Method and device for locking work machine

Information

  • Patent Grant
  • 6560495
  • Patent Number
    6,560,495
  • Date Filed
    Friday, February 25, 2000
    24 years ago
  • Date Issued
    Tuesday, May 6, 2003
    21 years ago
Abstract
The detectors, which are adapted to detect operation signals from operating devices for inputting actuation commands to a work machine, and hydraulic system locking switch, which is adapted to command locking so as to halt the work machine or unlocking to enable the work machine to resume working, are connected to a logic circuit adapted to compute the method of locking the work machine based on signals input from these components. A hydraulic system locking electromagnetic selector valve adapted to maintain or release the work machine at or from the locked state is connected to the logic circuit. In case an unlocking command is sent in the situation where there is an outstanding operation signal input to the work machine, the logic circuit maintains the work machine at the locked state until a safety check is performed. By commanding unlocking of the work machine after commanding its locking in the state where there is no outstanding operation signal input to the work machine, the work machine is released from the locked state.
Description




TECHNICAL FIELD




The present invention relates to a locking method for forcibly halting operation of a work machine and a locking device used for such a method.




BACKGROUND OF THE INVENTION





FIG. 4

shows a hydraulic shovel as a work machine. The hydraulic shovel has a lower structure


13


including a pair of crawler belts


12


that are disposed at the two lateral sides of the lower structure


13


and driven by a pair of laterally arranged travel motors


11


respectively. An upper structure


16


is attached to the lower structure


13


with a rotating portion


15


therebetween. The rotating portion


15


is so designed as to be driven by a swing motor


14


. A cab


17


, in which a driving seat for an operator is installed, and a front attachment


18


for performing excavation are mounted on the upper structure


16


.




The front attachment


18


includes a boom


20


, a stick


22


and an attachment


29


, which may be a bucket


24


, a breaker or the like. The boom


20


is supported by the upper structure


16


by means of a pin


19


, which attaches the boom


20


to a shaft of the upper structure


16


so that the boom


20


is capable of rotating around the shaft. A pin


21


attaches the stick


22


to a shaft disposed at the end of the boom


20


so that the stick


22


is rotatably supported by the boom


20


. A pin


23


attaches the attachment


29


to a shaft disposed at the end of the stick


22


so that the attachment


29


is rotatably supported by the stick


22


. The boom


20


and the stick


22


are adapted to be rotated by a boom cylinder


25


and a stick cylinder


26


respectively, while the bucket


24


or the attachment


29


is adapted to be rotated by a bucket cylinder


27


and a link mechanism


28


.




A work machine having a structure described above is provided with a hydraulic system locking mechanism for locking the supply of oil pressure to various hydraulic actuators, such as the laterally arranged travel motors


11


, the swing motor


14


, the boom cylinder


25


, the stick cylinder


26


and the bucket cylinder


27


.




A conventional hydraulic system locking mechanism is directly operated by turning on or off a lock operation switch. Therefore, when an operator releases the hydraulic system from the locked state, the hydraulic system is unlocked regardless of the condition of the machine. In other words, should the hydraulic system lock be released in a situation where signals have been input to one or a number of the operation levers, the work machine suddenly starts running in response to the signals input to the operation lever(s).




In case the lock of the hydraulic system is released when an operation lever is in an unusual, unexpected state, such that, for example, a part of the clothes of the operator is caught by the operation lever, the work machine will move in a way the operator is not aware of. Such an event is not desirable. One of the worst possible cases will be a situation where a worker is near the work machine while signals to command swinging have been input to the operation levers. In such a case, it is absolutely imperative to prevent releasing of the lock of the hydraulic system.




As described above, a work machine equipped with an electronically controlled hydraulic system that functions according to a conventional method is not always safe, because, depending on an outstanding command input to the corresponding operation lever, releasing the lock of the hydraulic system by the operator may undesirably actuate a hydraulic actuator.




