The invention relates to a method and to a device for conveying particulate material during the manufacture of patterns in layers.
Methods for producing three-dimensional components have already been known for a long time.
European patent specification EP 0 431 924 B1, for example, describes a method for producing three-dimensional objects from computer data. A particulate material is thereby applied onto a platform in a thin layer and said platform is selectively imprinted with a binder material by means of a print head. The particulate area, which is imprinted with the binder, adheres and solidifies under the impact of the binder and an additional hardener, if applicable. The platform is subsequently lowered by a layer thickness in a construction cylinder and is provided with a new layer of particulate material, which is also imprinted, as is described above. These steps are repeated until a certain, desired height of the object is reached. A three-dimensional object is thus created from the imprinted and solidified areas.
After its completion, this object, which is produced from solidified particulate material, is embedded in the loose particulate material and is subsequently freed therefrom. This takes place, for example, by means of a vacuum cleaner. Thereafter, the desired objects, which are then freed from the residual powder, e.g., by means of brushing, remain.
Other powder-supported rapid-prototyping processes, such as the selective laser sintering or the electron beam sintering, e.g., in the case of which a loose particulate material is also in each case applied in layers and is selectively solidified by means of a controlled physical source of radiation, also operate in a similar manner.
All of these methods will be combined herein below under the term “three-dimensional print processes”.
In the case of the three-dimensional print process known from the state of the art, the particulate material is typically applied by means of a spreader unit. In the case of a low fill level, this spreader unit must be filled with particulate material from a reservoir.
Different methods and device are known from the state of the art for this purpose.
WO 98/28124 A1, for instance, describes a method, in the case of which the powder material is pushed onto a workspace via a piston and is applied from there via rollers onto the area, which is to be coated.
A device for filling a spreader device is further known from WO 00/78485 A2, in the case of which a reservoir is arranged in an end position of the spreader device thereabove, with said reservoir encompassing a sliding closure, wherein this sliding closure can be opened, if needed, and the spreader device can thus be filled.
A device, in the case of which the conveying of the particulate material out of the reservoir into the spreader device takes place via a conveyor belt, is furthermore known from the same patent application.
WO 2003/97518 further describes the conveying of the particulate material out of the reservoir into the speader system via a slider.
A conveying device, which uses a belt transport system comprising conveyor cages for transporting particulate material to the spreader device, is further known from US 2004/0012112 A1.
A further possibility for conveying particulate material out of a reservoir into a spreader system is described in DE 10 2005 056 260 A1. In the case of a low fill level, the spreader unit is hereby filled with particulate material from a reservoir in such a manner that the fill level in the spreader unit reaches a predetermined level across the entire length of the spreader device even in the case of a previously irregular fill level.
In the case of these methods and devices for filling a spreader unit for fluids, which are known from the state of the art, it has proven to be disadvantageous that one fill level control is always necessary. An uneven filling across the length of the spreader device can furthermore only be compensated for to an unsatisfactory degree with the methods from the state of the art.
It is thus the objective of the present invention to provide a method and a device to refrain from using a fill level control and to evenly fill the spreader device across the entire length.
This objective is solved by means of a method for conveying particulate material during the manufacture of patterns in layers, wherein powder from a reservoir is conveyed into a spreader unit and, if applicable, excess powder fed to the spreader unit is again conveyed back into the reservoir and wherein this conveying takes place in a closed conveying circuit.
In the case of such a method according to the invention, it is now possible for particulate material to be conveyed out of a reservoir into the spreader system and for excess powder to again be conveyed back to the reservoir by means of conveying the particular material in a conveying circuit.
The spreader system is thus filled until it is filled completely and excess particulate material is again fed back directly to the reservoir. This means that the filling runs for a certain (reliable) period and that one can be sure that the spreader device is filled completely. In the event that the spreader device is full, the excess particulate material is simply conveyed back to the reservoir.
Accordingly, pursuant to a first aspect of the present invention, there is contemplated a method for conveying particulate material during the manufacture of patterns in layers, wherein powder is conveyed out of a reservoir into a spreader unit and, if applicable, excess powder fed to the spreader unit is again conveyed back into the reservoir and wherein this conveying takes place in a closed conveying circuit.
