The present invention relates to methods and devices for improving the health of the oral cavity of a subject.
Periodontal (gum) diseases affect 80 to 90% of adults and are a major cause of tooth loss in the Western world now that caries (tooth decay) incidence is in decline. They occur with increased frequency in patients with Down's syndrome and with systemic diseases such as diabetes mellitus, AIDS, leukemia, neutropenia, and Crohn's disease: Many bacteria live in the oral cavity. Some investigators have suggested that as many as 600 species may be identified. The panel of organisms living in the oral cavity include, but are not limited to, periodontal pathogens (P. gingivalis, T. forsythensis, T. denticola, and A. actinomycetemcomitans), bacteria thought to be pre-pathogenic (e.g., P. nigrescens, F. periodonticum and other Fusobacterium, C. rectus, Eubacterium sp., P. micros, E. corrodens, and Selenomonas noxia), bacteria thought to be beneficial (e.g., A. naeslundii and other Actinomycetes, S. sanguis and other Streptoccocci) and bacteria principally associated with gingivitis (e.g., V. parvula). The Gram negative, black-pigmenting anaerobes of the genera Prevotella and Porphyromonas are important pathogens associated with these conditions. Porphyromonas gingivalis is a Gram-negative black-pigmenting anaerobe that is most strongly associated with progressive periodontal (gum) disease in adults. The standard battery of 40 periodontal bacteria are included in Table 1.
Actinomyces naeslundii 1
Streptococcus anginosus
Neisseria mucosa
Streptococcus constellatus
Streptococcus sanguis
Fusobacterium nucleatum ss
nucleatum
Eubacterium nodatum
Actinomyces gerencseriae
Capnocytophaga gingivalis
Porphyromonas gingivalis
Streptococcus oralis
Streptococcus gordonii
Actinobacillus
Capnocytophaga ochracea
Taneralla forsythensis
actinomycetemcomitans
Fusobacterium nucleatum ss
Actinomyces israelii
Selenomonas noxia
vincentii
Campylobacter rectus
Streptococcus intermedius
Propionibacterium acnes
Treponema socranskii
Treponema denticola
Prevotella melanogenica
Eubacterium saburreum
Prevotella nigrescens
Streptococcus mitis
Peptostreptococcus micros
Actinomyces odontolyticus
Eikenella corrodens
Veillonella parvula
Fusobacterium nucleatum ss
Gemella morbillorum
polymorphum
Actinomyces naeslundii 2 (A.
Camplylobacter showae
Capnocytophaga sputigena
viscosus)
Campylobacter gracillis
Fusobacterium periodonticum
Leptotrichia buccalis
Prevotella intermedia
Conventionally, prevention and control of the periodontal diseases is by home care, which is directed to remove or to modify bacterial plaque. This generally includes tooth brushing, toothpaste, antibacterial mouth rinses, and interperoximal cleaning aids, such as floss, toothpicks, interproximal stimulators and interproximal brushes. When regularly applied, these methods reduce the mass of bacterial plaque. However, these methods do not affect the composition or species distribution of the bacterial plaque. Further, these methods are painful, abrasive, burdensome, and the effects that they produce are often short-lived.
Thus, there is a need for a therapy that affects the composition of the bacterial plaque and reduces their pathogenic potential. There is also a need for a painless, abrasion-free, easy-to-apply periodontal therapy that produces a sustained effect for a longer period of time following a single or multiple in-office or take-home treatments.
The present invention provides a method for improving the health of the oral cavity. More particularly, the present invention relates to a method of improving the oral health of a subject by exposing a portion of the oral cavity of the subject to light and optionally an oxidizing or other auxiliary agent to selectively eliminate or reduce bacteria from the oral cavity of a subject. One aspect of the present invention relates to a method of reducing gingivitis in the subject by exposing the oral cavity of the subject to a light source for a predetermined period of time.
The present invention further relates to devices utilized in exposing light to the oral cavity of a subject in the method of the present invention. In one aspect, the oral health device includes a light source to be positioned outside the oral cavity during use that is in communication with a light distributor to be positioned inside the oral cavity. In another aspect, the light source is fully self-contained within a device that fits within the oral cavity. In a further aspect, the oral health device includes a light source outside the oral cavity, to be positioned and maintained at a predetermined distance from the oral cavity during use. For high intensity light sources, isolation of the gums and other areas of the oral cavity other than the teeth may be provided. In a still further aspect, the oral health device includes a light source inside the oral cavity, to be positioned and maintained by means of a spacer outside of the oral cavity during use. For high intensity light sources, isolation and protection of the gums and other areas of the oral cavity other than the teeth may be provided. In one embodiment, the isolation materials may include those that block off the wavelengths of light that does not provide any therapeutic effect. In another embodiment, the isolation materials may include those that filter out wavelengths and intensities of light that do not provide any therapeutic effect. In a further embodiment, the isolation material may include those having embedded therapeutic agents for aiding in eliminating bacteria that are harmful to oral health as well filtering out wavelengths and intensities of light that do not provide any therapeutic effect. In still another aspect, the oral health device includes an illumination plate or optical fiber for directing the light towards the target area.
In one embodiment, the light distributor may direct light from the light source to the entire oral cavity. In another embodiment, the light distributor may direct light from the light source to a portion of the oral cavity to be treated upon contact of at least a portion of the light distributor with said portion of the oral cavity to be treated. In this manner, light is substantially directed only to the portion of the cavity, for example, teeth or tongue, to be treated. In a further embodiment, louvers may be employed on the surfaces of the light distributors to direct light onto specific portions or away from specific portions of the oral cavity.
Therapeutic effect as used herein may include exposing to a therapeutically effective amount of light to improve oral health; a therapeutically effective amount of both light and an oxidizing agent to improve oral health; a therapeutically effective amount of both light and at least one auxiliary chemical agent that increases the susceptibility of oral bacteria to light; or a therapeutically effective amount of light while simultaneously being subjected to an auxiliary or therapeutically effective physical or mechanical action. An “effective amount” or “therapeutically effective amount” refers to the amount of light and optional agent or action which is required to confer therapeutic effect on the treated subject. For example, a therapeutic composition may also include other agents such as flavorants, stabilizers, desensitizing agents, remineralizing agents, and/or any other appropriate agents.
a show the side and top views of an exemplary device for tongue treatment;
The detailed description set forth below is intended as a description of the presently exemplified oral care methods and devices provided in accordance with aspects of the present invention and is not intended to represent the only forms in which the present invention may be prepared or utilized. The description sets forth the features and the steps for preparing and using the methods and devices of the present invention. It is to be understood, however, that the same or equivalent functions and components incorporated in the methods and devices may be accomplished by different embodiments that are also intended to be encompassed within the spirit and scope of the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices and materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the exemplified methods, devices and materials are now described.
The present invention relates to the exposure of the oral cavity of a subject to a therapeutically effective amount of light to improve oral health. Alternatively, the oral cavity may be exposed to a therapeutically effective amount of both light and an oxidizing agent to improve oral health. In yet another alternative, the oral cavity may be exposed to a therapeutically effective amount of both light and at least one auxiliary chemical agent that increased the susceptibility of oral bacteria to light. In yet another alternative, the oral cavity may be exposed to a therapeutically effective amount of light while simultaneously being subjected to an auxiliary or therapeutically effective physical or mechanical action. An “effective amount” or “therapeutically effective amount” refers to amount of light and optional agent or action which is required to confer therapeutic effect on the treated subject.
Several variables relating to the light exposure are important in the present invention: (1) the type of light source used; (2) the intensity/irradiance of the light; (3) the wavelength of the light emitted from the light source; (4) the duration of the exposure of the light to the teeth and gums; and (5) the frequency of application. The variables are to be considered collectively. For example, the duration of exposure may be inversely proportional to the intensity of the light emitted.
Light sources that may be utilized in the present invention include, but are not limited to, gas plasma, semiconductor light emitting devices, light emitting diode (“LED”), light-emitting chips such as a solid state LED, an LED array, linear flash lamps, tungsten halogen, metal halide, Xenon short arc, Mercury short arc, Mercury Xenon short arc, Argon plasma arc, Argon short arc lamps, and curing lights. The light energy can also be provided by an array of light emitting diodes or laser diodes of suitable wavelength and sufficient power. The light energy can also be provided by chemiluminescent or electroluminescent means. Other light sources are described in U.S. Pat. No. 6,416,319 and PCT WO 01/26576.