OBJECTS AND SUMMARY OF THE INVENTION




In order to solve the above problem, an object of the present invention is to ensure the safety of a work machine by requiring the operator to check the safety before releasing the work machine from the locked state.




Once a work machine becomes locked so that its operation is forcibly halted, a work machine locking method according to the present invention maintains the work machine locked until a safety check is performed.




Therefore, once the work machine becomes locked, even if release of the lock of the work machine is commanded thereafter, the work machine is kept locked and cannot be released from the locked state regardless of whether the operator of the work machine operates the work machine. The locking continues until the operator of the work machine performs a safety check. The invention thus prevents an accident that may otherwise be caused by inadvertent actuation of the work machine due to carelessness of the operator.




Furthermore, in case unlocking of the work machine is commanded in the situation where there is an outstanding actuation command input to the work machine, the aforementioned method calls for maintaining the work machine locked until a safety check is performed.




Therefore, when the work machine is in the state where an actuation command has been input, even if the operator commands unlocking, the work machine is prevented from being actuated until a safety check is performed. The invention thus prevents an accident that may otherwise be caused by the operator's careless operation to actuate the work machine or release the lock of the work machine.




In case there is an outstanding command for unlocking of the work machine while there is no outstanding actuation command input to the work machine, the aforementioned method calls for maintaining the work machine locked.




When there is no outstanding actuation command input to the work machine, it is often impossible to judge whether the work machine is locked or unlocked. Therefore, even if there is no outstanding actuation command input to the work machine, the invention ensures complete safety by maintaining the work machine locked and calling attention of the operator when unlocking of the work machine has been commanded.




In the method described above, the work machine can be released from the locked state by commanding locking in the state where there is no outstanding actuation command input to the work machine and, thereafter, commanding release of the lock of the work machine.




According to the above method, the work machine is released from the locked state and made ready to be actuated by commanding locking so as to perform a safety check in the state where there is no outstanding actuation command input to the work machine and, thereafter, commanding release of the lock of the work machine. Thus, the invention facilitates a safety check operation.




A work machine locking device according to the present invention includes operating devices for inputting actuation commands to a work machine, a lock commanding means adapted to command locking for halting the work machine or unlocking for enabling the work machine to resume working, an electronic circuit adapted to compute the method of locking said work machine based on signals that have been input from the operating devices and the lock commanding means, and a lock executing means adapted to be controlled by signals output from said electronic circuit so as to maintain or release the work machine at or from the locked state.




As described above, the lock executing means is controlled by signals that have been output from said electronic circuit based on signals input from the operating devices and the lock commanding means. Therefore, locking and unlocking of the work machine can easily be controlled according to signals input from the operating devices and the lock commanding means. For example, in case the operator commands to release the work machine from the locked state in the situation where there is an outstanding actuation command from an operating device, the work machine is maintained locked by the lock executing means, which is controlled based on arithmetic signals from the electronic circuit. In case there is no actuation command from the operating devices, the lock commanding means commands locking and then commands unlocking so that the lock by the lock executing means is released, thereby enabling the actuation of the work machine.




According to another feature of the invention, the aforementioned lock executing means is an electromagnetic selector valve intended for locking the hydraulic system and disposed in a pilot oil feeding line that is adapted to feed pilot pressure to a control valve in a hydraulic circuit, which is adapted to control operation of the work machine. Said electromagnetic selector valve is hereinafter called a hydraulic system locking electromagnetic selector valve.




