THIS INVENTION relates to the measurement of tissue oedema and, in particular, lymphoedema using bioelectrical impedance analysis.
Measurement of extracellular tissue fluid may be of importance in a range of situations. This is particularly so in the case of lymphoedema which is a condition characterised by excess protein and oedema in the tissues as a result of reduced lymphatic transport capacity and/or reduced tissue proteolytic capacity in the presence of a normal lymphatic load. Lymphoedema normally occurs in a limb and may cause pain, scarring and reduced limb function. The condition is incurable, progressive, often disfiguring and physically disabling. Its course, however, can be arrested or slowed by intervention using physical therapy, compression bandaging, massage and other physical techniques.
Acquired or secondary lymphoedema is caused by damaged or blocked lymphatic vessels. The commonest inciting events are surgery and/or radiotherapy. However, onset of lymphoedema is unpredictable and may develop within days of its cause or at any time during a period of many years after that cause.
There is a need for an accurate and effective technique to detect the onset of lymphoedema, assess its severity and monitor its response to treatment. The simplest known technique involves measurement of limb circumferences and comparison with a paired unaffected limb. A further technique is available by way of immersion of the affected part and measurement of displaced liquid with subsequent comparison against the result of the same measurement performed on an unaffected limb.
It is also known to use multiple frequency bioelectrical impedance analysis (MFBIA) to assess lymphoedema (Watanabe et al., 1989, Lymphology 22:85). The authors noted that when a low frequency voltage is applied to tissue, the impedance of the cell membrane is substantial. With increased frequency, the impedance of the cell membrane decreases and current is able to flow through both extracellular and intracellular fluids. The results obtained by Watanabe et al were subject to analysis of equivalent resistivity of extracellular and intracellular fluid calculated after measurement of electrical bioimpedance at multiple frequencies. Further development of the technique was subsequently disclosed (Ward et al., 1992, European Journal of Clinical Investigation 22:751) in which MFBIA was used and the impedance at zero frequency was estimated by extrapolation. Differences were then calculated between left-hand and right-hand sides of patients for the impedance calculations 50 kHz and 0 kHz frequency. The bilateral all differences in impedance between a group of controls and a group of affected patients were significant. This test relies on the use of a multifrequency bioimpedance meter and relatively complex analysis of the results to provide an indication of lymphoedema.
U.S. Pat. No. 5,372,141 describes a body composition analyser that provides information in relation to body fat and ideal body weight. The analyser compares the bioimpedance of the body “network” against a reference network of known impedance. It is, however, of little or no use in assessing tissue oedema.
U.S. Pat. No. 4,947,862 discloses an analyser to determine the amount of body fat on a patient. The analyser uses a high frequency low-voltage signal in the body and measures magnitudes and phase shift of the induced signal but again is of little use in measuring tissue oedema.
It would be of advantage to provide a method for determining the presence of oedema and, in particular, lymphoedema by measurements taken at a single frequency. It would further be advantageous to produce a device for measuring bioelectrical impedance at a single frequency and analysing that measurement to produce an indicator of the presence of oedema.
It is an object of the present invention to overcome or ameliorate one or more of the difficulties of known methods used to assess tissue oedema and, in particular, lymphoedema.
In one form, although it need not be the only or broadest form, the invention resides in a method of assessing tissue oedema comprising the steps of:
The first anatomical region and second anatomical region may be paired with at least one of the anatomical regions unaffected by tissue oedema.
Alternatively, the first and second anatomical regions may be dissimilar with at least one of the anatomical regions unaffected by tissue oedema.
The first anatomical region and the second anatomical region may be the same region with the first and second measurements separated in time. The anatomical regions may be limbs or parts of limbs.
The low frequency is preferably in the range of 5 to 20 kHz. More suitably, the range is 10 to 15 kHz. Most preferably, the measurements are made at 10 kHz.
The analysis may include the step of dividing the lesser result of the two measurements into the greater result of the two measurements to obtain a product or quotient. The results of the two measurements may further include the steps of applying a correcting factor or term to the product and deriving an indication of tissue oedema.
The step of analysing the two measurements may be conducted according to the algorithm
where:
The method may include the step of establishing “cf”. Establishing “cf” may include the step of establishing a ratio of the bioelectrical impedance of a first anatomical region of at least one subject unaffected by tissue oedema compared to the bioelectrical impedance of a second anatomical region of that subject wherein the first and second anatomical regions of the at least one unaffected subject are paired with the first and second anatomical regions of the subject being assessed for tissue oedema.