Several different types of devices embodying the light source may be utilized to improve the oral health of a subject in the present invention. The devices may be utilized by dental professionals during in-office procedures, by patients or consumers at home, or in regimens using a combination of in-office and home device use. In one embodiment, the light source applies light from outside the oral cavity to a light distributor located inside the oral cavity. The light source delivers the light to the light distributor through a connector. The light is then efficiently distributed to the intended area in the oral cavity. Maintaining the light source outside of the oral cavity is not necessary, but may be preferable due to safety concerns in placing a power source in the oral cavity.
Light from the light source 12 can be reflected off material either by internal or external reflections. External reflections are reflections where the light originates in a material of low refractive index (such as air) and reflects off of a material with a higher refractive index (such as aluminum or silver). Internal reflections are reflections where the light originates in a material of higher refractive index (such as polycarbonate) and reflects off of a material with lower refractive index (such as air or vacuum or water). A common household mirror operates on external reflection. Fiber optic technology operates on the principle of internal reflections.
Index of refraction is an optic attribute of any material which measures the tendency of light to refract, or bend, when passing through the material. Even materials that do not conduct light (such as aluminum) have indices of refraction.
Typically, external reflections are most efficient when the angle of incidence of the light is near-normal (i.e., light approaches perpendicular to the surface) and degrade as the angle of incidence increases (approaches the surface at a steep angle). Conversely, internal reflections are most efficient at high angles of incidence and fail to reflect at shallow angles. The critical angle is the angle below which light no longer reflects between a pair of materials. In the present invention, either external or internal reflections may be used to tunnel the light to the target area of the oral cavity, and more particularly, the buccal and/or lingual gum tissues.
The light distributor 20 may include any component capable of distributing light from a light source 12 to the oral cavity, including but not limited to light pipes (which distribute light through internal reflections) and light guides (which distribute light through external reflections). The light distributor 20 may include one or more of these components, i.e., one or more light pipes or one or more light guides. As the surface area of the oral cavity to be treated increases, for example, the number of light pipes or light guides may also increase. In one embodiment depicted in
In
The proximal end 28 of the light pipe 22 engages a collimator 34 (depicted in
In another embodiment of the present invention, depicted in
In another embodiment, which is depicted in
In another embodiment, there is disclosed a device to illuminate the teeth and gums with light that has therapeutic properties. Such device has a light distributor that can illuminate both the upper and lower arches simultaneously, as well as both the lingual and buccal sides of the teeth and gums. Referring to
The surfaces of plate 201 that can come into contact with the teeth are designed to emit light energy in such a way as to efficiently illuminate the teeth and the gingival margins of a subject or patient. The dentist or patient positions the plate in such a way as to allow for biting down on the plate to hold it in place during the illumination cycle, which could be anywhere from a few seconds (or less than a second, such as with a high intensity flash lamp as an external light source) to an hour or more. A wide range of wavelengths and energy densities are envisioned, depending on the desired therapeutic effect. Light energy between about 350 and 900 nm, or about 400 and 700 nm, or about 400 to 500 nm, has utility in exerting a therapeutic effect.
The ability of the tooth itself to “pipe” (i.e., transmit light) certain wavelengths of light up to and in some cases under the gingiva, make for a unique means of illuminating oral structures that are not directly illuminated by the device. In other words, by illuminating just the teeth, or illuminating the teeth with higher intensity light than the gingival tissue, the subgingival tissue may also gain therapeutic benefits due to the unique light transmitting properties of tooth enamel and dentin. This mechanism is illustrated in
It is also possible to provide a means of “gating” the light that emerges from the plate by employing a tooth-sensitive gate 204 (
As shown in
The opaque gating layer may be a flexible polymer or elastomer such as an ethylene vinyl acetate copolymer or styrene-butadiene-styrene block copolymer with dispersed light-blocking agents or fillers, such as titanium dioxide or zinc oxide. Alternatively, the opaque gating layer may be a liquid or gel such as a silicone fluid with dispersed light blocking agents or fillers encased in a leak proof flexible outer casing that is integrally attached to the underlying rigid illuminating plate. The rigid illuminating plate may be a non-flexible or minimally flexible polymer such as PMMA, polycarbonate, acrylic, or other suitable light-transmitting material.
Rigid, for the purposes of this invention, means less flexible than the flexible gating opaque layer, if any, described above. The rigid light-emitting layer or plate is of sufficient harshness and structural integrity to maintain its original shape until placed into the oral cavity. In general, and when there is an inner light-emitting layer and an outer, separate opaque gating layer, the inner layer is more rigid than the outer layer or layers. This allows for the compression of the outer layer to cause the necessary thinning of this layer for gating the light, and the inner layer is rigid enough to resist said thinning pressure.
In one aspect, as shown in
In one embodiment, the light distributor 100 useful for illuminating the tongue may have a top side having reflective properties so as to direct light 102 onto the surface of the tongue, as shown in
In another aspect, the distributor 100, as shown in
The illumination strip or optical fiber 320 may be sufficiently thin to easily fit between the teeth. In one embodiment, the dental floss may be in the form of a single thin strip or optical fiber. It may also be constructed with a handle 300, such as that shown in
In another embodiment, the dental floss may be in the form of multiple thin strips 420 or optical fibers 420. It may be constructed in the general shape of a comb, as shown in
In one aspect, the dental floss may be connected to a light source 310 adapted to deliver therapeutic light for illuminating the teeth and associated gums, as shown in
In another embodiment, a light source is attached to an auxiliary and/or therapeutic physical or mechanical device, such as a toothbrush, an interproximal stimulator, an oral irrigator, or a power flosser. The light may be included in already existing electric toothbrush, oral irrigator or power flosser technologies, for example, those marketed by Oral B®, Sonicare®, Procter & Gamble, Colgate-Palmolive, Water-Pik and Johnson & Johnson, the disclosures of which are incorporated herein by reference. For example, the light may be placed in a replaceable head or in a reusable base. In one embodiment, the light is channeled to the bristle and out of the head. When the light source is located in a replaceable head, the light path is shortened and the power requirements will not be as high because there will be less heat to dissipate. Such a design may require a mechanical connection (alternatively an ultrasonic link) between the base and the replaceable head to drive the bristle motion and a separate electrical connection to power the light source in the replaceable head. In another embodiment, the mechanical connection between the base and the replaceable head that drives the bristle motion can be used to drive a miniature electrical generator that in turn powers the light source in the replaceable head.
In another embodiment, a comprehensive illumination device may be used as a professional device that bathes all oral surfaces with light to produce a generalized ecological change in microbial habitation. For example, as noted above, the light source may be directed towards the oral cavity from outside of the oral cavity, and be positioned and maintained at a predetermined distance. The light source may be such as those disclosed in U.S. Pat. No. 7,060,256; and PCT WO 2004/045538; U.S. patent application Ser. No. 11/173,839, entitled “Illumination Systems for Dentistry Applications”, the content of which is hereby incorporated by reference.
For example, the BriteSmile 2000™, BriteSmile 3000™ plasma arc lamps, and BriteSmile 3000PB™ disclosed in U.S. Pat. No. 6,416,319 and PCT WO 01/26576; “Zoom!” type lights, such as “Zoom” 1, “Zoom” 2, and “Zoom” Advanced Power, may be utilized to deliver light to the oral cavity. For example, any of the “Zoom!”, type light, or “BriteSmile” 2000™ is an integrated light source and delivery system in which a fixed light delivery head delivers energy-efficient light of selected wavelengths to the teeth. The lamp module, of, for example, both the “BriteSmile” 2000™ and “BriteSmile” 3000™, comprise one or more metal halide lamps with integrated power supplies. The “BriteSmile” 3000PB™ utilizes LEDs as a light source and is functionally similar to the BS2000™ and BS3000™ systems.
As is the case with all device embodiments herein, the light source can be positioned in a manner to deliver light to any surface of the oral cavity (e.g., teeth, gums (buccal and/or lingual) and tongue). The positioning of the light source, more specifically the surface or surfaces of the device that emit the therapeutically effective light, in relation to the tooth, tongue and/or gum surface to be treated, can be facilitated by using one or more of a patient's oral anatomical features or structures as a positioning means. For example, a device may be positioned in the oral cavity by providing a biting surface on which the patient or subject exerts biting pressure in order to orient the light-emitting surfaces in relation to the tooth and/or gums. Alternatively, an interproximal space between two adjacent teeth may be used to position a guide structure that orients a device's light-emitting surfaces to optimize the therapeutic effects of the light. In another embodiment, the aforementioned biting surface and/or guide structure may also serve as a device's light emitting surface.