As described above, the lock executing means consists of a hydraulic system locking electromagnetic selector valve disposed in a pilot oil feeding line that is adapted to feed pilot pressure to a control valve in a hydraulic circuit. Therefore, by controlling the pilot oil pressure by means of the hydraulic system locking electromagnetic selector valve so as to lock the control valve at the neutral position, the work machine can be locked easily and reliably. For example, even if the operator commands to release the work machine from the locked state in the situation where there is an outstanding actuation command from an operating device, the electronic circuit closes the pilot oil feeding line by using the hydraulic system locking electromagnetic selector valve so as to maintain the control valve at the neutral position and, consequently, maintains the work machine at the locked state. In case unlocking of the work machine is commanded after a locking command is sent by the lock commanding means when there is no actuation command from the operating devices, the electronic circuit opens the pilot oil feeding line by opening the hydraulic system locking electromagnetic selector valve so that the control valve is controlled by the pilot oil pressure.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a circuit diagram of an embodiment of a logic circuit concerning the method of locking a work machine according to the present invention;





FIG. 2

is a circuit diagram showing an electric circuit and a hydraulic circuit concerning a work machine locking device according to the present invention;




FIG.


3


(A) is a circuit diagram explaining how the logic circuit shown in

FIG. 1

initiates locking of the hydraulic system;




FIG.


3


(B) is a circuit diagram explaining how said logic circuit maintains the locking of the hydraulic system;




FIG.


3


(C) is a circuit diagram explaining how said logic circuit releases the hydraulic system from the locked state; and





FIG. 4

is a schematic illustration of a hydraulic shovel.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Next, an embodiment of the present invention is explained hereunder, referring to

FIGS. 1 through 3

. When a need arises to refer to a hydraulic shovel as a work machine in the explanation hereunder, reference is made to the hydraulic shovel shown in FIG.


4


.




As shown in

FIG. 2

, the hydraulic system comprises a working fluid feeding line


33


and a control valve


34


. The working fluid feeding line


33


is connected to the discharge opening of a main pump


32


adapted to be driven by a motor


31


, which may be an on-vehicle engine or the like, while a feeding port of the control valve


34


is connected to the working fluid feeding line


33


.




The control valve


34


is provided, in its valve body, with movable valve elements, such as stems, for controlling the directions and the flow rates of the working fluid fed to the hydraulic actuators. The number of movable valve element disposed in the control valve


34


corresponds to the number of the hydraulic actuators. Rotary-type hydraulic actuators


35


comprise travel motors


11


, which are disposed at both lateral sides of the work machine, and a swing motor


14


. Longitudinal-motion hydraulic actuators


36


comprise a boom cylinder


25


, a stick cylinder


26


and a bucket cylinder


27


. These rotary-type hydraulic actuators


35


and longitudinal-motion hydraulic actuators


36


are connected to the output port of the control valve


34


. The explanation of the tank, including returning from the control valve


34


to the tank, is omitted herein.




A pilot oil feeding line


38


is connected to the discharge opening of a pilot pump


37


, which is adapted to be driven by the motor


31


together with the main pump


32


. A hydraulic system locking electromagnetic selector valve (solenoid operated directional control valve)


41


that serves as a locking means is disposed in the pilot oil feeding line


38


.




The hydraulic system locking electromagnetic selector valve


41


is adapted to lock or unlock the movable valve elements of the aforementioned control valve


34


, which serves to control operation of the various hydraulic actuators


35


,


36


of the hydraulic shovel. To be more specific, the hydraulic system locking electromagnetic selector valve


41


locks said movable valve elements at the neutral position by means of the pilot hydraulic system or releases the lock of the movable valve elements. Thus, the various working portions of the hydraulic shovel will be forcibly halted and maintained at the locked state, or released from the locked state.




The hydraulic system locking electromagnetic selector valve


41


is a solenoid operated 2-port, 2-position directional control valve and has a solenoid portion


42


at one side of the movable valve element, which may be a spool, and a return spring


43


at the other side of the movable valve element. When the hydraulic system locking electromagnetic selector valve


41


is returned to the return position shown in

FIG. 2

by its return spring


43


, the hydraulic system locking electromagnetic selector valve


41


intercepts the supply of the pilot oil pressure that serves to pilot-operate the aforementioned movable valve elements in the control valve


34


. As the interception of the supply of the pilot oil pressure by the hydraulic system locking electromagnetic selector valve


41


maintains the movable valve elements in the control valve


34


at their respective neutral positions, the hydraulic pressure is maintained at the locked state so that the hydraulic actuators


35


,


36


are halted. When the solenoid portion


42


is energized with electric current, the selector valve


41


is switched to link the pilot pump


37


with the pilot oil feeding line


38


so that the hydraulic system is released from the locked state.