When analysing the results of two measurements obtained on paired limbs, the correcting factor may suitably be 1.066.
Alternatively, the step of analysing the two measurements may be conducted according to the algorithm
where:
When analysing the results of two paired limbs cf1 may be 0.862.
The indication of tissue oedema may be displayed by the step of representing the indication as a position on a scale.
In an alternate form, the invention resides in an apparatus for determining the presence of tissue oedema, including:
The current means may suitably be a proximal electrode and distal electrode in electrical connection with a power source. The monitoring means is suitably a first connection and second connection for location on or near the anatomical region. Preferably, the monitoring means includes display means to display the signals indicative of bioimpedance.
Suitably, the analysis means is at least one processing means programmed to perform analysis of data to provide an indication of the presence of tissue oedema.
The analysis means may be programmed to analyse data according to the algorithm
where:
Suitably, cf may equal 1.066 when the first and second anatomical regions of a subject undergoing assessment for tissue oedema are paired limbs.
The apparatus preferably includes means for recording bioimpedance in anatomical regions of the same subject simultaneously.
Preferably, said means includes duplicated electrodes and connections.
In the following discussion, like numbers apply to like parts.
The inventors have discovered a method of assessing tissue oedema based on measuring bioelectrical impedance at a single low alternating voltage frequency and, hence, alternating current frequency. “Low” in this specification means up to 30 kHz. In order to interpret readings taken at the single frequency, it is necessary to compare a reading taken at an anatomical region of interest against a second reading.
The second reading may be taken in a paired unaffected anatomical region. For example, a first measurement may be made at a location on the left leg and a second measurement made at the same location on the right leg of the same patient where the right leg is unaffected by tissue oedema. It is clear to a skilled addressee that other paired anatomical regions may be similarly used when performing the invention. For example, paired areas of the thorax may be assessed.
It is, however, possible to take the second reading at a dissimilar anatomical region. For example, the first reading may be taken on a leg and a second reading may be taken on an arm. The analysis of these readings will necessarily involve some different considerations, such as a different correcting factor. Again, it is clear to a skilled addressee that a wide range of dissimilar anatomical structures may be used for these measurements, such as a leg and the chest wall. This form of the method is of particular use where two paired anatomical sites are both affected by tissue oedema. The comparison of readings taken in two such affected sites will be distorted and will not produce a reliable indicator of tissue oedema.
As a further alternative, the method of the invention may be applied to two or more readings on the same anatomical region of a subject where those readings are separated in time. For example, a series of readings may be taken on a single limb subsequent to surgery with a known risk of lymphoedema as a side effect. Analysis of any two or more readings may indicate the early stage of developing lymphoedema and thereby provide a distinct advantage in that the prognosis may be greatly improved by early and aggressive therapeutic intervention. This technique may also be used to monitor the progress of lymphoedema with comparison made between measurements of an affected site.
The single frequency is suitably in a range such as 5 to 20 kHz as at this level, the impedance of cell walls is high and current flows mainly through extracellular fluid. Information obtained from readings at a low frequency therefore relates essentially to the extracellular fluid. The preferred range is in the order of 10 to 15 kHz and preferably measurements are made at 10 kHz.
Comparison of the results of measuring the bioelectrical impedance may be compared by dividing a lesser result into a greater result to provide a product greater than 1. For example, when comparing bioimpedance readings in paired limbs of unaffected subjects, there is typically a variation between sides due to the effect of left- or right-handedness or dominance. The results of surveying a population have established that when the lesser measurement is divided into the greater, over 99% of the clinically unaffected population will have a result less than 1.066. This figure may be used as a correcting factor when comparing paired limbs.
With increasing tissue oedema, the bioimpedance reading will decrease, thereby resulting in a greater product as a smaller reading is divided into the relatively constant reading of an unaffected limb or other anatomical region. As the difference between the product and the correcting factor increase, the likelihood of tissue oedema being present also increases, as discussed further below.
In the case of comparison of any two dissimilar regions, a correcting factor may be established by surveying a population of clinically unaffected subjects.