In a further embodiment, a retracting device having formations may be used to aid in positioning the light source. A lip retracting device, such as disclosed in U.S. patent application Ser. No. 11/173,839 and U.S. Publication No. US 2006/0069316, the contents of which are incorporated herein by reference.
The light source may be supported. Examples of such support system may be found in U.S. patent application Ser. No. 11/173,839; and U.S. Publication No. U.S. 2006/0029904; U.S. Provisional Applications: Ser. No. 60/814,327, entitled “Illumination Systems for Dental Applications” filed Jun. 15, 2006; Ser. No. 60/814,242, entitled “Illumination Systems for Dentistry Applications” filed Jun. 15, 2006; and Ser. No. 60/846,497, filed Sep. 22, 2006, entitled “Illumination Systems for Dentistry Applications”; the contents of which are hereby incorporated by reference. In this way, the support structure serves to support the lamp head 1102 in a substantially stable spatial relationship to the dental subject.
Further, all such devices may also be utilized with tooth-whitening compositions for tooth-whitening methods as is known in the art.
The light source may also be a curing light adapted for fitting with a filter and/or a diffuser for passing wavelengths that has therapeutic effect while reducing the passage of wavelengths having no therapeutic effect or even harmful to the tissues in the oral cavity. The light source may be such as Flashlite™, sold by Discus Dental, Inc. of Culver City, Calif.
The device for administering light to the oral cavity can have a high optical efficiency to prevent the loss of energy out of the oral cavity. For example, the optical efficiency ranges from about 50% to 100%, more for example, from 75% to 100%.
Depending on the intended area of the oral cavity to be treated, the device may apply the light to the subject's teeth, gums, and/or tongue. In the devices, the light may be applied separately to different portions of the oral cavity. For example, the device may be designed to cover one-fourth to one-half of the upper and lower teeth and gums, more for example, one-third of the upper and lower teeth and gums. Alternatively, the light source may be incorporated with a tongue depressor for applying light to the tongue to control halitosis, for example. In another embodiment, light is applied simultaneously to substantially all of the subject's upper and/or lower teeth and gums with the use of a horseshoe-shaped mouthpiece. The horseshoe-shaped mouthpiece serves as the light distributor which is connected to a light source outside the oral cavity. The horseshoe-shaped mouthpiece will have a shape that follows the arch, with the light distributor parallel to the buccal surface of the teeth, the lingual surface of the teeth, or along the bite plane. In one embodiment, light is applied to the subject's actual tooth structure, such as with a horseshoe-shaped mouthpiece that distributes light along the bite plane. The tooth structure may be used as an illumination target, thereby taking advantage of the light diffusion characteristics of the enamel and the dentin to channel the light to the interface between the tooth and gum subgingivally. This may be an effective means of transporting light to the precise location where the periodontal disease organisms thrive (subgingival pockets), without direct illumination of the outside surface of the gums. This is beneficial because direct illumination of the outside surface of the gums may be somewhat inefficient, due to the light-blocking properties of the gingival soft tissue. For example, a flat plate, which serves as the light distributor, may be inserted into the oral cavity with the light source 12 remaining outside of the oral cavity. The light distributor of the flat plate may radiate the light in an upward and downward direction to cover both the upper and lower teeth. The light distributor of the flat plate may radiate light perpendicularly or at 90 degrees to the surface of the plate, or at an angle other than 90 degrees to the surface of the flat plate.
The device may be placed between the subject's cheek and gum. The subject then applies the device to each portion of the oral cavity. In one embodiment, the device is configured to target three zones in the oral cavity. Two zones are symmetrically opposed in the rear of the oral cavity and include the molars and premolars. The third zone is centered on the front of the oral cavity and covers the four incisors and two canines of the upper jaw. In using the Universal Tooth Numbering System (described at http://www.ada.org/public/topics/tooth_number.asp), one embodiment covers approximately one-third of the upper and lower arches at a time and thus approximately covers teeth numbered 1-6 and 27-32 in one illumination period, then 6-11 and 22-27 in a second illumination period, and lastly 11-16 and 17-22. Teeth numbers 1, 32, 16, and 17 are wisdom teeth and may not be present in a patient's oral cavity. In one embodiment, the surface area covered in each zone may range from about 4.5 to 7.5 cm2, or about 6.6 cm2 (i.e., about 3.3 cm2 on each of the upper and lower teeth and gums). The subject may place the device 10 into the oral cavity at a horizontal angle, similar to a toothbrush, so that the device faces the buccal surfaces of the teeth. Light is emitted from the light pipes 22 to the teeth and gums at an angle ranging from about 60° to 120°, or from about 75° to 90°, or about 75°.
The wavelength of the light may range from about 350 nm to about 700 nm. In a preferred embodiment, the output is filtered to provide an efficient source of visible blue light in the 380-520 nm range. In one embodiment, light is filtered to be in the 400-505 nm range, or about 475 nm in one embodiment. In another embodiment, the light source is an LED emitting blue light in the range of about 430 nm to about 510 nm, the peak being either about 455 nm or about 470 nm (blue light). In another embodiment, the light source is a gas plasma arc emitting visible light in the range of about 380 nm to about 520 nm visible light. In one embodiment, the light from the light source is not filtered. In another embodiment, the wavelength is about 455 nm. In one embodiment, the wavelength is 380 nm, 385 nm, 390 nm, 395 nm, 400 nm, 405 nm, 410 nm, 415 nm, 420 nm, 425 nm, 430 nm, 435 nm, 440 nm, 445 nm, 450 nm, 455 nm, 460 nm, 465 nm, 470 nm, 475 nm, 480 nm, 485 nm, 490 nm, 495 nm, 500 nm, 505 nm, 510 nm, 515 nm, or 520 nm.
The intensity (energy density) of the light may range from about 1 mW/cm2 to about 1000 mW/cm2 or higher, or about 1 mW/cm2 to about 800 mW/cm2, or from about 1 mW/cm2 to about 200 mW/cm2, or from about 1 mW/cm2 to about 120 mW/cm2, or about 20 mW/cm2. In another embodiment, the power density, or energy delivered to the teeth, is adjusted to a setting of between about 100 mW/cm2 to about 160 mW/cm2, or, from about 130 mW/cm2 to about 150 mW/cm2. The intensity of the light may be diminished as optical efficiency increases. For example, the LED emitters 16 are capable of producing total luminous power of up to 500 mW each. In one embodiment, the clinical objective may be to irradiate the oral cavity target with luminous intensities of between about 50 to about 100 mW/cm2 to transfer a total of up to about 300 mW to an area of 3 cm2. Three such LED emitters 16 may be used to generate the total energy needed to suitably irradiate the upper and lower regions of the oral cavity simultaneously.
The duration of exposure of the light to the teeth and/or gums may range from about 5 seconds to about an hour, or about 5 seconds to about 15 minutes, or about 5 seconds to about five minutes, or about 5 seconds to about two minutes, or from about 5 seconds to one minute. The duration of exposure may be specifically 5 seconds, 10 seconds, 15 seconds, 30 seconds, 45 seconds, one minute, two minutes, three minutes, four minutes, five minutes, 10 minutes, 15 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, or one hour. The light source may automatically turn off after the duration of application. As higher light intensity is reached, the duration of exposure may decrease. In one embodiment, the device 10 is placed in the oral cavity for no longer than 2 minutes. When the device 10 is applied to more than one portion of the oral cavity with each use, the total time remains at no longer than 2 minutes. The device 10 may include a timer or an electronic signal, such as a light flashing or a pulse vibration, which indicates to the user to rotate to the next position.
The frequency of application of light to the oral cavity may be on a daily, weekly, monthly, or annual basis. When the method of the present invention is performed at home by the subject, the subject exposes the light source to the oral cavity for the selected time period for about 1, 2, 3, 4, 5, or 6 times every day, week, month, or year for the selected period of time. For example, the period may range from about two weeks to about one month, six months, nine months, or one year. When the method of the present invention is performed in a dental office, the method may be performed by a dental professional at least 1, 2, 3, 4, or 5 times a year in less than about 20 minutes, or in less than about 10 minutes, or in less than about 5 minutes. The application of light may be intermittent, pulsed, or continuous with each application.
