The invention relates to marking labels and value stamps. In particular, the invention relates to the cancellation—by means of irradiation with high-energy radiation—of postage on mailpieces in the form of applied or printed postage indicia.
It is common practice to charge a postage fee for the transportation of mailpieces. This fee is paid in that postage indicia are purchased and glued onto the mailpiece in question. It is also possible to purchase mailpiece packaging that already has a postage indicium that is pre-printed or applied in some other manner. For letters, such mailpiece packaging is known under the name “PlusBrief” (German for “PlusLetter”). As a security feature, all of these postage indicia can be printed or have been printed with an ink that contains luminescent substances and that can be detected in sorting systems, so that mailpieces without a postage indicium or with a forged postage indicium can be recognized and, if applicable, diverted. For this purpose, the mailpieces are irradiated in the sorting system with light having wavelengths from a spectral region comprising a wavelength that is capable of exciting the luminescence of the substances. Surfaces containing luminescent substances appear under such illumination as bright areas, whereas areas without luminescent substances appear dark. The mailpieces marked with an authentic postage indicium are subsequently cancelled by means of a cancellation imprint. This cancellation imprint can be applied by means of manual stamping or else automatically, for example, with contact techniques as well as contact-free printing techniques, a process in which the postage indicium is at least partially imprinted, for example, with a non-luminescent ink, and thus at least partially covered, so that the underlying luminescent ink is covered and the postage indicium is recognized as already having been cancelled in case an attempt is made to use it a second time.
Nevertheless, it can happen that postage indicia are re-used. For one thing, this can happen accidentally, namely, because the postage indicia were not cancelled because of a system error or inadvertently because they were not cancelled during a first pass through the sorting system, or else because the cancellation imprint is so pale that it is no longer detected, at least automatically. Secondly, however, attempts are also made to remove cancellation markings, for instance, using chemical, optical and/or mechanical methods, at least to such an extent that they are no longer detected by automatic sorting systems or by the naked eye. Since these are original postage indicia, they contain luminescent printing ink and might thus be detected as authentic postage indicia in the sorting system.
The postal service provider can sustain considerable losses through such multiple uses of postage indicia.
The same problem arises in other applications in which value labels are impermissibly used multiple times, which can happen, for example, with admission tickets. By the same token, labels containing information are conceivable, for which it has to be proven beyond any doubt that this information has already been read out once before. Such labels will also be referred to below by the term “value labels”.
Before this backdrop, the objective of the invention is to put forward a method that greatly increases the detection rate of instances of re-use of value labels that have a surface containing a luminescent substance. Here, it should be possible with a high level of probability to detect value labels that inadvertently were not cancelled at the time of the first use as well as to detect manipulated value labels.
Another objective of the invention is to put forward a device with which the method can be carried out.
According to the invention, this objective is achieved by a method having the features of independent claim 1. Advantageous refinements of the method ensue from subordinate claims 2 to 11. Moreover, the objective is achieved by a device having the features of claim 12. Advantageous embodiments of the device ensue from subordinate claims 13 to 15.
The method according to the invention for detecting a value label that has been re-used, but that is intended for one-time use, and that has a surface containing a luminescent substance, whereby the value label is illuminated with light that has a first wavelength and that excites the luminescence of the luminescent substance provides that, at the time of the first use of the value label, irradiation with high-energy electromagnetic waves imparts it with a motif having a background that contrasts with the luminescent background. Such a motif can be detected if an attempt is made to use the value label another time.
In an advantageous embodiment, the contrast is created by reducing the intensity of the luminescence. When part of the surface of the value label containing the luminescent substance is irradiated with high-energy radiation, the luminescence of the substance is reduced at this place to such an extent that a contrast with the other non-irradiated part of the surface is created when the luminescence is irradiated with light having a wavelength that is capable of exciting the luminescence.
In another advantageous embodiment of the method according to the invention, the motif is a bar. Other motifs are also conceivable such as, for example, a wavy line. It has been found that such motifs can be detected reliably and quickly.
In a preferred embodiment, the high-energy radiation is generated by a light source that generates a directed light beam that is guided over the surface that is to be irradiated along a trajectory corresponding to the motif that is to be created. The light source that generates the directed light beam can be, for instance, a laser, an LED or a laser diode. The light emitted by these light sources can be further bundled by a lens system. In order to guide such a light beam along a trajectory, it is conceivable to employ a movable lens system. By the same token, however, it is also possible to direct the light beam onto a mirror system that has a movable mirror that guides the reflection of the light beam over the surface that is to be irradiated along a trajectory corresponding to the motif that is to be created. Here, the light beam can also be conveyed, for example, via a glass fiber lens system.
In another advantageous embodiment, the high-energy radiation is generated by a light source that generates a continuous beam. Accordingly, the appertaining image in the form of the motif on the surface containing a luminescent substance likewise has a continuously attenuated luminescence.
In a preferred embodiment, the high-energy radiation is generated by a light source that generates a pulsed beam. Accordingly, the appertaining image in the form of the motif on the surface containing a luminescent substance likewise has a continuous luminescence in the form of a dot matrix whose density depends on the pulse frequency.