The first aspect of the present invention may be further characterized by one or any combination of the features described herein, such as the powder conveying takes place via screw conveyors; the powder conveying takes place via low pressure; the powder conveying of the conveying circuit takes place via an individual conveying systems; the powder conveying of the conveying circuit takes place via a plurality of conveying systems; the powder conveying of the conveying circuit takes place via conveyor belts and/or conveyor cages; the powder conveying out of the reservoir into the spreader system takes place via an ejection system; the conveying circuit conveys excess powder material back into the reservoir after the coating process.
Accordingly, pursuant to a second aspect of the present invention, there is contemplated a device for conveying particulate material during the manufacture of patterns in layers, encompassing a reservoir, a spreader unit and a powder conveying system, wherein at least the reservoir and the spreader unit are contained in a closed conveying circuit.
The second aspect of the present invention may be further characterized by one or any combination of the features described herein, such as provision is furthermore made for an ejection system; the reservoir is arranged below the spreader unit in vertical direction, thus viewed in the direction at right angles to the coating direction, at least during filling process; the powder conveying system encompasses at least one conveyor belt; the powder conveying system encompasses screw conveyors; the powder conveying system encompasses a suction device for low pressure conveying; the ejection system encompasses two covers comprising slits; the ejection system encompasses two tubes located within one another and comprising boreholes, which are arranged so as to be offset; provision is furthermore made for a junction for introducing new powder material into the reservoir.
According to the present invention, a closed conveying system thus refers to a system, in the case of which a conveying to the spreader device system takes place and from there also back into the reservoir, if applicable.
According to a preferred embodiment of the present invention, the conveying of powder could take place via screw conveyors.
Apart from this or in addition thereto, it would also be possible for the conveying of powder to take place via low pressure.
A conveying via low pressure can be advantageous in particular when the conveying is to take place in a conveying system, which is closed off from the environment.
In the case of the method according to the invention, it can furthermore be advantageous when the conveying of powder of the conveying circuit takes place via an individual conveying system. The different conveying systems must then possibly not be coordinated.
However, it is also possible for the conveying of powder of the conveying circuit to take place via a plurality of conveying systems in the case of the method according to the invention.
The conveying of the particulate material out of the reservoir into the spreader system and back to the reservoir can take place via all possible conceivable individual or a plurality of conveying methods in the case of a method according to the invention. In addition to screw conveyors and low pressure, this could be conveyor belts and/or conveyor cages, for example.
According to the present invention, it can furthermore also be advantageous when the conveying of powder out of the reservoir into the spreader system takes place via an ejection system.
Such an embodiment of the present invention has thus proven to be particularly advantageous, because an even filling can take place in the spreader system due to the use of the ejection device.
According to a preferred embodiment, it can be advantageous in the case of the method according to the invention when the conveying circuit also conveys excess powder material back into the reservoir after the spreading process. If applicable, this excess particulate material from the coating method could also be cleaned before it is conveyed back to the reservoir. A conveying could thus take place through a screen, for example.
The objective of the present invention is further solved by means of a device for conveying particulate material during manufacture of patterns in layers encompassing a reservoir, a spreader unit and a powder conveying system, wherein at least the reservoir and the spreader unit are contained in a closed conveying circuit.
According to a preferred embodiment of the device according to the invention, provision is furthermore made for an ejection system. Such an ejection system can be suitable to attain a particularly even level distribution of the particulate material in the spreader system.
It can be advantageous in particular with reference to the machine geometry when the reservoir in the case of the device according to the invention is arranged below the spreader unit in vertical direction, thus viewed in the direction at right angles to the coating direction, at least during a filling process.
It can furthermore be advantageous for the device according to the invention when the powder conveying system encompasses at least one conveyor belt.
In addition, it would also be possible, however, for the device as a powder conveying system to encompass screw conveyors and/or a suction device for the low pressure conveying.
In the event that the device according to the invention encompasses an ejection system according to a preferred embodiment, it may be advantageous for the ejection system to encompass two covers comprising slits.
In addition, it is also possible for the device to be provided in such a manner that the ejection system encompasses two tubes located within one another and comprising boreholes or slits, which are arranged so as to be offset.
In the event a junction for introducing new powder material into the reservoir is provided according to the invention, the refilling of particulate material into the reservoir is possibly particularly simple and clean.
To elaborate in more detail, the invention will be described in more detail below by means of preferred exemplary embodiments with reference to the drawing.