In another embodiment of the present invention, an oxidizing agent administered to the oral cavity of the subject selectively eliminates or reduces bacteria and improves oral health. Improvement in oral health through the application of an oxidizing agent may be accomplished during a tooth whitening treatment, for example, or as an independent therapeutic treatment. The oxidizing agent may include, but is not limited to, hydrogen peroxide (and any hydrogen peroxide precursor), although any peroxide may be selected from the group consisting of hydrogen peroxide, carbamide peroxide, calcium carbonate peroxide, sodium carbonate peroxide, sodium percarbonate, calcium peroxide, sodium perborate, potassium persulfate, peracetic acid (and other peracids), chlorine dioxide, and other oxygen radical generating agents. In one embodiment, the oxidizing agent composition comprises from about 5.0% (w/w) to about 35.0% (w/w) hydrogen peroxide. Other oxidizing agent compositions comprise from about 3.0% (w/w) to about 20.0% (w/w) hydrogen peroxide. Other oxidizing agent compositions comprise from about 6.0% (w/w) to about 15.0% (w/w) hydrogen peroxide. In one embodiment, the oxidizing agent composition is BriteSmile Tooth Whitening Gel™. Other whitening gels are those described in U.S. Pat. Nos. 5,922,307 and 6,343,933. In another embodiment, an oxidizing agent may be applied to the tooth and/or gum surfaces through the use of a transparent plastic strip such as Crest Whitestrips®. Following placement of a transparent strip containing a thin layer of a transparent composition comprising an oxidizing agent, a therapeutically effective amount of light may be applied through the transparent strip and transparent oxidizing composition onto the tooth and/or gum surfaces.
Calcium and iron chelators as are generally known in the art may also be included with the oxidizing agent to eliminate or reduce bacteria in the oral cavity, or to make the bacteria more susceptible to killing by light. Suitable chelating agents include but are not limited to EDTA and its salts, citric acid and its salts, gluconic acid and its salts, etidronic acid (Dequest 2010), alkali metal pyrophosphates, iron chelating agents and other compounds capable of sequestering or chelating iron, and alkali metal polyphosphates. Alternatively, a composition comprising an iron chelator may be used alone or in combination with an oxidizing agent to increase the susceptibility of oral bacteria to light.
In yet another embodiment of the present invention, application of an oxidizing agent to the oral cavity with subsequent exposure to a light source improves the oral health of a subject by selectively eliminating bacteria in the oral cavity. Any combination of the light devices and oxidizing agents described above may be utilized to accomplish the goals of the present invention.
The oxidizing agent composition is applied at about 1.0 to about 2.0 millimeters thick on the surface of the subject's teeth, preferably using a syringe. In one embodiment of the invention, once the oxidizing agent composition is applied, a light source is positioned in front of the subject's oral cavity. Once the light source is positioned, approximately 20 minutes of light is applied, at which point the oxidizing agent composition will be suctioned off the oral cavity and replaced for a second approximately 20-minute light exposure period. The treatment cycle is repeated a total of three times, for a total procedure time of approximately 60 minutes (excluding isolation).
The method of the present invention comprises improving the oral health of a subject by administering a therapeutically effective amount of light and/or peroxide. In one aspect of the present invention, the oral health of a subject may be improved by administering a therapeutically effective amount of light under a predetermined set of parameters. The therapeutically effective amount of light may be administered to the entire mouth or may be limited to the lingual surfaces of the teeth and gums, the buccal and/or lingual surfaces of the teeth and gums, or the upper surface of the tongue. Several parameters are outlined above, including duration of exposure and frequency of application.
For example, the therapeutically effective amount of light may be administered at a predetermined wavelength as provided above. The therapeutically effective amount of light may further include one or more predetermined wavelengths, for example in the range of from about 350 nm to about 700 nm.
Additionally, therapeutically effective amounts of light may be administered in a predetermined dosage. The predetermined dosage may range from about 0.1 Joules/cm2 to about 1000 Joules/cm2, or from about 0.1 Joules/cm2 to about 500 Joules/cm2, or, from about 0.1 Joules/cm2 to about 100 Joules/cm2, or, from about 0.1 Joules/cm2 to about 50 Joules/cm2, or, from about 0.1 Joules/cm2 to about 10 Joules/cm2. In one embodiment, the dosage is from about 0.2 Joules/cm2 to about 1.2 Joules/cm2. In another embodiment, the dosage is about 4.2 Joules/cm2. In still another embodiment, the dosage is about 21 Joules/cm2. In yet another embodiment, the dosage is 2 Joules/cm2, 3 Joules/cm2, 4 Joules/cm2, 5 Joules/cm2, 6 Joules/cm2, 7 Joules/cm2, 8 Joules/cm2, 9 Joules/cm2, 10 Joules/cm2, 11 Joules/cm2, 12 Joules/cm2, 13 Joules/cm2, 14 Joules/cm2, 15 Joules/cm2, 16 Joules/cm2, 17 Joules/cm2, 18 Joules/cm2, 19 Joules/cm2, 20 Joules/cm2, 21 Joules/cm2, 22 Joules/cm2, 23 Joules/cm2, 24 Joules/cm2, 25 Joules/cm2, 26 Joules/cm2, 27 Joules/cm2, 28 Joules/cm2, 29 Joules/cm2, 30 Joules/cm2, 31 Joules/cm2, 32 Joules/cm2, 33 Joules/cm2, 34 Joules/cm2, 35 Joules/cm2, 36 Joules/cm2, 37 Joules/cm2, 38 Joules/cm2, 39 Joules/cm2, 40 Joules/cm2, 41 Joules/cm2, 42 Joules/cm2, 43 Joules/cm2, 44 Joules/cm2, 45 Joules/cm2, 46 Joules/cm2, 47 Joules/cm2, 48 Joules/cm2, 49 Joules/cm2, or 50 Joules/cm2.
The therapeutically effective amount of light may have one of several beneficial health benefits including, but not limited to, an anti-inflammatory effect, an anti-bacterial effect, a sterilizing effect, a pain-relieving effect, an increased immune response effect, and a periodontal improvement effect. The therapeutically effective amount of light may be used for prevention and treatment purposes.
In another aspect of the present invention, a therapeutically effective amount of an oxidizing agent is administered to the oral cavity of the subject prior to administering the therapeutically effective amount of light to the oral cavity of the subject. In yet another aspect of the present invention, a therapeutically effective amount of cleaning agent is administered to the oral cavity of the subject prior to administering the therapeutically effective amount of light to the oral cavity of the subject. The cleaning agents may be mechanical (such as an abrasive) or chemical in mode of action. Such cleaning agents may include but are not limited to toothpastes, mouthwashes, and active agents delivered from floss.
In one embodiment, exposure of the oral cavity to light alone selectively eliminates or reduces bacteria from the oral cavity. The therapeutically effective amount of light eliminates from about 5% to about 25%, about 5% to about 50%, about 5% to about 75%, or about 5% to about 100% of all bacteria present in the oral cavity. In another embodiment, from about 5% to about 25%, about 5% to about 50%, about 5% to about 75%, or about 5% to about 100% of black-pigmented bacteria in the oral cavity is eliminated after exposure to light.
Long-term effects on periodontal health may occur only by changes in microbial ecology. Measurements of microbial changes are, therefore, indicators of the efficacy of the methods of the present invention. Microbial composition may be determined by DNA:DNA hybridization. These methods require only that bacteria be scraped from the tooth surface, placed into a vial and taken to the laboratory. From that sample, the 40 representative bacteria disclosed in Table 1 are identified and quantified by established methods. Changes in the levels or proportions of these bacteria may be clear indicators of ecologic change.
For the light source generally used in teeth or tooth bleaching or whitening, a protective material may also be applied to the gingiva to protect the gums from exposure to the whitening composition and the light radiation to be applied thereon. For example, a light-cured dental resin, such as Discus Dental's Liquidam™ Dental Dam, or Cabrio (in unit dose pack), Culver City, Calif., may be applied and cured. The gingiva is then, for example, dried prior to application of the protective material. The protective material, which is generally a light curable resin-based material, may be syringed directly onto the gingiva with sufficient amount for full gingival protection. The application may extend distally for at least one tooth beyond the area to receive the whitening application. The application may also extend up or down to meet the gauze or retractor cover to protect the margins. Once the application of the dental dam is complete, the margins are rechecked to ensure that the dam is sealed against the enamel to prevent leakage and oxidation of tissue during the whitening procedure.
In one embodiment, to apply a therapeutic amount of light energy to the gum or soft tissues to decrease or eliminate the bacteria close to the surface of the gum, or to activate a light activatable medicament apply to the gums, a protective layer may be used. The protective layer may be adapted to block substantially all of the harmful wavelengths while letting through the beneficial wavelengths, or to decrease the intensity of light reaching the soft tissue may be used. The layer may be embedded with particles or agents either capable of filtering the harmful wavelengths while letting through the beneficial ones, or activating the beneficial effects of the embedded agents. The layer may be applied as mentioned above, or it may be in the form of an adhesive film layer. The layer may be applied, as mentioned above, or it may be in the form of an adhesive film layer.