The inventors have found that a comparison of impedance of two anatomical regions at a single low level frequency of current will produce a reliable indicator of the presence or possible presence of lymphoedema. This overcomes the need to use multifrequency bioelectrical impedance analysis. The present testing method is quicker and simpler and the apparatus is substantially cheaper to produce. In addition, the complex analysis of MFBIA is avoided.
As there is some overlap between the results of unaffected subjects and those affected by tissue oedema, the determination of its presence is more accurate when the disparity between the quotient and the correcting factor is large.
A suitable classification of results when comparing paired sites on limbs is as follows.
In the above results, the example is the actual result of analysing readings taken from a subject. The presence of lymphoedema of increasing severity is represented by increasing numbers of “+” signs.
The inventors' preferred method of analysis is to divide the lesser bioimpedance reading into the greater to thereby produce a quotient greater than 1 and to then subject that quotient to subtraction of a correcting factor.
However, it is clear to a skilled addressee that the higher reading could be divided into the lesser to provide a fractional ratio less than one. That ratio could then be subtracted from a correcting factor determined from an unaffected control group. The algorithm for this process could be:
The inventors have arranged trials of the method of their invention on approximately 70 subjects in which contemporaneous assessment was made using the known MFBIA technique to assess tissue oedema.
Referring to
The result of these comparative methods is to establish that the present method works as well as an MFBIA approach but it is clearly much simpler, since it avoids the technical complexity required for MFBIA measurement and also the difficulty of an analysis which requires complex mathematical modelling.
Referring to
A first reading of bioelectrical impedance is taken from a first anatomical region of a subject and stored in data storing unit 34.
A second reading is taken from a second anatomical region of the same subject. On receipt of the second reading, the processor 35 analyses the two readings according to the algorithm
and the correcting factor, the greater is the chance of the presence of tissue oedema.
The processor 35 transfers the result to second data storing unit 36, and the result is also presented on display 37. The display may be a scale with a movable indicator. It may also be a simple series of lights which, when illuminated, indicate any one of “unaffected”, “possibly affected” or “uaffected”. The display may be any other suitable form of indicator.
Monitoring electrodes 28, 29 are applied to the skin. They are separated from each other but located between electrodes 24, 25 and connected via electrical leads 43, 44 to a bioeletrical impedance measuring meter (not shown) in module 40.
A reading of bioelectrical impedance is taken on one limb and stored in first data storing unit (see
The electrodes 24, 25 and monitoring electrodes 28, 29 may then be located in similar positions on the contra-lateral limb and a reading of bioelectrical impedance taken in a similar manner. A similar step may be conducted on dissimilar anatomical regions, such as an arm and a leg or on the same anatomical site at different times. For example, in the latter case, a regular reading may be taken every month to monitor changes in an anatomical region.
Module 40 further includes a processor programmed to divide the lesser of the bioelectrical impedance reading into the greater to produce a quotient. A correcting factor is then applied to the quotient to provide an indication of the presence of lymphoedema.
A correcting factor may be established by surveying a population of clinically unaffected subjects.
If a limb is affected by lymphoedema, its bioelectrical impedance will decrease due to the presence of extracellular fluid. Therefore, the variation between the impedance of the two limbs is such as to move the quotient of the two measurements outside the expected range for an unaffected population.
As shown in
As shown in
The discussion has referred to both oedema and lymphoedema, as it is clear to a skilled addressee that the above method and apparatus may be utilised on any form of tissue oedema. However, it is also likely that the predominant use of the method and apparatus will be directed mainly to lymphoedema due to its clinical relevance. However, this may change in a specific situation or with time. The method may also be used in comparing a reading from one anatomical region with a separate unpaired region. For example, a reading taken on central localised oedema (eg. ascites) may be referenced against a nonoedematous structure such as a limb.
Throughout the specification, the aim has been to describe the preferred embodiments of the invention without limiting the invention to any one embodiment or specific collection of features. Various changes and modifications may be made to the embodiments described and illustrated without departing from the present invention.