The method according to the invention and the device according to the invention are to be explained in the following in an exemplary manner for the use during the assembling of casting patterns in layers from particulate material, binding material and hardener in the case of a rapid-prototyping method.
In the case of an assembling method of a component, which is described with reference to
The selective application of hardener onto areas, which are to be hardened, then takes place between the set-up of the individual layers.
At the onset of the coating process, the spreader system 4 is moved from a starting position across the workpiece platform. This is illustrated in
The spreader system 4 now moves across the build platform 9 at a constant speed. It thereby releases particulate material 2 in precisely the correct quantity and creates thin layers 5 of the particulate material 2 on the build platform 9. This is shown in
The spreader system 4 is subsequently moved back into the starting position and can be newly filled from a particulate reservoir 1 via a filling device by opening the ejection slider 3. This is shown in
The filling of the spreader system 4 via a circuit system according to the invention is illustrated in
As can be seen from the figure, the particulate material 2 is conveyed out of a reservoir 17, which is located below the level of the movement plane of the spreader device and below the machine table 8, via a first conveying system 12 to a level above the spreader device 4 for this purpose. This means that the reservoir is arranged below the spreader unit in vertical direction, thus viewed in the direction at right angles to the coating direction at least during a filling process.
The particulate material according to the shown preferred embodiment is realized via a shiftable ejection system 15 via a further conveying system 13 (separately or part of the first system). Excess powder is guided back again into the reservoir or into the reservoir chamber 17, respectively, via a bypass system 16.
In the case of the illustrated preferred embodiment of the invention, the component parts of the device, comprising conveying devices 12, 13, reservoir 17, ejection system 15, bypass 16 and spreader device 4 are arranged in a vertical plane parallel to the spreader device in response to the filling process. The advantage of this configuration lies in that excess powder or leakage can flow directly back into the reservoir.
As is shown in
In the event that screw conveyors are used, it can be advantageous two separate systems 12, 13 are provided. A first screw conveyor takes over the transport of the powder to a level above the spreader device 4. Curved or beveled systems provide advantageous powder absorption from the reservoir 17, are particularly suitable. A second screw conveyor runs horizontally above the spreader device 4. It takes over the transport to the spreader device 4 and to the bypass 16.
For filling, the spreader device 4 moves into a position below the filling system. The coating reservoir is thereby preferably embodied in a funnel-shaped manner. As is illustrated in
An ejection system 15 according to the present invention can be operated in all conceivable manners. As an example, two different systems are to be described herein with reference to
For example, an ejection device 15 can be opened according to a method, which is known from the state of the art, in response to a filled transport system and the available powder can thus be shaken off. The conveying device is thereby not active. In the case of this method, a defined powder quantity is refilled into the spreader device. This is illustrated in
According to a preferred embodiment of the present invention, the spreader device can be filled in that the ejection device 15 is opened and the conveying system 12, 13 is activated. As is illustrated in
An advantage of such a level filling is that, in connection with the circuit system, the filling can take place without a sensor. Due to the fact that a resupply can on principle take place without any disadvantages for any amount of time in the case of a completely filled spreader device, no particular actions must be taken to protect all involved aggregates. The fill level can be secured via a simple preselection of the filling period.
A further advantage lies in the even filling across the length of the spreader device.
In many cases, the fill level can change across the length during the building process due to uneven powder outflow out of the spreader device. An even refilling can be guaranteed in the case of each refilling by means of the level filling.
According to a preferred embodiment of the invention shown in
The embodiment of such a system can be as a rectangular tube, for example, wherein the underside encompasses a hole pattern. An additional displaceable disk comprising a hole pattern completes the system.
An embodiment of the ejection system, in the case of which the described hole patterns are realized on two tubes 31, 32, which run into one another, is particularly preferred. Such an embodiment can be seen in
A tube cover system comprising a screw conveyor 21 in the interior is furthermore particularly preferred. The above-described level filling can be realized in a particularly advantageous manner by means of such a system.
The afore-described systems can be activated in different manners. According to a preferred embodiment, pneumatic electromagnetic and hydraulic actuators 33 are suitable. See
In addition, provision can be made in the powder circuit for a connection for fresh powder. This is illustrated in
The advantage as compared to the simple refilling into the reservoir 6 lies in the constructively possible lower dust exposure for the user.