The pilot oil feeding line


38


, which extends via the hydraulic system locking electromagnetic selector valve


41


, is connected to a plurality of electro-hydraulic transducing valves


44


that are adapted to pilot-operate the movable valve elements disposed in the control valve


34


. The movable valve elements in the control valve


34


respectively correspond to the various hydraulic actuators


35


,


36


.




Each electro-hydraulic transducing valve


44


has a solenoid portion and a movable valve element. Based on electric signals fed to the solenoid portion, the movable valve element of each electro-hydraulic transducing valve


44


controls the source pilot pressure that has been fed to the movable valve element from the pilot pump


37


through the hydraulic system locking electromagnetic selector valve


41


. Thus, each electro-hydraulic transducing valve


44


pilot-operates the corresponding movable valve element in the control valve


34


.




As shown in

FIG. 2

, the electric system includes electric operation levers


45


, electric operation pedals


46


and a hydraulic system locking switch


47


, all of which are connected to input terminals of an electronic control unit


50


. The electric operation levers


45


that may be electric joy sticks or the like and serve as operating devices for controlling such hydraulic actuators as the swing motor


14


, the boom cylinder


25


, the stick cylinder


26


and the bucket cylinder


27


. The electric operation pedals


46


serve as operating devices for controlling such hydraulic actuators as the left and right travel motors


11


and the front attachment


29


. The hydraulic system locking switch


47


serves as a lock commanding means for maintaining the movable valve elements in the control valve


34


at their respective neutral positions by intercepting the supply of the hydraulic pilot pressure to the movable valve elements in the control valve


34


.




The electric operation levers


45


and the electric operation pedals


46


mentioned above are operating devices adapted to input actuation commands to a hydraulic shovel, which serves as a work machine. Each one of the electric operation levers


45


and the electric operation pedals


46


is designed such that its automatic return to the neutral position prevents input of an actuation command.




The hydraulic system locking switch


47


is a lock commanding means that is adapted to halt the actuating portions of the work machine, e.g. the hydraulic shovel, by commanding to lock the hydraulic pressure in response to switching on, i.e. closing the contacts, performed by the operator, and bring the actuating portions of the hydraulic shovel by releasing the lock of the hydraulic pressure in response to switching off, i.e. opening the contacts, performed by the operator.




The solenoid portion


42


of the aforementioned hydraulic system locking electromagnetic selector valve


41


and the solenoid portions of the electro-hydraulic transducing valves


44


are connected to the output terminals of the electronic control unit


50


.




The aforementioned electronic control unit


50


is provided with a logic circuit


51


, which is a digital electronic circuit shown in FIG.


1


. The logic circuit


51


is a digital circuit adapted to compute signals to be output to the solenoid portion


42


of the hydraulic system locking electromagnetic selector valve


41


. The logic circuit performs said computation based on signals input from one or a number of the electric operation levers


45


, the electric operation pedals


46


and the hydraulic system locking switch


47


and has a configuration described as follows.




Referring to

FIG. 1

, a right-hand-drive operation detector


52


, a left-hand-drive operation detector


53


, a rotation operation detector


54


, a boom operation detector


55


, a stick operation detector


56


, a bucket operation detector


57


and a front attachment operation detector


58


are connected to the input section of a first logical sum computing element


59


. These detectors


52


through


58


are adapted to detect signals representing various operation performed by means of the aforementioned electric operation levers


45


and electric operation pedals


46


.




The output section of the first logical sum computing element


59


is connected to an input section of one of the logical product computing elements, i.e. the logical product computing element


61


, and also connected through a NOT operation element


62


to an input section of the other logical product computing element


63


.