Number | Date | Country | Kind |
---|---|---|---|
PQ1137 | Jun 1999 | AU | national |
This application is a continuation of U.S. patent application Ser. No. 10/029,015, filed on Dec. 20, 2001 now U.S. Pat. No. 6,760,617, which is a continuation of International Patent Application No. PCT/AU00/00702, filed Jun. 22, 2000, which claims priority to Australian Application No. PQ1137, filed Jun. 22, 1999, all of which are hereby incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
3316896 | Thomasset | May 1967 | A |
3851641 | Toole et al. | Dec 1974 | A |
3871359 | Pacela | Mar 1975 | A |
4008712 | Nyboer | Feb 1977 | A |
4034854 | Bevilacqua | Jul 1977 | A |
4144878 | Wheeler | Mar 1979 | A |
RE30101 | Kubicek et al. | Sep 1979 | E |
4184486 | Papa | Jan 1980 | A |
4291708 | Frei et al. | Sep 1981 | A |
4314563 | Wheeler | Feb 1982 | A |
4365634 | Bare et al. | Dec 1982 | A |
4407288 | Langer et al. | Oct 1983 | A |
4407300 | Davis | Oct 1983 | A |
4450527 | Sramek | May 1984 | A |
4458694 | Sollish et al. | Jul 1984 | A |
4486835 | Bai et al. | Dec 1984 | A |
4537203 | Machida | Aug 1985 | A |
4539640 | Fry et al. | Sep 1985 | A |
4557271 | Stoller et al. | Dec 1985 | A |
4583549 | Manoli | Apr 1986 | A |
4602338 | Cook | Jul 1986 | A |
4617939 | Brown et al. | Oct 1986 | A |
4646754 | Seale | Mar 1987 | A |
4686477 | Givens et al. | Aug 1987 | A |
4688580 | Ko et al. | Aug 1987 | A |
4763660 | Kroll et al. | Aug 1988 | A |
4793362 | Tedner | Dec 1988 | A |
4890630 | Kroll et al. | Jan 1990 | A |
4895163 | Libke et al. | Jan 1990 | A |
4905705 | Kizakevich et al. | Mar 1990 | A |
4911175 | Shizgal | Mar 1990 | A |
4924875 | Chamoun | May 1990 | A |
4942880 | Slovak | Jul 1990 | A |
4951682 | Petre | Aug 1990 | A |
5025784 | Shao et al. | Jun 1991 | A |
5063937 | Ezenwa et al. | Nov 1991 | A |
5086781 | Bookspan | Feb 1992 | A |
5101828 | Welkowitz et al. | Apr 1992 | A |
5143079 | Frei et al. | Sep 1992 | A |
5197479 | Hubelbank et al. | Mar 1993 | A |
5246008 | Mueller | Sep 1993 | A |
5280429 | Withers | Jan 1994 | A |
5305192 | Bonte et al. | Apr 1994 | A |
5309917 | Wang et al. | May 1994 | A |
5311878 | Brown et al. | May 1994 | A |
5372141 | Gallup et al. | Dec 1994 | A |
5415164 | Faupel et al. | May 1995 | A |
5421344 | Popp | Jun 1995 | A |
5423326 | Wang et al. | Jun 1995 | A |
5449000 | Libke et al. | Sep 1995 | A |
5454377 | Dzwonczyk et al. | Oct 1995 | A |
5465730 | Zadehkoochak et al. | Nov 1995 | A |
5469859 | Tsoglin et al. | Nov 1995 | A |
5503157 | Sramek | Apr 1996 | A |
5505209 | Reining | Apr 1996 | A |
5526808 | Kaminsky | Jun 1996 | A |
5529072 | Sramek | Jun 1996 | A |
5544662 | Saulnier et al. | Aug 1996 | A |
5557242 | Wetherell | Sep 1996 | A |
5588429 | Isaacson et al. | Dec 1996 | A |
5596283 | Mellitz et al. | Jan 1997 | A |
5626146 | Barber et al. | May 1997 | A |
5704355 | Bridges | Jan 1998 | A |
5718231 | Dewhurst et al. | Feb 1998 | A |
5732710 | Rabinovich et al. | Mar 1998 | A |
5735284 | Tsoglin et al. | Apr 1998 | A |
5746214 | Brown et al. | May 1998 | A |
5759159 | Masreliez | Jun 1998 | A |