A film layer having embedded dyes that absorbs below 430 nm, or a film layer made of, for example, CR-39 (available from PPG Optical Products), or allyl diglycol carbonate, a material absorbs UV and IR (infrared), but is transparent to visible light, as noted above, may be used.
In addition, when irradiating the gum tissues, an attenuating optical filter may be used with the light source, for example, a grey filter for attenuating visible spectrum may be use.
Though the admittance or filtering out of the wavelength of the light may depend more on the type of material, for example, the binder material, the pigment or dye used in the blocking layer, the amount of light admitted may be effected by varying the thickness of the protective layer, for example.
Some useful pigments or dyes useful for regulating the amount and/or the type of light are discussed above.
The blocking layer may also be configured into the form of a filter system, as discussed above. They may also be either removably attached to the lamp systems so that the lamp systems may be useful for multiple purposes. The form and attachment thereof may be found in U.S. Provisional Applications: Ser. No. 60/814,327, filed Jun. 15, 2006, entitled “Illumination Systems for Dental Applications”; Ser. No. 60/814,242, filed Jun. 15, 2006, entitled “Illumination Systems for Dentistry Applications”; and Ser. No. 60/846,497, filed Sep. 22, 2006, entitled “Illumination Systems for Dental Applications”; the contents of which are hereby incorporated by reference.
In one embodiment, the blocking layer may also be part of a dental tray in the form, for example, such as that shown in
In another embodiment, the dental tray 600 as shown above may be configured such that the portions adjacent the front or facial surface of the teeth may be configured to admit light of all wavelengths effective for whitening, while the portions adjacent the tissues and the backside or lingual surface of the teeth may be configured to admit only light that is therapeutic.
Any of these forms may also be used in conjunction with the liquid blocking material discussed above. Also, any of the bidirectional plate materials may also be used to form the trays.
In general, the light source may be adapted for used inside or outside of the oral cavity. Any power supply source may be located outside of the oral cavity
It is believed that one skilled in the art, based on the description herein, can utilize the present invention to its fullest extent. The following specific examples are therefore to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
This example demonstrates the results on oral health of a six-month parallel-design, blinded clinical evaluation of a one-time, in-office, light only, peroxide only, and combination peroxide-and-light procedure conducted in accordance with ADA guidelines.
The light used (BriteSmile 2000, BriteSmile, Walnut Creek, Calif.) was a stationary, short-arc gas plasma lamp emitting light in the blue-green (400-505 nanometers) portion of the color spectrum. The lamp simultaneously illuminated all the incisors. One of the researchers calibrated light irradiance daily using a standard light meter, set to a level of 130 to 160 mW/cm2 measured at a standard working distance of about 1.75 inches. Although irradiance was measured on only one portion of the emitter, all anterior teeth received approximately the same irradiance because the shape of the emitting surface approximated that of the dental arch. The peroxide gel contained about 15% hydrogen peroxide in a pH 6.5 hydrogel. The placebo gel was the same hydrogel vehicle without peroxide.
All subjects received a detailed informed consent form that outlined all procedures, defined alternatives, and indicated that they could be assigned to a placebo group. Eighty-seven subjects (38 males and 49 females) with an average age of 44 years (20 years through 67 years) were randomly assigned by the study coordinator to three experimental groups of 29 from a prepared randomization sequence. These groups were the peroxide plus light group (Group 1), which used 15% hydrogen peroxide gel plus light; the peroxide group (Group 2), which used 15% hydrogen peroxide gel alone; and the light group (Group 3), which used light with placebo gel.
Treatment assignment was by randomization in strata of three, as was the sequence of treatments. Treatments were blinded to both the examiner and subject to the extent possible (the lack of a light in Group 2 was not blinded to the subject). Otherwise, all subjects were treated identically. Treatment visits included tooth brushing with a nonfluoridated nonwhitening dentifrice, baseline clinical measurements, tooth isolation, whitening, and post-treatment clinical and color measurements.
Gingival health was measured at four checkpoints (baseline, immediately post-treatment, at three months, and at six months). In accordance with ADA guidelines, examiners measured gingival health using the Gingival Index and Plaque Index. The examiners recorded readings on all maxillary and mandibular teeth from the first molar forward at each evaluation period. Safety was evaluated by both professional oral examination and a subject questionnaire. To ensure protection of the maxillary and mandibular gingival, examiners applied a brush-on isolation material (Opaldam, Ultradent Products, South Jordan, Utah) extending approximately one millimeter onto all tooth surfaces in the treatment area before whitening.
All incisors, canines, and premolars were covered with peroxide or placebo gel depending on their experimental group. The light was positioned according to the manufacturer's instruction using the integral bite appliance guide to set the distance between the teeth and the light source. All treatments lasted one hour. The hydrogel was applied every 20 minutes so that the tooth surface was never dry.
All subjects were analyzed as part of the groups to which they were randomized.
The Gingival Index of all groups decreased significantly after therapy with no change in Plaque Index (Table 2). The Gingival Index in all treatment groups was significantly less than baseline through six months, including the group treated by light alone.
†Significantly different from baseline (P < .01, Friedman analysis).
Gingival Index values represent a measure of tissue irritation. Rather than increasing, as might be expected after topical application of potentially irritating substances, Gingival Index measurements significantly decreased over the three- and six-month periods, suggesting that the treatment procedures reduced gingivitis.
At the same time, plaque index (Silness and Loe 1964) was evaluated. In this case, patients came in with low levels of visible plaque (the average plaque index being approximately 0.1) and low levels were maintained throughout the study and were not affected by therapy.
Taken together, these data suggest that treatment with light plus peroxide, light only, and peroxide only all significantly reduced gingival inflammation without materially affecting the amount of visible plaque. Since the effect persisted for up to 6 months following a single application, it is likely that the treatments altered the bacterial composition of the periodontal environment to one more favorable to periodontal health.
This study demonstrates the specificity of action of visible light on oral black-pigmented bacteria. It was hypothesized that oral black-pigmented bacterial of the Prevotella and Porphyromonas genera could be selectively inactivated by exciting their naturally synthesized endogenous porphyrins with broadband visible light (380-520 nm).
Pure cultures of Porphyromonas gingivalis, Porphyromonas melaninogenica, Prevotella nigrescens, and prevotella intermedia were exposed to 380-520 nm visible light from a high intensity light source (irradiance: 130 mW/cm2) for one, five, and ten minutes (the source optical spectrum is shown in
After illumination, serial dilutions were prepared in brain heart infusion broth and 100 μl aliquots were spread over the surfaces of blood agar plates. Survival fractions were calculated by counting the colonies on the plates and dividing by the number of colonies from dark controls kept at room temperature for a period equal to irradiation times. In case of dental plaque, microbial analysis was performed by a DNA checkerboard assay using whole genomic probes to 40 oral microorganisms. Proportions of each organism were computed by dividing the numbers for each species by the sum of all bacteria.
In a second study, dental plaque was collected from 20 patients with chronic periodontal disease. Microbial analysis was performed by a DNA checkerboard assay using whole genomic probes to 40 oral microorganisms. Proportions of each organism were computed by dividing the numbers for each species by the sum of all bacteria.
Light produced 100% killing of strains of P. nigrescens and P. intermedia within one minute as shown in
As shown in
Bacterial growth was inhibited after exposure to light as shown in
The growth inhibition of each of the 40 species at five minutes of illumination is shown in
Broadband light from 380 to 520 nm appears to selectively inactivate or eliminate black-pigmented species. While not intended to be bound by one theory, this selective elimination of black-pigmented species may lead to a healthier microbial balance in the plaque environment and therefore, to control disease.
The purpose of this study was to test whether the Prevotella and Porphyromonas genera can be selectively inactivated by exciting their naturally synthesized endogenous porphyrins with visible light (400-520 nm).
Suspensions of two oral black-pigmented species (P. gingivalis, P. intermedia) and S. constellatus were exposed to five different light sources. The light sources included: BriteSmile™ 2000/3000 380-520 nm (8 J/cm2 and 40 J/cm2), BriteSmile 3000 PB 430-520 nm (4.3 J/cm2 and 21.5 J/cm2), Red light 665 nm (42 J/cm2), Blue LED 420 nm (36 J/cm2), and Blue LED 400 nm (1.5 J/cm2 and 15 J/cm2).