The aforementioned hydraulic system locking switch


47


is connected to the other input section of said other logical product computing element


63


.




The output section of the logical product computing element


61


and the output section of the logical product computing element


63


are respectively connected to the input sections S,R of a flip-flop computing element


65


of a set-reset type.




One of the output sections (the output section Q) of the set-reset type flip-flop computing element


65


is connected to one of the input sections of a second logical sum computing element


66


. The other input section of the second logical sum computing element


66


is connected to the aforementioned hydraulic system locking switch


47


.




The output section of the second logical sum computing element


66


is connected through a NOT operation element


67


to the solenoid portion


42


of the aforementioned hydraulic system locking electromagnetic selector valve


41


.




The truth table of the set-reset type flip-flop computing element


65


is represented in Table 1.












TABLE 1











(Truth Table)













S




R




Qn + 1









0




0




Qn






0




1




0






1




0




1






1




1




Undefined











Qn: the state before adding a signal to R or S










Qn + 1: the state after adding a signal to R or S













When commanding locking of the hydraulic system, the hydraulic system locking switch


47


should be switched on so as to output “1”. When commanding unlocking of the hydraulic system, the switch


47


should be switched off so as to output “0”.




As for the function of the hydraulic system locking electromagnetic selector valve


41


, an “on” signal (“1”) from the NOT operation element


67


excites the solenoid portion


42


of the hydraulic system locking electromagnetic selector valve


41


so that the hydraulic system locking electromagnetic selector valve


41


is switched to release the hydraulic system from the locked state by connecting the pilot oil feeding line


38


, and an “off” signal (“0”) from the NOT operation element


67


causes the return spring to return the hydraulic system locking electromagnetic selector valve


41


to the return position so that the hydraulic system locking electromagnetic selector valve


41


locks the hydraulic system by intercepting the pilot oil feeding line


38


.




Next, the function of the embodiment shown in

FIGS. 1 and 2

is explained, referring to FIGS.


3


(A), (B) and (C). In the following explanation, (A), (B) and (C) refer to FIGS.


3


(A), (B) and (C), respectively.




(A) When one or a number of the operation levers


45


and the operation pedals


46


have been operated and are at non-neutral positions, in other words when a signal or signals representing its or their operation have been detected by the corresponding detectors


52


through


58


, the signal output from the first logical sum computing element


59


is “1”.




If the hydraulic system locking switch


47


is at the hydraulic system locking position, in other words at the “on” state (at the position “1”) in such a situation as described above, the signal output from the logical product computing element


61


is “1”, while the signal output from the other logical product computing element (the element


63


) is “0”. Therefore, the output section Q of the set-reset type flip-flop computing element


65


outputs a signal “1”. After going through the second logical sum computing element


66


, said signal is changed to “0” by the NOT operation element


67


so that the hydraulic system locking electromagnetic selector valve


41


is changed over to the hydraulic system locking position, where it intercepts the pilot oil feeding line


38


.




Therefore, even if the electronic control unit


50


outputs to the solenoid portions of the electro-hydraulic transducing valves


44


the operating signals that correspond to the degree of operation of the operation lever(s)


45


or the operation pedal(s)


46


, no pilot source pressure is fed to the electro-hydraulic transducing valves


44


, and, accordingly, all the movable valve elements of the control valve


34


are held at their neutral positions by incorporated springs and do not output the working fluid to the hydraulic actuators


35


,


36


.




In such a situation, even if the operator carelessly or otherwise operates the hydraulic system locking switch


47


so as to release the hydraulic system from the locked state, in other words if the output from the hydraulic system locking switch


47


is switched from “1” to “0”, the output change (from “1” to “0”) of the logical product computing element


61


and the state of output of the logical product computing element


63


, which remains at “0”, merely change the output section Q of the set-reset type flip-flop computing element


65


from the aforementioned signal “1” to the signal “Qn”, which keeps said signal “1” unchanged. As a result, the work machine continues to be locked so that its operation is held at a stand still.