A system, in the case of which closed powder kegs 36 are placed onto a connecting spigot comprising a funnel tube 14 and supply the system with fresh powder is particularly preferred.
As is illustrated in
The method according to the invention thus uses a powder circuit for filling purposes, which makes it possible to fulfill the posed demands. Powder loss can be avoided by means of the embodiment of the powder conveyance in a circuit-like manner. A return of excess powder makes it possible to fill the spreader device carriage at high speed to an even level. A refilling device, which provides for a low-dust refilling, can be used at the circuit. On the one hand, this benefits the safety and the comfort of the user and, on the other hand, the explosion protection requirements.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 050 679 | Oct 2007 | DE | national |
This application is a continuation of U.S. patent application Ser. No. 14/250,838 filed on Apr. 11, 2014. U.S. patent application Ser. No. 14/250,838 is a divisional patent of U.S. patent application Ser. No. 12/681,961 (filed Apr. 7, 2010, now U.S. Pat. No. 8,727,672 issued May 20, 2014), which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 12/681,961 is a national phase of International Patent Application No. PCT/DE2008/001602, filed Oct. 6, 2008, which claims priority to German Application No. DE 10 2007 050 679.3, filed Oct. 21, 2007, all of which are incorporated herein by reference. This patent application claims priority to U.S. patent application Ser. No. 14/250,838, filed on Apr. 11, 2014 and Ser. No. 12/681,961, filed Apr. 7, 2010, International Patent Application No. PCT/DE2008/001602, filed Oct. 6, 2008, and German Application No. DE 10 2007 050 679.3, filed Oct. 21, 2007
Number | Name | Date | Kind |
---|---|---|---|
143613 | Bucklin | Oct 1873 | A |
643882 | McClave | Feb 1900 | A |
951665 | Swindell | Mar 1910 | A |
1356837 | Stegmaier | Oct 1920 | A |
1421896 | Benedict | Jul 1922 | A |
1535341 | Riley | Apr 1925 | A |
2358956 | Ashbaugh | Sep 1944 | A |
2388805 | Stahl | Nov 1945 | A |
2390154 | Kessler | Dec 1945 | A |
2640629 | McDonald et al. | Jun 1953 | A |
2692142 | Hunter | Oct 1954 | A |
2798256 | Eynard | Jul 1957 | A |
2857938 | Wahl | Oct 1958 | A |
3289898 | Herman | Dec 1966 | A |
3377001 | Hazard | Apr 1968 | A |
3616969 | Koizumi | Nov 1971 | A |
3616972 | Christy | Nov 1971 | A |
3722747 | Petit | Mar 1973 | A |
3815178 | Goldman | Jun 1974 | A |
3815527 | Dobbins | Jun 1974 | A |
3913503 | Becker | Oct 1975 | A |
4239715 | Pratt | Dec 1980 | A |
4247508 | Housholder | Jan 1981 | A |
4279949 | Esser | Jul 1981 | A |
4369025 | Von Der Weid | Jan 1983 | A |
4557882 | Arnold | Dec 1985 | A |
4575330 | Hull | Mar 1986 | A |
4579252 | Wilson | Apr 1986 | A |
4630755 | Campbell | Dec 1986 | A |
4669634 | Leroux | Jun 1987 | A |
4726715 | Steen et al. | Feb 1988 | A |
4752352 | Feygin | Jun 1988 | A |
4889433 | Pratt | Dec 1989 | A |
4927346 | Kaiser | May 1990 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4951417 | Gerken et al. | Aug 1990 | A |
5017753 | Deckard | May 1991 | A |
5053090 | Beaman et al. | Oct 1991 | A |
5076869 | Bourell et al. | Dec 1991 | A |
5083710 | McLoughlin et al. | Jan 1992 | A |
5127037 | Bynum | Jun 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5147587 | Marcus et al. | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5178496 | Trieb et al. | Jan 1993 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5213271 | Uribe et al. | May 1993 | A |