5788643 | Feldman | Aug 1998 | A |
5800350 | Coppleson et al. | Sep 1998 | A |
5807251 | Wang et al. | Sep 1998 | A |
5807270 | Williams | Sep 1998 | A |
5807272 | Kun et al. | Sep 1998 | A |
5810742 | Pearlman | Sep 1998 | A |
5876353 | Riff | Mar 1999 | A |
5919142 | Boone et al. | Jul 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
6011992 | Hubbard et al. | Jan 2000 | A |
6015389 | Brown | Jan 2000 | A |
6018677 | Vidrine et al. | Jan 2000 | A |
6122544 | Organ | Sep 2000 | A |
6125297 | Siconolfi | Sep 2000 | A |
6142949 | Ubby | Nov 2000 | A |
6151523 | Rosell Ferrer et al. | Nov 2000 | A |
6173003 | Whikehart et al. | Jan 2001 | B1 |
6208890 | Sarrazin et al. | Mar 2001 | B1 |
6228033 | Koobi et al. | May 2001 | B1 |
6233473 | Shepherd et al. | May 2001 | B1 |
6236886 | Cherepenin et al. | May 2001 | B1 |
6248083 | Smith et al. | Jun 2001 | B1 |
6256532 | Cha | Jul 2001 | B1 |
6292690 | Petrucelli et al. | Sep 2001 | B1 |
6339722 | Heethaar et al. | Jan 2002 | B1 |
6354996 | Drinan et al. | Mar 2002 | B1 |
6469732 | Chang et al. | Oct 2002 | B1 |
6472888 | Oguma et al. | Oct 2002 | B2 |
6496725 | Kamada et al. | Dec 2002 | B2 |
6497659 | Rafert | Dec 2002 | B1 |
6511438 | Bernstein et al. | Jan 2003 | B2 |
6512949 | Combs et al. | Jan 2003 | B1 |
6532384 | Fukuda | Mar 2003 | B1 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6556001 | Wiegand et al. | Apr 2003 | B1 |
6560480 | Nachaliel et al. | May 2003 | B1 |
6561986 | Baura et al. | May 2003 | B2 |
6569160 | Goldin et al. | May 2003 | B1 |
6584348 | Glukhovsky | Jun 2003 | B2 |
6602201 | Hepp et al. | Aug 2003 | B1 |
6615077 | Zhu et al. | Sep 2003 | B1 |
6618616 | Iijima et al. | Sep 2003 | B2 |
6623312 | Merry et al. | Sep 2003 | B2 |
6625487 | Herleikson | Sep 2003 | B2 |
6631292 | Liedtke | Oct 2003 | B1 |
6633777 | Szopinski | Oct 2003 | B2 |
6636754 | Baura et al. | Oct 2003 | B1 |
6643543 | Takehara et al. | Nov 2003 | B2 |
6714813 | Ishigooka et al. | Mar 2004 | B2 |
6714814 | Yamada et al. | Mar 2004 | B2 |
6723049 | Skladnev et al. | Apr 2004 | B2 |
6724200 | Fukuda | Apr 2004 | B2 |
6725089 | Komatsu et al. | Apr 2004 | B2 |
6753487 | Fujii et al. | Jun 2004 | B2 |
6760617 | Ward et al. | Jul 2004 | B2 |
6768921 | Organ et al. | Jul 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6807443 | Keren | Oct 2004 | B2 |
6829501 | Nielsen et al. | Dec 2004 | B2 |
6829503 | Alt | Dec 2004 | B2 |
6845264 | Skladnev et al. | Jan 2005 | B1 |
6870109 | Villarreal | Mar 2005 | B1 |
6906533 | Yoshida | Jun 2005 | B1 |
6922586 | Davies | Jul 2005 | B2 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
7096061 | Arad | Aug 2006 | B2 |
7122012 | Bouton et al. | Oct 2006 | B2 |
7130680 | Kodama et al. | Oct 2006 | B2 |
7148701 | Park et al. | Dec 2006 | B2 |
7149573 | Wang | Dec 2006 | B2 |
7164522 | Kimura et al. | Jan 2007 | B2 |
7169107 | Jersey-Willuhn et al. | Jan 2007 | B2 |
7184820 | Jersey-Willuhn et al. | Feb 2007 | B2 |
7184821 | Belalcazar et al. | Feb 2007 | B2 |
7186220 | Stahmann et al. | Mar 2007 | B2 |
7212852 | Smith et al. | May 2007 | B2 |