Table 3 provides the percent of killing of bacteria after exposure to several different light sources.
P. gingivalis
P.intermedia
S. constellatus
The two sets of values describe results from two different experiments.
The BriteSmile 380-520 nm light source was very effective. After five minutes of irradiation (40 J/cm2) at 130 mW/cm2, 100% killing of P. intermedia and 99% killing of P. gingivalis was achieved. The BriteSmile 430-520 nm light source achieved 100% killing (21.5 J/cm2) of both species within five minutes.
P. gingivalis was affected only by the BriteSmile 380-520 and BriteSmile 430-520 lights. P. intermedia was affected by all light sources.
The purpose of this study was to investigate the efficacy of an application of peroxide and/or light on periodontal health. The study involved a randomized assignment of subjects to one of four groups: (1) light, (2) light and peroxide, (3) peroxide, and (4) control.
Subjects were selected with criteria similar to those of Example 1 and randomly assigned to one of each of the four groups. Subjects were monitored for both clinical and microbiological changes for six months.
Clinical measurements and microbiological samples were taken at four visits: at baseline, one week following treatment, one month following treatment, and six months following treatment. In addition, one set of microbiological samples was taken immediately following treatment. Measurements and samples were taken in the order listed.
The rationale for the measurement and sampling times selected was that previous studies indicated that professional prophylaxis will non-discriminately remove approximately 70% of the bacteria leaving approximately 30%. If the peroxide-light treatment had a more selective effect, that may be evident even at the immediate post-treatment sample. Following exhaustive conventional tooth cleaning measures, bacteria rapidly repopulate the teeth so that between three and ten days, the microbiological effects of cleaning can no longer be seen. Tissue effects usually take a bit longer. Certainly by one month one would expect to see changes in periodontal health measurements if they were to occur. Final sampling and measurement at six months were included to provide for reproduction of the original observation in Example 1.
The rationale for selecting the specific measurements recommended for this study correlated with the three desired outcome measurements: reproduction of the original observation in Example 1, evaluation of microbiological changes, and evaluation of tissue responses.
Reproduction of the original observation: Gingival Index and Plaque Index reproduced the principal elements of Example 1.
Microbial changes: Measurement of the standard battery of 40 periodontal bacteria (Table 1) provided a representative analysis of bacterial changes that could occur. For an effect to last for six months following a single treatment, it was assumed that a measurable change in the microbial composition had occurred. An analysis of the changes that occurred in these representative species provided an insight into any other microbial changes that could occur.
Changes in tissue response: Changes associated with each of the four therapies may be seen most clearly by measurement of tissue changes. Many changes in tissue response were evaluated by clinical diagnostics. These measures are those most commonly understood by clinicians. The most common clinically related diagnostic measurement is periodontal probing (pocket depth, attachment level, and bleeding on probing). A special probe with a computer interface was used (i.e., The Florida Probe). This instrument measured changes as small as 0.2 millimeters and made measurements accurately referenced to the incisal edge of teeth (using the disk probe) and, at the same time, controlled the force of probing. Gingival papilla color was measured using a Minolta chromameter. Finally, hydrogen sulfide (“H2S”) in the periodontal pocket or sulcus was measured as H2S is the most important odor component of halitosis.
Subjects were selected that have gingivitis or even mild periodontitis in the anterior maxillary sextant. Seven sites were tested for bleeding following the protocol defined by the EDBI (EIBI, Caton et al. 1988).
Sites tested were the interproximal papillae of all maxillary anterior teeth to the cuspid-first bicuspid interproximal. By this method, a wooden interdental cleaner (Stim-U-Dent, Johnson & Johnson, New Brunswick, N.J.) was inserted between the teeth from the facial aspect, depressing the interdental tissues one to two millimeters. The path of insertion was parallel to the occlusal plane, with care being taken not to direct the point of the cleaner apically. The cleaner was inserted and removed four times, and the presence or absence of bleeding within 15 seconds was recorded. Subjects were selected based on their having at least three of the seven sites tested that bled.
Three applications of the 20-minute procedure described in Example 1 above were performed on the subjects in all the groups, except the peroxide only group which does not include the use of light. The peroxide-only group was blinded to the fact that it was not receiving light.
Gingival Index and Plaque Index: In order to test the reproducibility of Example 1, the primary outcome variable of this study was the Gingival Index change measured at six months. Also, the size was set to equal that of the initial study (25 people per group; 100 for the entire study). Indices were recorded on all maxillary and mandibular teeth from the first molar forward at each evaluation period. Gingival Index of Loe and Silness (1963); Plaque Index of Silness and Loe (1964).
Gingival Papilla Color: Papilla color was evaluated by a Minolta chromameter and recorded as one chromameter measurement on each papilla from the buccal interproximal between the maxillary cuspid and first bicuspid on the right to the same papilla on the left (seven maxillary buccal interproximal papillae). The papilla color was calculated by using the CIELAB color scale (Commission International de L′Eclairage's international color standard, “LAB”).
Plaque Sample: All visible plaque was harvested from the surfaces adjacent to the buccal gingival margin of eight teeth; maxillary incisors, cuspids, and first bicuspids.
Samples from each tooth were taken using sterile Gracy curettes. In this case, all available plaque was harvested from each of the eight buccal surfaces. Each plaque sample was placed into a labeled individual 1.7 milliliter snap-top centrifuge tube (VWR Cat. 20170-33) containing 0.15 milliliters Tris EDTA buffer. Following the collection of all samples, 0.1 milliliters of 0.5 M NaOH was added to each vial and mixed by vortex with the sample and buffer. This sample was stable at room temperature for up to three months and was safe to transport.
Probe Measurements (Pocket Depth, Attachment Level, and Bleeding on Probing): The depth of the periodontal sulcus or pocket was measured at three sites across the buccal surface on each of the eight test teeth using the Florida periodontal probe.
Controlled force of probing was set to light (approximately 15 grams). Any site bleeding as a result of this controlled-force probe measurement within 15 seconds of probing was recorded as a bleeding site. Following the first-pass measurement of pocket depth, a referenced measure to the incisal edge (attachment level equivalent) was measured using the Florida disk probe. These measurements were taken to an accuracy of 0.2 millimeters.
Pocket H2S: Occurrence of H2S in the pocket was determined using the Diamond Probe 2000 (Diamond General Development Corp.). Measurements were taken on the mesio-buccal of each tooth at the eight maxillary interproximal surfaces.
EDBI: The EDBI as described in the screening section was repeated at the end of each visit to determine if any changes in this bleeding index occurred.
Microbial Composition: Samples from plaque were analyzed by DNA:DNA hybridization (Socransky et al. 1994). Prior to analysis, samples were sonicated in a water bath sonicator for one minute followed by boiling for five minutes. The samples were neutralized using 0.8 millimeters of 5 M ammonium acetate. The released DNA were placed into the extended slots of a Minislot (Immunetics, Cambridge Mass.) and then concentrated into a nylon membrane (Boehringer Manheim) by vacuum and fixed to the membrane by exposure to ultraviolet light.
Up to 28 samples of denatured DNA and two standards of each probe species (105 and 106 bacterial equivalents/sample) were applied to each nylon membrane using a Minislot apparatus. The membrane was then rotated 90 degrees and placed into a Miniblotter 45 (Immunetics, Cambridge Mass.). Digoxigen-labeled DNA probes for the 40 periodontal bacteria of Table 1 were hybridized in individual channels of the Miniblotter.
After washing, the resulting hybrids were detected using digoxigenin conjugated to alkaline phosphatase, Attophos substrate, and a Storm Flourimager. The signal intensity of each unknown was compared with the standards on the same membrane to provide counts of individual species to determine the numbers of bacteria found in the extracted DNA of each sample. DNA probes and reagents were adjusted to obtain a detection limit of 104 bacteria and were maintained with increases of >103 bacteria.
Changes in P. gingivalis proportions were further selected for a detailed study as a representative black-pigmented bacterium that would be expected to absorb light.
The application of light and/or peroxide improved overall periodontal health. The specific effects of light and/or peroxide on a subject's oral health are as follows.
Gingival Index and Plaque Index: As shown in
As illustrated in
Gingival Papilla Color: The overall change in gingival color is depicted in
Probe Measurements (Pocket Depth, Attachment Level, and Bleeding on Probing): As depicted in
As depicted in
Pocket H2S: Less than 0.1% of the samples contained H2S.
EDBI: As depicted in
Data Evaluation: As shown in
Numerous changes in the microbial population are also seen following the various treatments and the various time periods.
