan | Dec 1998 | A |
5870723 | Pare, Jr. et al. | Feb 1999 | A |
5885158 | Torango et al. | Mar 1999 | A |
5896566 | Averbuch et al. | Apr 1999 | A |
5905523 | Woodfield et al. | May 1999 | A |
5970143 | Schneier et al. | Oct 1999 | A |
6006034 | Heath et al. | Dec 1999 | A |
6029046 | Khan et al. | Feb 2000 | A |
6047128 | Zander | Apr 2000 | A |
6104815 | Alcorn et al. | Aug 2000 | A |
6154878 | Saboff | Nov 2000 | A |
6219836 | Wells et al. | Apr 2001 | B1 |
6317827 | Cooper | Nov 2001 | B1 |
6488585 | Wells et al. | Dec 2002 | B1 |
6805634 | Wells et al. | Oct 2004 | B1 |
20020137217 | Rowe | Sep 2002 | A1 |
20030064771 | Morrow et al. | Apr 2003 | A1 |
20030188306 | Harris et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
0 689 325 | Jun 1995 | EP |
0 706 275 | Apr 1996 | EP |
0706275 | Oct 1996 | EP |
0841 615 | May 1998 | EP |
0 905 614 | Mar 1999 | EP |
1 004 970 | May 2000 | EP |
WO 0120424 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20030188306 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
60137352 | Jun 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09586522 | Jun 2000 | US |
Child | 10397621 | US |