As described above, even if the operator accidentally switches the hydraulic system locking switch


47


to the hydraulic system unlocking position during the period where one or a number of the operation levers


45


and the operation pedals


46


is in the operated state, the safety mechanism functions so as to ensure the safety by maintaining the hydraulic system locked.




(B) Once the safety mechanism is actuated as described above to prevent unlocking of the hydraulic system after the hydraulic system locking switch


47


has output a signal “0”, i.e. a signal for releasing the hydraulic system from the locked state, the signals output from the two logical product computing elements


61


,


63


are both “0” even if all the operation levers


45


and operation pedals


46


are returned to the neutral positions so as to make the output from the first logical sum computing element


51


“0”. Therefore, the output section Q of the set-reset type flip-flop computing element


65


merely outputs the signal “Qn” for maintaining the hydraulic system at the locked state. As the safety mechanism thus continues to work, there is no possibility of the hydraulic system being undesirably unlocked.




This is to ensure that, until the operator performs a particular operation for ascertaining the safety of the situation, the hydraulic system cannot be unlocked merely by returning the operation levers


45


and the operation pedals


46


to the non-operating, neutral positions.




(C) When halting the safety mechanism and releasing the lock of the hydraulic system, safety check is performed while the output from the first logical sum computing element


59


is maintained at “0” by holding the operation levers


45


and the operation pedals


46


at the neutral positions. To do so, the hydraulic system locking switch


47


is switched once to the hydraulic system locking position in this state, and is then returned to the hydraulic system unlocking position so that the output from the hydraulic system locking switch


47


is switched once to “1” and then to “0”.




In response to the above operation, the output signal from the logical product computing element


63


changes to “1” and then changes again to “0” while the output signal from the logical product computing element


61


remains at “0”. Therefore, after the signal “0” for releasing the lock of hydraulic system is output from the output section Q of the set-reset type flip-flop computing element


65


, the signal “Qn” intended for maintaining the system at the unlocked state is output.




As the change in output from the hydraulic system locking switch


47


, i.e. the change from “1” to “0”, is input to the second logical sum computing element


66


together with the signal “0” output from the flip-flop computing element


65


, the signal output from the second logical sum computing element


66


changes from “1” to “0”, and the signal is then changed from “0” to “1” by the NOT operation element


67


. As a result of the change in output signals from the NOT operation element


67


, the hydraulic system locking electromagnetic selector valve


41


is changed over from locking the hydraulic system to releasing the lock of the hydraulic system and connects the pilot oil feeding line


38


. In other words, the signal “1” from the NOT operation element


67


excites the solenoid portion


42


of the hydraulic system locking electromagnetic selector valve


41


so that the hydraulic system locking electromagnetic selector valve


41


connects the pilot oil feeding line


38


, thereby releasing the hydraulic system from the locked state and stops the operation of the safety mechanism.




When the hydraulic system locking switch


47


is operated to the locking position, the second logical sum computing element


66


for receiving signals from the hydraulic system locking switch


47


is ensured to receive a locking signal “1” and output a signal “1” of its own so as to cause the NOT operation element


67


to reliably output a hydraulic system locking signal “0”. The second logical sum computing element


66


thus serves as a device that preferentially performs locking of hydraulic system when locking is commanded.




As described above, once the safety mechanism is actuated, the lock of the hydraulic system will never be released regardless of whether all the operation levers


45


and operation pedals


46


are at the neutral positions; the only way to release the lock is to make sure it is safe to release the lock by switching the hydraulic system locking switch


47


to the hydraulic system locking position as shown in FIG.


3


(C) and, thereafter, shift the switch again to the hydraulic system unlocking position.




In other words, merely returning the operation levers


45


and the operation pedals


46


to the neutral positions in the hydraulic system unlocking state as shown in FIG.


3


(B) does not release the hydraulic system from the locked state, because the safety mechanism is still working.