7214107 | Powell et al. | May 2007 | B2 |
7233823 | Simond et al. | Jun 2007 | B2 |
7251524 | Hepp et al. | Jul 2007 | B1 |
7270580 | Bradley et al. | Sep 2007 | B2 |
7353058 | Weng et al. | Apr 2008 | B2 |
7457660 | Smith et al. | Nov 2008 | B2 |
7477937 | Iijima et al. | Jan 2009 | B2 |
7706872 | Min et al. | Apr 2010 | B2 |
7733224 | Tran | Jun 2010 | B2 |
20010007056 | Linder et al. | Jul 2001 | A1 |
20010007924 | Kamada et al. | Jul 2001 | A1 |
20010020138 | Ishigooka et al. | Sep 2001 | A1 |
20010025139 | Pearlman | Sep 2001 | A1 |
20010051774 | Littrup et al. | Dec 2001 | A1 |
20020022787 | Takehara et al. | Feb 2002 | A1 |
20020072686 | Hoey et al. | Jun 2002 | A1 |
20020079910 | Fukuda | Jun 2002 | A1 |
20020093992 | Plangger | Jul 2002 | A1 |
20020123694 | Organ et al. | Sep 2002 | A1 |
20020138019 | Wexler et al. | Sep 2002 | A1 |
20020161311 | Ward et al. | Oct 2002 | A1 |
20020163408 | Fujii et al. | Nov 2002 | A1 |
20020194419 | Rajput et al. | Dec 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030023184 | Pitts-Crick et al. | Jan 2003 | A1 |
20030028221 | Zhu et al. | Feb 2003 | A1 |
20030050570 | Kodama | Mar 2003 | A1 |
20030068914 | Merry et al. | Apr 2003 | A1 |
20030073916 | Yonce | Apr 2003 | A1 |
20030105411 | Smallwood et al. | Jun 2003 | A1 |
20030120170 | Zhu et al. | Jun 2003 | A1 |
20030120182 | Wilkinson et al. | Jun 2003 | A1 |
20030173976 | Wiegand et al. | Sep 2003 | A1 |
20030216664 | Suarez | Nov 2003 | A1 |
20040015095 | Li et al. | Jan 2004 | A1 |
20040019292 | Drinan et al. | Jan 2004 | A1 |
20040073130 | Bohm et al. | Apr 2004 | A1 |
20040077944 | Steinberg et al. | Apr 2004 | A1 |
20040116819 | Alt | Jun 2004 | A1 |
20040158167 | Smith et al. | Aug 2004 | A1 |
20040167423 | Pillon et al. | Aug 2004 | A1 |
20040181164 | Smith et al. | Sep 2004 | A1 |
20040186392 | Ward et al. | Sep 2004 | A1 |
20040204658 | Dietz et al. | Oct 2004 | A1 |
20040210150 | Virtanen | Oct 2004 | A1 |
20040210158 | Organ et al. | Oct 2004 | A1 |
20040234113 | Miga | Nov 2004 | A1 |
20040236202 | Burton | Nov 2004 | A1 |
20040242989 | Zhu et al. | Dec 2004 | A1 |
20040252870 | Reeves et al. | Dec 2004 | A1 |
20040260167 | Leonhardt et al. | Dec 2004 | A1 |
20050033281 | Bowman et al. | Feb 2005 | A1 |
20050039763 | Kraemer et al. | Feb 2005 | A1 |
20050070778 | Lackey et al. | Mar 2005 | A1 |
20050080460 | Wang et al. | Apr 2005 | A1 |
20050098343 | Fukuda | May 2005 | A1 |
20050101875 | Semler et al. | May 2005 | A1 |
20050107719 | Arad (Abbound) | May 2005 | A1 |
20050113704 | Lawson et al. | May 2005 | A1 |
20050117196 | Kimura et al. | Jun 2005 | A1 |
20050124908 | Belalcazar et al. | Jun 2005 | A1 |
20050137480 | Alt et al. | Jun 2005 | A1 |
20050151545 | Park et al. | Jul 2005 | A1 |
20050177062 | Skrabal et al. | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050201598 | Harel et al. | Sep 2005 | A1 |
20050203435 | Nakada | Sep 2005 | A1 |
20050215918 | Frantz et al. | Sep 2005 | A1 |
20050228309 | Fisher et al. | Oct 2005 | A1 |
20050261743 | Kroll | Nov 2005 | A1 |
20050283091 | Kink et al. | Dec 2005 | A1 |