In an especially preferred embodiment, the motif is repeated in a pattern, whereby the pattern is applied so densely that at least two motifs are applied at least partially onto the surface of the value label containing a luminescent substance. The shape of the repetitions of the motif that form the pattern can be used as a further criterion for the detection, as a result of which the recognition becomes even more reliable.
In another preferred embodiment, the value label is applied onto a surface that does not contain any luminescent substances, whereby the entire surface is irradiated with high-energy electromagnetic waves the first time the value label is used. The advantage of this embodiment is that, in order to irradiate a value label that franks a mailpiece and that is applied, for example, onto the surface of this mailpiece, the value label does not first have to be located on the surface of the mailpiece in order to mark it. Instead, the entire surface of the mailpiece can be irradiated, a process in which the value label is also irradiated.
In another embodiment of the method, the high-energy radiation is generated by a flash lamp that irradiates the surface that is to be irradiated through a template corresponding to the motif that is to be created. Advantageously, no trajectory has to be traced here, but rather, the entire motif is applied simultaneously with one flash of the flash lamp. If the motif is to be applied repeatedly in a pattern so densely that at least two motifs are applied onto the surface of the value label containing a luminescent substance, the high-energy radiation from the flash lamp can be applied through a template corresponding to the pattern that is to be created on the surface that is to be irradiated. In this manner, the entire pattern can be applied all at once with one flash of the flash lamp, thereby saving on the time needed for the application process. Here, it is possible to move the template, for instance, so that it oscillates, in order to apply a pattern or to change the pattern depicted in the template. Moreover, it is possible to operate the flash lamp as a stroboscope, whereby the frequency of the flashes is variable. For example, the frequency can be varied in the form of long-short-long flashes. In addition, it is possible to use LEDs (light-emitting diodes) instead of the flash lamp. Here, it is also conceivable to use a template of actuatable LED printheads so that a pattern can be applied.
A device according to the invention for marking a value label that is intended for one-time use and that has a surface containing a luminescent substance comprises a radiation unit with which the surface of the value label containing a luminescent substance can be irradiated with high-energy radiation that is capable of creating a motif of limited luminescence on the surface of the value label containing a luminescent substance. The light source that generates a directed light beam can be, for instance, a laser, an LED or a laser diode. The light emitted by these light sources can be further bundled by a lens system.
In an advantageous embodiment of the device, the radiation unit has a light source that generates a directed light beam that can be guided over the surface that is to be irradiated along a trajectory corresponding to the motif that is to be created. In order to guide such a light beam along a trajectory, it is conceivable to employ a movable lens system. Thus, for example, it is possible to direct the light beam onto a mirror system that has a movable mirror that guides the reflection of the light beam over the surface that is to be irradiated along a trajectory corresponding to the motif that is to be created. Here, the light beam can also be conveyed, for example, via a glass fiber lens system.
In an alternative embodiment, the radiation unit has a flash lamp that emits high-energy radiation as well as a template containing a motif, whereby the flash lamp and the template are arranged in such a way that the radiation emitted by the flash lamp strikes the surface to be irradiated through the template in such a way that the motif of the template is transferred to the value label. If the motif is to be repeated in a pattern, the template can be moved appropriately between individual flashes of the flash lamp. However, it is also possible to arrange the motif in a template repeatedly in a pattern or to arrange several templates with one or more motifs next to each other, so that an appropriate pattern is transferred onto the surface that is to be irradiated with one flash of the flash lamp. This saves on the time needed for the irradiation process.
Additional advantages, special features and advantageous refinements of the invention can be gleaned from the subordinate claims and from the presentation below of preferred embodiments making reference to the figures.
The figures show the following:
When the postage indicium is applied onto a mailpiece surface 20 and when it is irradiated with light having a wavelength that excites the luminescence of the particles in the printing ink on the surface 10, the mailpiece surface 20 appears dark and only the surface 10 of the postage indicium 1 containing the luminescent particles appears bright, as can be seen in
If the postage indicium 1 has been cancelled and the cancellation has not been removed, then the image of the mailpiece surface 20 containing the postage indicium 1 looks like the drawing of
of the surface 10 cannot be detected under illumination that resembles daylight, but for the sake of clarity, the figure is shown with crosshatching. The bars 50 likewise cannot be detected under illumination that resembles daylight, but for the sake of clarity, they are shown in black in the figure. These bars are applied with high-energy radiation that reduces the luminescence of the appertaining particles in the printing ink that covers the surface 10.
In the situation shown in
Tracing trajectories takes time, something which can limit the throughput rate of mailpieces through the device. The alternative embodiment shown in
In the embodiments shown in the figures, postage indicia are described as value labels. Of course, any other value label that has a surface 10 containing luminescent particles can be handled in the manner described.
value label, postage indicium
10 surface containing luminescent particles
11 surface containing non-luminescent particles
15 cancellation imprint
20 mailpiece surface
30 value indication
50 marking, motif
100 laser
110 laser beam
120 mirror
200 flash lamp
210 light beam from the flash lamp
220 template
221 cutout
Number | Date | Country | Kind |
---|---|---|---|
11183840.5 | Oct 2011 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/069338 | 10/1/2012 | WO | 00 | 4/2/2014 |