In case the hydraulic system locking switch


47


is already in the hydraulic system locking mode when all the operation levers


45


and operation pedals


46


are at the neutral positions, it means that the safety mechanism is already functioning. Therefore, in the same manner as with a conventional device, the operator is able to release the hydraulic system from the locked state by switching the hydraulic system locking switch


47


to the hydraulic system unlocking position. This, too, is as shown in FIG.


3


(C).




As described above, in case a signal representing a command of actuating a hydraulic actuator of a work machine equipped with an electronic control system and a hydraulic system is detected before releasing the hydraulic system from the locked state, the invention ensures the safety by preventing release of the hydraulic system even if the operator tries to release the hydraulic system from the locked state. Furthermore, even if all the operation levers


45


and operation pedals


46


are at the neutral positions, in order to ensure the safety, it is absolutely imperative as a prerequisite for unlocking the hydraulic system that the hydraulic system is at the locked state or hydraulic system locking operation is performed.




It is to be understood that the embodiment explained above is merely an example of the logic to put the present invention in practical use and that the scope of the invention is not limed to the hardware and/or the software shown in the attached drawings; any other appropriate hardware or software may be used.




POSSIBLE INDUSTRIAL APPLICATION




As described above, a locking method and/or a locking device according to the invention can be applicable to a wide range of examples of work machines that necessitate forcible halting. The invention is particularly suitable for a construction machine, such as a hydraulic shovel.



Claims
  • 1. A method of locking a work machine, wherein, once the work machine becomes locked so that its operation is forcibly halted, the work machine is maintained locked until a safety check is performed wherein the work machine is released from a locked state by commanding locking in a state where there is no outstanding actuation command input to the work machine and, thereafter, commanding release of the lock of the work machine.
  • 2. The method of locking a work machine as claimed in claim 1, wherein, in case unlocking of the work machine is commanded where there is an outstanding actuation command input to the work machine, the work machine is maintained locked until a safety check is performed.
  • 3. The method of locking a work machine as claimed in claim 1, wherein the work machine is maintained locked, when there is an outstanding command for unlocking the work machine while there is no outstanding actuation command input to the work machine.
  • 4. A work machine locking device including:operating devices for inputting actuation commands to the work machine; a lock commanding means adapted to command locking in order to halt the work machine or unlocking in order to enable the work machine to resume working; an electronic circuit adapted to compute a work machine locking method as claimed in any one of the claims from claim 1, said electronic circuit performing said computation based on signals that have been input from the operating devices and the lock commanding means; and a lock executing means adapted to be controlled by signals output from said electronic circuit so as to maintain or release the work machine at or from the locked state.
  • 5. A work machine locking device as claimed in claim 4, wherein said lock executing means is an electromagnetic selector valve intended for locking a hydraulic system and disposed in a pilot oil feeding line that is adapted to feed pilot pressure to a control valve in a hydraulic circuit, which is adapted to control operation of the work machine.
Priority Claims (1)
Number Date Country Kind
10-181984 Jun 1998 JP
Parent Case Info

This is a continuation of International Application No. PCT/JP99/02402, filed May 10, 1999.

US Referenced Citations (13)
Number Name Date Kind
3709101 Richterkessing Jan 1973 A
3915273 Loschengruber Oct 1975 A
4338115 Farkas Jul 1982 A
4489377 Mawyer et al. Dec 1984 A
4959647 Daigle Sep 1990 A
5293024 Sugahara et al. Mar 1994 A
5345138 Mukaidono et al. Sep 1994 A
5492022 Elias Feb 1996 A
5880954 Thomson et al. Mar 1999 A
5921367 Kashioka et al. Jul 1999 A
5950426 Morita et al. Sep 1999 A
5974796 Ishikawa et al. Nov 1999 A
5993039 Crill Nov 1999 A
Continuations (1)
Number Date Country
Parent PCT/JP99/02402 May 1999 US
Child 09/513363 US