20060004300 | Kennedy | Jan 2006 | A1 |
20060041280 | Stahmann et al. | Feb 2006 | A1 |
20060064029 | Arad (Abboud) et al. | Mar 2006 | A1 |
20060085048 | Cory et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060110962 | Powell et al. | May 2006 | A1 |
20060116599 | Davis | Jun 2006 | A1 |
20060122523 | Bonmassar et al. | Jun 2006 | A1 |
20060122540 | Zhu et al. | Jun 2006 | A1 |
20060128193 | Bradley et al. | Jun 2006 | A1 |
20060135886 | Lippert et al. | Jun 2006 | A1 |
20060151815 | Graovac et al. | Jul 2006 | A1 |
20060197509 | Kanamori et al. | Sep 2006 | A1 |
20060200033 | Keren et al. | Sep 2006 | A1 |
20060224079 | Washchuk | Oct 2006 | A1 |
20060224080 | Oku et al. | Oct 2006 | A1 |
20060241513 | Hatlestad et al. | Oct 2006 | A1 |
20060241719 | Foster et al. | Oct 2006 | A1 |
20060247543 | Cornish et al. | Nov 2006 | A1 |
20060258952 | Stahmann et al. | Nov 2006 | A1 |
20060264775 | Mills et al. | Nov 2006 | A1 |
20060264776 | Stahmann et al. | Nov 2006 | A1 |
20060270942 | McAdams | Nov 2006 | A1 |
20060293609 | Stahmann et al. | Dec 2006 | A1 |
20070007975 | Hawkins et al. | Jan 2007 | A1 |
20070010758 | Matthiessen et al. | Jan 2007 | A1 |
20070027402 | Levin et al. | Feb 2007 | A1 |
20070043303 | Osypka et al. | Feb 2007 | A1 |
20070049993 | Hofmann et al. | Mar 2007 | A1 |
20070087703 | Li et al. | Apr 2007 | A1 |
20070106342 | Schumann | May 2007 | A1 |
20070156061 | Hess | Jul 2007 | A1 |
20080001608 | Saulnier et al. | Jan 2008 | A1 |
20080002873 | Reeves et al. | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009757 | Tsoglin et al. | Jan 2008 | A1 |
20080009759 | Chetham | Jan 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080064981 | Gregory | Mar 2008 | A1 |
20080205717 | Reeves et al. | Aug 2008 | A1 |
20080252304 | Woo et al. | Oct 2008 | A1 |
20080270051 | Essex et al. | Oct 2008 | A1 |
20080287823 | Chetham | Nov 2008 | A1 |
20080319336 | Ward et al. | Dec 2008 | A1 |
20090043222 | Chetham | Feb 2009 | A1 |
20090076343 | James et al. | Mar 2009 | A1 |
20090076345 | Manicka et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090082679 | Chetham | Mar 2009 | A1 |
20090084674 | Holzhacker et al. | Apr 2009 | A1 |
20090105555 | Dacso et al. | Apr 2009 | A1 |
20090143663 | Chetham | Jun 2009 | A1 |
20090177099 | Smith et al. | Jul 2009 | A1 |
20090264776 | Vardy | Oct 2009 | A1 |
20090287102 | Ward | Nov 2009 | A1 |
20090318778 | Dacso et al. | Dec 2009 | A1 |
20100100003 | Chetham et al. | Apr 2010 | A1 |
20100109739 | Ironstone et al. | May 2010 | A1 |
20100145164 | Howell | Jun 2010 | A1 |
20100168530 | Chetham et al. | Jul 2010 | A1 |
20100234701 | Cho et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
2231038 | Nov 1999 | CA |
2613524 | Jan 2007 | CA |
2615845 | Jan 2007 | CA |
1180513 | May 1998 | CN |
1236597 | Dec 1999 | CN |
1329875 | Jan 2002 | CN |
1366694 | Aug 2002 | CN |
101385203 | Mar 2009 | CN |
2912349 | Oct 1980 | DE |
249823 | Dec 1987 | EP |
339471 | Nov 1989 | EP |
349043 | Jan 1990 | EP |
357309 | Mar 1990 | EP |
377887 | Jul 1990 | EP |
581073 | Feb 1994 | EP |