5221539 | Pallerberg et al. | Jun 1993 | A |
5248456 | Evans et al. | Sep 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5269982 | Brotz | Dec 1993 | A |
5284695 | Barlow et al. | Feb 1994 | A |
2296062 | Bourell et al. | Mar 1994 | A |
5311921 | Smets | May 1994 | A |
5316580 | Deckard | May 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5342919 | Dickens, Jr. et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5354414 | Feygin | Oct 1994 | A |
5382308 | Bourell et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5433520 | Adams | Jul 1995 | A |
5482659 | Sauerhoefer | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5505567 | Scott | Apr 1996 | A |
5506607 | Sanders, Jr. et al. | Apr 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5573055 | Melling et al. | Nov 1996 | A |
5597589 | Deckard | Jan 1997 | A |
5601868 | Gerhardt | Feb 1997 | A |
5614147 | Pelley | Mar 1997 | A |
5616294 | Deckard | Apr 1997 | A |
5639070 | Deckard | Jun 1997 | A |
5639402 | Barlow et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jul 1997 | A |
5658412 | Retallick et al. | Aug 1997 | A |
5730925 | Wilkening et al. | Mar 1998 | A |
5753274 | Wilkening et al. | May 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5843513 | Wilke et al. | Dec 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5902441 | Bredt et al. | May 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
5943235 | Earl et al. | Aug 1999 | A |
5964985 | Wootten | Oct 1999 | A |
5965170 | Matsuoka et al. | Oct 1999 | A |
6007318 | Russell et al. | Dec 1999 | A |
6036777 | Sachs | Mar 2000 | A |
6042774 | Wilkening et al. | Mar 2000 | A |
6048188 | Hull et al. | Apr 2000 | A |
6094994 | Satake et al. | Aug 2000 | A |
6116517 | Heinz et al. | Sep 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6147138 | Hochsmann et al. | Nov 2000 | A |
6155331 | Langer et al. | Dec 2000 | A |
6193922 | Ederer | Feb 2001 | B1 |
6203646 | Gungberg | Mar 2001 | B1 |
6217816 | Tang | Apr 2001 | B1 |
6258170 | Somekh et al. | Jul 2001 | B1 |
6305769 | Thayer et al. | Oct 2001 | B1 |
6316060 | Elvidge et al. | Nov 2001 | B1 |
6322728 | Brodkin et al. | Nov 2001 | B1 |
6372178 | Tseng | Apr 2002 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6401001 | Jang et al. | Jun 2002 | B1 |
6403002 | Van der Geest | Jun 2002 | B1 |
6416850 | Bredt et al. | Jul 2002 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6436334 | Hattori et al. | Aug 2002 | B1 |
6460979 | Heinzl et al. | Oct 2002 | B1 |
6467525 | Herreid et al. | Oct 2002 | B2 |
6500378 | Smith | Dec 2002 | B1 |
6554600 | Hofmann et al. | Apr 2003 | B1 |
6610429 | Bredt et al. | Aug 2003 | B2 |
6733528 | Abe et al. | May 2004 | B2 |
6764636 | Allanic et al. | Jul 2004 | B1 |
6830643 | Hayes | Dec 2004 | B1 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6855205 | McQuate | Feb 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
7004222 | Ederer et al. | Feb 2006 | B2 |
7137431 | Ederer | Nov 2006 | B2 |
7137759 | Ambs | Nov 2006 | B1 |
7204684 | Ederer et al. | Apr 2007 | B2 |
7531117 | Ederer | May 2009 | B2 |
7665636 | Ederer | Feb 2010 | B2 |
7736578 | Ederer | Jun 2010 | B2 |
7748971 | Hochsmann | Jul 2010 | B2 |
7767122 | Svirklys | Aug 2010 | B2 |
7767130 | Elsner | Aug 2010 | B2 |
7887316 | Cox | Feb 2011 | B2 |