In the detailed study, P. gingivalis, exhibited noticeable changes upon treatment.
In an analysis of a data subset that represented only subjects with advanced gingivitis, the association between light exposure and reduction in black-pigmented species is more clearly seen (
The data suggests that exposure to a light source and/or peroxide reduces the number of bacteria on the tooth surface and changes its bacterial composition. One example studied in detail was the change in proportions of P. gingivalis over the course of six months. Out of the four treatment groups, only treatment with light and/or peroxide reduced the proportions of P. gingivalis in periodontal plaque. In fact, the control group, irrespective of its increase in home care effectiveness, experienced a proliferation of this periodontal pathogen. Consequently, the data implies that exposure to a light source and/or peroxide is an effective way of reducing the number of bacteria on a tooth's surfaces.
In addition, the investigation of the effect of each therapy by a factorial analysis suggests that light alone decreased the proportion of P. gingivalis and that the effect was most prominent one month after treatment.
Similarly, the reduction of the Gingival Index by light suggests an additional benefit of the tooth whitening procedure. Further, the results suggest that subjects, who are exposed to a light source and/or peroxide, will be motivated to achieve higher levels of oral hygiene through intensified home care. This is illustrated by the fact that the control group experienced a 50% reduction of its Gingival Index. Moreover, the Plaque Index, a measure of home care, was reduced by approximately one-half of the baseline in all groups to the same degree and maintained at a low level throughout the study. The EDBI was reduced to the same extent by both the light and/or peroxide and the control treatments. These observations suggest that exposure to a light source and/or peroxide is a powerful stimulus to improve home care and gingival health.
The subset analysis of subjects with the highest degree of baseline inflammation reveals that significant effects on reduction of black-pigmented bacteria that are specific to light exposure can be measured in plaque taken from the mouths of patients up to one month following exposure. These in vivo observations clearly support the laboratory data that indicates that light exposure results in a reduction of black-pigmented species on the teeth adjacent to the gum tissue.
The purpose of this study was to investigate the effect of light exposure on biofilms made from periodontal plaque samples obtained from an individual with advanced periodontal disease.
Multi-species biofilms were grown from dental plaque that was obtained from a patient with chronic destructive periodontitis. Biofilms were divided in 8 groups (4 biofilms per group).
These biofilms were irradiated with light of 455 nm for the times and exposures described in the following Table 4.
Observations made over the first two days did not exhibit any reduction in the number of black-pigmented species. As indicated in the bars in
These observations suggest that in some cases, particularly those involving advanced periodontitis, it may be necessary to irradiate bacterial plaques repeatedly in order to obtain the desired effect.
The purpose of this study was to examine the change in composition of dental plaque bacteria resulting from intraoral light exposure.
The buccal surfaces of the maxillary and mandibular premolars and molars of 11 subjects were exposed to a high-intensity (70 mW/cm2), intraoral light source, as depicted in
At each visit, the oral mucosa of each subject was examined by a hygienist responsible for conducting the study. In addition, each subject was asked to respond to a questionnaire concerning their perception of any problems that might have been associated with the procedures being conducted. Eight of the 11 subjects brushed their teeth regularly. Three of the subjects suspended all oral hygiene for the duration of the study.
Bacterial samples from each subject were taken at the start of the study period (Monday), and again at the end of the study period (Friday). The bacterial samples were acquired by harvesting the entire mass of bacterial plaque across the buccal surface of the maxillary and mandibular premolars and molars on both the side exposed to the high intensity light source (“exposed”) and the contralateral unexposed side (“unexposed”).
The bacterial composition of plaque samples was determined by a DNA probe analysis. The standard battery of 40 periodontal bacteria, as previously provided in Table 1, were included in the probe battery. The primary comparison in the study was the proportion of each bacterium from the exposed region, compared to the proportion of the same bacterium in the unexposed region.
Eleven subjects, 6 male and 5 female, were enrolled in this study. The subjects had an average age of 36 years (with age ranging from 21 to 65 years). The ethnic characteristics were principally Caucasian (63%) and Asian (27%). Only one subject smoked, and 82% of the subjects were right-handed. The average pocket depth of the subjects was 2.75±0.74 mm (mean ±S.D., range 1.5-4.5 mm). At baseline, approximately 32% of sites bled on probing, 56% had visible plaque, and 46% were visibly red.
The entire experiment was started and completed in 5 days. The study proceeded without incident. No evidence of intraoral irritation, pain, or discomfort associated with the procedure was observed. No subjects responded adversely to the questionnaire. Bacterial samples were promptly collected and analyzed.
As illustrated by
As depicted in
The above data indicates that of all the bacteria tested, only P. gingivalis and P. intermedia exhibited convincingly strong associations in both the comparative percent change and the treated side change.
As illustrated in
In addition, inspection of the change in the width of the distribution function on the exposed side between baseline and 4 days suggests that sites with higher proportions of P. gingivalis were reduced by the exposure to light, even though the differences were not statistically significant. Restricting consideration to those teeth with high initial levels of P. gingivalis (i.e., >1% at baseline) results in a statistically significant difference in the proportions of P. gingivalis at baseline and after 4 days of exposure. This distribution is illustrated in
As depicted in
Furthermore, as noted in the case of P. gingivalis, inspection of the change in the width of the distribution function on the exposed side between baseline and 4 days suggests that the teeth with higher proportions were reduced by the exposure even though the differences were not statistically significant. Restricting consideration to those teeth with high initial levels of P. intermedia (i.e., >1% at baseline) also produced a statistically significant difference in the proportions at baseline and after 4 days of exposure. This distribution is illustrated in
Several bacteria were reduced in association to light exposure by levels comparable to those seen with P. gingivalis and P. intermedia, but the reduction did not achieve statistical significance. These included three fusobacteria (F. nuc. polymorph., F. periodonticum, and F. nuc. vincentii), one streptococcus (S. intermedius), and one capnocytophaga species (C. sputigena). F. nuc. polymorph and F. periodonticum were reduced on the light-exposed side and proliferated on the unexposed side. The proportions of F. nuc. vincentii and S. intermedius were also reduced on both exposed and unexposed sides with the greater reduction being on the exposed side. The proportion of C. sputigena was unique in this group since the relative reduction was inhibition, but not reduction on the exposed side and proliferation on the unexposed side. It is possible that light effects may be exhibited by these species when larger studies are conducted.
Several bacteria appeared to change on both the exposed side and the unexposed side. These included A. naeslundii II, A. odontolyticus, P. acnes, A. israelii, T. socranskii, A. gerencseriae, and E. nodatum. Since substantial changes occurred on both sides of the mouth, this likely reflects changes related to oral hygiene or other subject level effects rather than light exposure.
P. micros was significantly reduced on the light exposed side, but failed to exhibit a significant comparative percent change. It is possible that the levels of P. micros were reduced by light exposure, but the degree of reduction being smaller than either P. gingivalis or P. intermedia was below the ability to be detected in the experimental design used.
When evaluating changes in percentage, when anything is reduced, something must increase as well. Of all the bacteria tested, however, only V. parvula appeared to increase and this change was not significantly associated with light exposure.
The purpose of this study, was to investigate the effect of broadband light (380-520 nm) on black-pigmented bacteria (“BPB”) in pure cultures as well as in dental plaque samples obtained from human subjects with chronic periodontitis.
Microorganisms: The pure bacterial strains used in this study were P. gingivalis (33277, ATCC), P. intermedia (25611, ATCC), P. nigrescens (33563, ATCC), P. melaninogenica (25845, ATCC) and S. constellatus (27823, ATCC). Cultures were maintained by weekly subculture in trypticase soy agar with 5 μg/ml hemin, 0.3 mg/ml vitamin K, and 5% sheep blood (manufactured plates from Northeast Labs, Waterville, Me.). Cultures were grown in the presence of 80% nitrogen, 10% hydrogen 10% carbon dioxide at 35° C. in an anaerobic chamber for 48-72 hours. On the day of the experiment, the cells were harvested by centrifugation and resuspended in brain heart infusion (“BHI”) broth (Becton Dickson and Company, Sparks, Md.). Cells were dispersed by sonication and repeated passage through Pasteur pipettes. For adjustment of inoculum density, cell numbers were estimated in a spectrophotometer (wavelength, 600 nm; 0.1 optical density unit equals approximately 108 cells/mL) in 1 mL cuvettes.
