Measurement of hydridation reactions and kinetics of tubes and tubular claddings of metallic elements, metal alloys and any other material with and without protective coverings.
The massive hydridation of metallic industrial components is one of the causes of their becoming brittle and can lead to catastrophic fracture due to the formation of cracks. This process takes place in components in contact with water under pressure and/or boiling and at high temperature, and can become acute when the component is exposed to high concentrations of hydrogen as a consequence of other processes. A case that has been known for some years is the hydridation of tubular fuel claddings in the cores of nuclear reactors, which can take place massively from inside the cladding in the event of loss of airtightness as a result of a primary failure. Patent WO0223162 describes a method and device for measuring the resistance to hydridation in these tubular components in order to help in the selection of materials and design aimed at reducing these problems. Nevertheless, other measurements need to be determined in order to compare the hydridation kinetics, which permits the response to hydridation of the different elements and alloys of the tubular components to be compared and a choice to be made of those designs and compositions that will prevent or delay the appearance of these fractures in metallic industrial components.
So far, the determination of the hydridation kinetics of metals and alloys has been carried out by thermogravimetry and morphological studies of hydridation processes of pieces of material in an autoclave, which in some cases, as in the hydridation of fuel claddings, represents working conditions that are very different from those in which the hydridation of the component is produced.
The present invention tackles the problem of providing new methods and tools for measuring the hydridation kinetics taking place in tubular components for industrial use.
The solution provided by this invention permits measurement of the hydridation kinetics in the actual tubular components, generally multi-layer, and under the same conditions of working temperature in which the hydridation of the component takes place, which is of particular economic relevance since it permits the design and choice of the appropriate composition of the different alloys used. An optimisation of these components will be able to help prevent unplanned shutdowns of commercial reactors. This possible improvement will also allow greater exploitation of the fuel by making it more robust, and a decrease in the mass of high-activity nuclear waste for the same amount of energy generated. By eliminating a possible source of leakage of components in the reactor water, the dosage of radiation received by maintenance personnel and personnel having to perform operations in the exchange zone will be reduced.
So, the first object of this invention consists of a new method for measuring hydridation kinetics at different temperatures, in industrial components, wherein it consists of measuring: a) the power dissipated by the hydridation reaction, hereinafter referred to as the dissipated hydridation power (DHP), as a function of time, along with its integral as a function of time hereinafter referred to as the dissipated hydridation energy (DHE), and b) the variation in electric resistance during that reaction, and in particular during the stage of dissolution of hydrogen in the component preceding the precipitation of hydrides in the material;
The second object of this invention consists of a device (
Finally, the third object of this invention consists of the use of the said method and device for making measurements of hydridation kinetics in industrial components of metallic elements, metal alloys and any other material with and without protective coverings, preferably tubular components such as tubes and tubular claddings for fuel in the cores of nuclear reactors.
The first object of this invention consists of a new method for measuring hydridation kinetics, herein after the inventive method, at different temperatures, in industrial components of metallic elements, metal alloys and any other material with and without protective coverings, wherein it consists of measuring:
As used in the present invention, the term “industrial components” refers to tubular components, with a wall consisting of a single element or with multi-layer wall, as are tubes and tubular claddings for fuel in the cores of nuclear reactors.
The control of these industrial components by means of the inventive method will permit the design and choice of the suitable composition of the different alloys used for the manufacture of those components, thereby avoiding their fracture.
During the precipitation reaction and formation of hydrides, the heat of reaction causes a drop in the electric current being applied in order to keep the temperature constant, which leads to a decrease in the power necessary for maintaining that temperature. The variation or difference in the necessary power corresponds to the dissipated hydridation power (DHP) and is roughly proportional to the hydride precipitated per unit time. This variation or decrease is measured as a function of time and permits a comparison to be made of the hydridation kinetics in components of different structure and composition, which permits a criterion to be had for the choice of materials and design. During the process and by means of integration with respect to time, one obtains the energy dissipated in the hydridation reaction which is roughly proportional to the quantity of hydride precipitated.
The second object of this invention consists of a device (
During the hydridation reaction, the temperature in the interior of the component has to remain constant, for which a thermocouple and a temperature control system is used which acts on the current applied for heating the component (c). Moreover, in order to measure the voltage drop, and consequently the variation in electric resistance and the power dissipated during the hydridation reaction along the component during said reaction, the two electrodes are used arranged on the component (d)
Finally, the third object of this invention consists of the use of the inventive method and device for making measurements of hydridation kinetics in industrial components of metallic elements, metal alloys and any other material with and without protective coverings, preferably tubular components such as tubes and tubular claddings for fuel in the cores of nuclear reactors.
A method for measuring the dissipated power and the electric resistance and thereby obtain the hydridation kinetics in tubes or tubular claddings is embodied as stated below.
A nuclear fuel cladding of Zircaloy 2 is inserted in a high or ultra-high vacuum chamber; hydrogen or mixtures of hydrogen with other gas(es) is made to circulate via the interior of the tube at a pressure of 1 atmosphere and a renewal stream of 200 cm3 per minute. The partial pressure in the vacuum zone is 10−9 Torr owing to the permeation of hydrogen through the walls of the cladding. The cladding is heated by the Joule effect and the temperature in the centre of the cladding is monitored and kept constant at 360° C. (or other pre-established value) with a thermocouple and a temperature control system which acts on the current being applied in order to heat the cladding, the amount of current needed in order to maintain a constant temperature of 360° C. in the absence of reaction being 30 A. The electrodes, located on both sides of the thermocouple, provide a measurement of the voltage drop in the cladding during the hydridation reaction. Together with the measurement of the current applied, this permits us to obtain the value of the power necessary for keeping the temperature constant, and to measure the electric resistance of the cladding. When the dilution of the hydrogen in the cladding starts, the electric resistance can grow up to 3% (
Number | Date | Country | Kind |
---|---|---|---|
P200400294 | Feb 2004 | ES | national |
The present application is a Continuation of co-pending PCT Application No. PCT/ES2005/070011, filed Feb. 1, 2005 which in turn, claims priority from Spanish Application Serial No. P200400294, filed on Feb. 9, 2004. Applicants claim the benefits of 35 U.S.C. §120 as to the PCT application and priority under 35 U.S.C. §119 as to said Spanish application, and the entire disclosures of both applications are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/ES05/70011 | Feb 2005 | US |
Child | 11501664 | Aug 2006 | US |