7927539 | Ederer | Apr 2011 | B2 |
7979152 | Davidson | Jul 2011 | B2 |
8039059 | Ishihara | Oct 2011 | B2 |
8550802 | Fuwa et al. | Oct 2013 | B2 |
8568124 | Brunermer | Oct 2013 | B2 |
8741194 | Ederer et al. | Jun 2014 | B1 |
9242413 | Hartmann | Jan 2016 | B2 |
9358701 | Gnuchtel | Jun 2016 | B2 |
9403324 | Ederer | Aug 2016 | B2 |
9643360 | Kashani-Shirazi | May 2017 | B2 |
9649812 | Hartmann | May 2017 | B2 |
9656423 | Hartmann | May 2017 | B2 |
9676143 | Kashani-Shirazi | Jun 2017 | B2 |
9815243 | Hartmann | Nov 2017 | B2 |
9878494 | Hartmann | Jan 2018 | B2 |
9914169 | Ederer | Mar 2018 | B2 |
20010045678 | Kubo et al. | Nov 2001 | A1 |
20010050031 | Bredt et al. | Dec 2001 | A1 |
20020011687 | Mischo | Jan 2002 | A1 |
20020026982 | Bredt et al. | Mar 2002 | A1 |
20020155254 | McQuate et al. | Oct 2002 | A1 |
20040012112 | Davidson et al. | Jan 2004 | A1 |
20040025905 | Ederer et al. | Feb 2004 | A1 |
20040026418 | Ederer et al. | Feb 2004 | A1 |
20040035542 | Ederer et al. | Feb 2004 | A1 |
20040056378 | Bredt et al. | Mar 2004 | A1 |
20040094058 | Kasperchik et al. | May 2004 | A1 |
20040170765 | Ederer et al. | Sep 2004 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050167872 | Tsubaki et al. | Aug 2005 | A1 |
20050263934 | Chung | Dec 2005 | A1 |
20060013659 | Pfeiffer et al. | Jan 2006 | A1 |
20060105102 | Hochsmann et al. | May 2006 | A1 |
20060108090 | Ederer et al. | May 2006 | A1 |
20060175346 | Ederer et al. | Aug 2006 | A1 |
20060176346 | Momose | Aug 2006 | A1 |
20060237159 | Hochsmann | Oct 2006 | A1 |
20070054143 | Otoshi | Mar 2007 | A1 |
20070065397 | Ito et al. | Mar 2007 | A1 |
20080001331 | Ederer | Jan 2008 | A1 |
20080233302 | Elsner | Sep 2008 | A1 |
20080237933 | Hochsmann et al. | Oct 2008 | A1 |
20080260945 | Ederer et al. | Oct 2008 | A1 |
20080299321 | Ishihara | Dec 2008 | A1 |
20090261497 | Ederer et al. | Oct 2009 | A1 |
20100006228 | Abe | Jan 2010 | A1 |
20100212584 | Ederer et al. | Aug 2010 | A1 |
20100243123 | Ederer et al. | Sep 2010 | A1 |
20100244301 | Ederer et al. | Sep 2010 | A1 |
20100272519 | Ederer et al. | Oct 2010 | A1 |
20100291314 | Kashani-Shirazi | Nov 2010 | A1 |
20110223437 | Ederer et al. | Sep 2011 | A1 |
20110308755 | Hochsmann | Dec 2011 | A1 |
20120094026 | Ederer et al. | Apr 2012 | A1 |
20120097258 | Hartmann | Apr 2012 | A1 |
20120113439 | Ederer | May 2012 | A1 |
20120156319 | Hehl et al. | Jun 2012 | A1 |
20120291701 | Grasegger et al. | Nov 2012 | A1 |
20120329943 | Hicks et al. | Dec 2012 | A1 |
20130000549 | Hartmann et al. | Jan 2013 | A1 |
20130004610 | Hartmann et al. | Jan 2013 | A1 |
20130026680 | Ederer et al. | Jan 2013 | A1 |
20130029001 | Gunther et al. | Jan 2013 | A1 |
20130092082 | Ederer et al. | Apr 2013 | A1 |
20130108726 | Uckelmann et al. | May 2013 | A1 |
20130157193 | Moritani et al. | Jun 2013 | A1 |
20130199444 | Hartmann | Aug 2013 | A1 |
20130234355 | Hartmann et al. | Sep 2013 | A1 |
20130302575 | Mogele et al. | Nov 2013 | A1 |
20130313757 | Kashani-Shirazi | Nov 2013 | A1 |
20140202381 | Ederer et al. | Jul 2014 | A1 |
20140212677 | Gnuchtel et al. | Jul 2014 | A1 |
20140227123 | Gunster | Aug 2014 | A1 |
20140306379 | Hartmann et al. | Oct 2014 | A1 |
20140322501 | Ederer et al. | Oct 2014 | A1 |
20150042018 | Gunther et al. | Feb 2015 | A1 |
20150069659 | Hartmann | Mar 2015 | A1 |
20150110910 | Hartmann et al. | Apr 2015 | A1 |
20150165574 | Ederer et al. | Jun 2015 | A1 |