High-performance liquid chromatography (HPLC) analysis: For the extraction of total porphyrins from P. gingivalis, P. intermedia, P. nigrescens, and P. melaninogenica a two-phase extraction method was employed, which included the use of acidified ethyl acetate (ethyl acetate: glacial acetic acid/2:1) followed by 1M HCl. Iron-containing porphyrins (heme) was extracted into the organic solvent, but not extracted back into the acid phase. Thus, heme compounds were excluded. Porphyrins were quantified by scanning from 640 to 670 nm with an excitation wavelength at 400 nm using a Fluoromax-3 spectrofluorometer (Jobin Yvon, Edison, N.J.). The level of total porphyrins was calculated based on a reference porphyrin mixture standard. Porphyrins were fractionated by a reversed-phase HPLC method. The Waters HPLC system (Waters, Milford, Mass.) consisted of a 600 E system controller, 717 Autosampler, 470 fluorescence detector, 745B Data Module for peak integration. Separation of porphyrins was performed on a 150×3.9 mm Phenomenex C18 Bondclone column (Phenomenex, Torrance, Calif.).
Subjects and plaque samples: Samples of subgingival plaque were taken from 15 patients. Permission to collect dental plaque samples was authorized by an IRB-approved informant consent. All patients were diagnosed as having chronic periodontitis with pockets greater than 3 mm in depth. None of them used antibiotics or had undergone periodontal treatment during the 3 months prior to sampling. Dental plaque samples were taken from the supra- and subgingival mesio-buccal aspects of premolars or molars in each patient with individual sterile Gracey curettes. The samples were placed immediately after their removal into an Eppendorf tube with 5 mL of pre-reduced anaerobically sterilized Ringer's solution. Cells were dispersed by sonication and repeated passage through Pasteur pipettes. Cell numbers were measured in a spectrophotometer in 1 mL tubes (one optical density unit equals approximately 109 cells/mL at 600 nm).
Light source: The irradiation source (BriteSmile model BS3000, BriteSmile, Inc., Walnut Creek, Calif.) consisted of two Mejiro metal halide gas plasma lamps with reflecting elements. The lamps are attached to two (one each) optical fiber bundles that lead to a “front end,” which breaks each bundle up into three rectangular emitting output areas. The spectral range of the light source was from 380 to 520 nm. A strong peak occurred at 435 nm and secondary peaks at 405, 420, 450 and 455 nm. The light source emitted 1.7% of the total energy in the ultraviolet range-A of the spectrum (380-400 nm).
Phototherapy studies—Bacterial cultures: Suspensions of bacteria (108/mL) were placed in the wells of 24-well plates. All four BPB as well as S. constellatus (non-black-pigmented control species) were exposed to light from the halogen lamp at room temperature from above with fluences ranging from 0 to 42 J/cm2 at an irradiance of 70 mW/cm2. The measured temperature rise in the medium was less than 3° C. during exposures to irradiation fluence of 42 J/cm2. All plates were kept covered during the illumination in order to maintain the sterility of the culture. After illumination of the appropriate wells, serial dilutions of the contents of each well were prepared in BHI broth, and 100 mul aliquots were spread over the surfaces of enriched blood agar plates (enriched with vitamin K, N-acetyl muramic acid and hemin). The plates were incubated anaerobically at 35° C. for 7 days. Survival fractions in each well were calculated by counting the colony forming units (“CFU”) on the plates and dividing by the number of colonies from control plates that were not exposed to light and kept at room temperature for periods equal to irradiation times.
Phototherapy studies—Pooled dental plaque: Dispersed dental plaque (108/mL) were placed in the wells of 24-well plates and exposed to light with fluences of 4.2 J/cm2 and 21 J/cm2 at an irradiance of 70 mW/cm2. After illumination, survival was estimated using two methods; by counting CFU as described above followed by total DNA-probe counts of 40 bacterial species using checkerboard DNA-DNA hybridization. For DNA-probe analysis, TE buffer (1.5 mL) was added to the plates and the bacterial colonies were scraped off the surface using sterile L-shaped glass rods. The suspensions were placed into individual Eppendorf tubes and sonicated for 10 seconds to break up clumps. The optical density (“OD”) of each suspension was adjusted to a final OD of 1.0, which corresponded to approximately 109 cells. Ten (10) μl of the suspension (107 cells) were removed and placed in another Eppendorf tube with 140 μl of TE buffer and 150 μl of 0.5M NaOH. The samples were lysed and the DNA was placed in lanes on positively charged nylon membrane using a Minislot device (Immunetics, Cambridge, Mass., USA). After fixation of the DNA to the membrane, the membrane was placed in Miniblotter 45 (Immunetics) with the lanes of DNA at perpendicular to the lanes of the device. Digoxigenin-labeled whole genomic DNA probes to 40 bacteria taxa were hybridized in individual lanes of the Miniblotter. After hybridization, the membranes were washed at high stringency and the DNA probes were detected using antibody to digoxigenin conjugated with alkaline phosphatase for chemifluorescence detection. Signals were detected using AttoPhos substrate (Amersham Life Science, Arlington Heights, Ill., USA) and were scanned using a Storm Fluorimager (Molecular Dynamics, Sunnyvale, Calif., USA). Computer-generated images were analyzed to determine the fluorescence intensity associated with each sample and probe. Two lanes in each membrane contained DNA standards with 1 ng (105 bacteria) and 10 ng (106 bacteria) of each species. The sensitivity of the assay was adjusted to permit detection of 104 cells of a given species by adjusting the concentration of each DNA probe. The measured fluorescence intensities were converted to absolute counts by comparison with the standards on the same membrane. Failure to detect a signal was recorded as zero. The growth inhibition of BPB was defined as the ratio of DNA probe counts before and after exposure to light. Differences between mean values of growth inhibition ratios or percentages were tested for statistical significance using Student's t test.
Photodestruction of bacterial cultures: The effects of increasing light doses from the light source on cultures of BPB are shown in
HPLC analysis: HPLC revealed that BPB expressed different porphyrins patterns (
Phototherapy of dental plaque microorganisms—CFU:
Phototherapy of dental plaque microorganisms—Checkerboard DNA-DNA hybridization:
These data suggest that visible light could be used prophylactically to stabilize the normal microbial composition of the plaque by suppressing the potentially pathogenic BPB. Compared with other forms of periodontal therapy (scaling, mouthwashes, surgery), this form of treatment would offer many advantages; it is painless, rapid, devoid of drug toxicity, has no effect on taste and is selective in its effect.
Subjects were enrolled from two previously-completed Forsyth whitening studies. The subjects were (1) a subset of patients from the BriteSmile, Inc. “light plus gel” leg of the Forsyth Safety and Efficacy study and (2) a subset of patients from the BriteSmile, Inc. leg of the Forsyth Comparison study. All of the subjects received the standard BriteSmile, Inc. tooth whitening treatment. Subjects were measured at baseline, immediately post treatment and at 3, 6, 12, 18, and 24 months during and after each of the two studies. Since not all subjects cooperated with the follow-up study, the dataset has some gaps. Of the subjects who agreed to follow-up measurements, each participant was monitored over a 2-year period to evaluate the degree of regression, if any. The last subject was seen on Dec. 21, 2002.
One of the most surprising findings of this study is that the reduction in gingival index that followed whitening application persisted throughout the 2-year monitoring period (
At least part of the BriteSmile, Inc. effect on Gingival Index may be explained by a reduction in Plaque Index (
A single BriteSmile, Inc. treatment can increase tooth whiteness and decrease gingival redness. Some of the therapeutic effect can remain up to two years after initial application.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims, and as various changes can be made to the above compositions, formulations, combinations, and methods without departing from the scope of the invention, it is intended that all matter contained in the above description be interpreted as illustrative and not in a limiting sense. All patent documents and references listed herein are incorporated by reference in their entireties.
This application claims the benefit of U.S. provisional patent applications: Ser. No. 60/814,239, entitled “Method and Device for Improving Oral Health” filed on Jun. 15, 2006; and Ser. No. 60/892,859, entitled “Device and Method for Improving Oral Health” filed Mar. 4, 2007; and is a continuation-in-part of U.S. Ser. No. 11/344,974, filed Feb. 1, 2006, which claims priority to U.S. Provisional application No. 60/649,402 entitled, “Method and Device for Improving Oral Health” filed Feb. 2, 2005, and which is a continuation-in-part of U.S. application Ser. No. 11/044,531, filed Jan. 26, 2005; the contents of all are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
60814239 | Jun 2006 | US | |
60892859 | Mar 2007 | US | |
60649402 | Feb 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11344974 | Feb 2006 | US |
Child | 11818590 | US | |
Parent | 11044531 | Jan 2005 | US |
Child | 11344974 | US |