865763 | Sep 1998 | EP |
869360 | Oct 1998 | EP |
1078597 | Feb 2001 | EP |
1080686 | Mar 2001 | EP |
1112715 | Jul 2001 | EP |
1114610 | Jul 2001 | EP |
1146344 | Oct 2001 | EP |
1177760 | Feb 2002 | EP |
1219937 | Jul 2002 | EP |
1238630 | Sep 2002 | EP |
1247487 | Oct 2002 | EP |
1283539 | Feb 2003 | EP |
1329190 | Jul 2003 | EP |
1338246 | Aug 2003 | EP |
1452131 | Sep 2004 | EP |
1553871 | Jul 2005 | EP |
1629772 | Mar 2006 | EP |
1903938 | Apr 2008 | EP |
1909642 | Apr 2008 | EP |
1948017 | Jul 2008 | EP |
2486386 | Jan 1982 | FR |
2748928 | Nov 1997 | FR |
2131558 | Jun 1984 | GB |
2260416 | Apr 1993 | GB |
2426824 | Dec 2006 | GB |
06-000168 | Jan 1994 | JP |
8191808 | Jul 1996 | JP |
9051884 | Feb 1997 | JP |
9220209 | Aug 1997 | JP |
10000185 | Jan 1998 | JP |
10014898 | Jan 1998 | JP |
10014899 | Jan 1998 | JP |
10-225521 | Aug 1998 | JP |
11070090 | Mar 1999 | JP |
2000107138 | Apr 2000 | JP |
2000139867 | May 2000 | JP |
2001037735 | Feb 2001 | JP |
2001061804 | Mar 2001 | JP |
2001321352 | Nov 2001 | JP |
2002330938 | Nov 2002 | JP |
2003116805 | Apr 2003 | JP |
2005099186 | Apr 2005 | JP |
2008022995 | Feb 2008 | JP |
2112416 | Jun 1998 | RU |
2138193 | Sep 1999 | RU |
1132911 | Jan 1985 | SU |
8807392 | Oct 1988 | WO |
9318821 | Sep 1993 | WO |
9601586 | Jan 1996 | WO |
9612439 | May 1996 | WO |
9632652 | Oct 1996 | WO |
9711638 | Apr 1997 | WO |
9714358 | Apr 1997 | WO |
9806328 | Feb 1998 | WO |
9823204 | Jun 1998 | WO |
WO 9833553 | Aug 1998 | WO |
9851211 | Nov 1998 | WO |
00040955 | Jul 2000 | WO |
0079255 | Dec 2000 | WO |
0127605 | Apr 2001 | WO |
0150954 | Jul 2001 | WO |
0167098 | Sep 2001 | WO |
0182323 | Nov 2001 | WO |
02062214 | Aug 2002 | WO |
02094096 | Nov 2002 | WO |
04000115 | Dec 2003 | WO |
2004026136 | Apr 2004 | WO |
2004030535 | Apr 2004 | WO |
2004032738 | Apr 2004 | WO |
2004047635 | Jun 2004 | WO |
2004047636 | Jun 2004 | WO |
2004048983 | Jun 2004 | WO |
2004047638 | Jun 2004 | WO |
2004049936 | Jun 2004 | WO |
2004083804 | Sep 2004 | WO |
2004084723 | Oct 2004 | WO |
2004084724 | Oct 2004 | WO |
2005010640 | Feb 2005 | WO |
2005027717 | Mar 2005 | WO |
2005018432 | Mar 2005 | WO |
2005051194 | Jun 2005 | WO |
2005084539 | Sep 2005 | WO |
2005122888 | Dec 2005 | WO |
2005122881 | Dec 2005 | WO |
2006129108 | Dec 2006 | WO |
2006129116 | Dec 2006 | WO |
2007002993 | Jan 2007 | WO |
2007002991 | Jan 2007 | WO |
2007002992 | Jan 2007 | WO |
2007009183 | Jan 2007 | WO |
2007014417 | Feb 2007 | WO |
2007041783 | Apr 2007 | WO |
2007089278 | Aug 2007 | WO |
2008064426 | Jun 2008 | WO |
2008119166 | Oct 2008 | WO |
2008138062 | Nov 2008 | WO |
2009036369 | Mar 2009 | WO |
2009059351 | May 2009 | WO |
2009100491 | Aug 2009 | WO |
2010051600 | May 2010 | WO |
2010060152 | Jun 2010 | WO |
2011022068 | Feb 2011 | WO |
2011050393 | May 2011 | WO |
2011075769 | Jun 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20040186392 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10029015 | Dec 2001 | US |
Child | 10767825 | US | |
Parent | PCT/AU00/00702 | Jun 2000 | US |
Child | 10029015 | US |