20150210822 | Ederer et al. | Jul 2015 | A1 |
20150224718 | Ederer et al. | Aug 2015 | A1 |
20150266238 | Ederer et al. | Sep 2015 | A1 |
20150266239 | Okamoto et al. | Sep 2015 | A1 |
20150273572 | Ederer et al. | Oct 2015 | A1 |
20150290881 | Ederer et al. | Oct 2015 | A1 |
20150321256 | Abe | Nov 2015 | A1 |
20150321423 | Gunther | Nov 2015 | A1 |
20150375418 | Hartmann | Dec 2015 | A1 |
20150375419 | Gunther et al. | Dec 2015 | A1 |
20160001507 | Hartmann et al. | Jan 2016 | A1 |
20160052165 | Hartmann | Feb 2016 | A1 |
20160052166 | Hartmann | Feb 2016 | A1 |
20160107386 | Hartmann et al. | Apr 2016 | A1 |
20160114533 | Grasegger et al. | Apr 2016 | A1 |
20160257073 | Mogele et al. | Sep 2016 | A1 |
20160263828 | Ederer et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
4325573 | Feb 1995 | DE |
29506204.5 | Apr 1995 | DE |
4400523 | Jul 1995 | DE |
4440397 | Sep 1995 | DE |
29701279 | Jan 1997 | DE |
19511772 | Sep 1997 | DE |
19723892 | Sep 1998 | DE |
19853834 | Nov 1998 | DE |
19846478 | Apr 2000 | DE |
10047614 | Apr 2002 | DE |
10117875 | Jan 2003 | DE |
10216013 | Oct 2003 | DE |
102005056260 | Nov 2005 | DE |
0431924 | Jun 1991 | EP |
0711213 | May 1995 | EP |
0361847 | Nov 1995 | EP |
0688262 | Dec 1995 | EP |
0431924 | Jan 1996 | EP |
0739666 | Oct 1996 | EP |
0734842 | Aug 1999 | EP |
1163999 | May 2001 | EP |
0968776 | Oct 2002 | EP |
1415792 | May 2004 | EP |
1442870 | Aug 2004 | EP |
2790418 | Sep 2000 | FR |
2382798 | Nov 2003 | GB |
9518715 | Jul 1995 | WO |
9605038 | Feb 1996 | WO |
1998028124 | Feb 1998 | WO |
0021736 | Apr 2000 | WO |
0051809 | Sep 2000 | WO |
2000078485 | Dec 2000 | WO |
0126885 | Apr 2001 | WO |
01720502 | Apr 2001 | WO |
0134371 | May 2001 | WO |
0226419 | Apr 2002 | WO |
0226420 | Apr 2002 | WO |
02064353 | Aug 2002 | WO |
02064354 | Aug 2002 | WO |
02083323 | Oct 2002 | WO |
03016030 | Feb 2003 | WO |
03016067 | Feb 2003 | WO |
03086726 | Oct 2003 | WO |
03097518 | Nov 2003 | WO |
03103932 | Dec 2003 | WO |
2004010907 | Feb 2004 | WO |
2004112988 | Dec 2004 | WO |
2005080010 | Sep 2005 | WO |
2005113219 | Dec 2005 | WO |
Entry |
---|
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994. |
EOS Operating Manual for Laser Sintering Machine with Brief Summary. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 131-136. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151. |
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”. |
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal. |
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Machanical Enginerring, pp. 2-15. |
Gephart, Rapid Prototyping, pp. 118-119. |
Marcus et al., Solid Freedom Fabrication Proceedings, Nov. 1993. |
Opposition of Patent No. DE10047614, Jun. 25, 2003. |
Opposition to European Patent No. 1322458 B1, Jan. 19, 2005. |
International Search Report, PCT/DE02/01103, (Published as WO2002/083323), dated Sep. 30, 2002. |
International Search Report, PCT/DE00/03324, (Published as WO2002/026419), dated Jun. 5, 2001. |
International Search Report, PCT/DE01/03661, (Published as WO2002/026420), dated Feb. 28, 2002. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33. |
Number | Date | Country | |
---|---|---|---|
20170028630 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12681961 | US | |
Child | 14250838 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14250838 | Apr 2014 | US |
Child | 15295122 | US |