The present invention relates to a method and device for monitoring the interior and surrounding area of a vehicle.
The article “Die neuen Augen des Autos, Limousinen lernen lesen [Cars Get New Eyes, Limos Learn to Read]” published in the October 1998 issue of the journal Bosch Zünder, describes a method in which the area in front of the driver surrounding the vehicle is monitored by two video cameras. The image captured by the cameras is evaluated with regard to road signs that can be detected in the Then, the road signals are displayed to the driver via a display unit. In addition, the system captures the path of the road in order to control the direction of the headlamps so that the light cone falls on the road. If the car enters the shoulder, an audible and/or visual warning is triggered. Furthermore, a method that measures brain activity, in particular of the driver of a vehicle, and triggers an alarm if there are deviations from the normal awake status, is described in PCT Patent No. WO 93/21615. Herein, measurements are taken via electrodes placed on the driver's head.
The method according to the present invention has the advantage that the interior of and the area surrounding a vehicle can be captured using just one camera device. In particular, this is feasible because the interior of the vehicle and the area surrounding the vehicle are captured alternately. Provided the system alternates sufficiently quickly between capturing the interior and capturing the surrounding area, loss of information arising from switching back and forth may be ignored, and just one camera device as opposed to two is required for the interior and the area surrounding the vehicle. Furthermore, only one processing unit for processing the image information obtained is required.
Moreover, it is advantageous that the interior of the vehicle is illuminated by a radiation source that is at least largely invisible to the human eye. This has the advantage that during night driving, when as a general rule the interior of a vehicle is not lit or is poorly lit, the interior can nevertheless be monitored by a camera that is sensitive to radiation emitted by the radiation source. Herein it is advantageous to use an infra-red radiation source, preferably one or more infra-red light-emitting diodes. This does not distract the driver, unlike a visible source.
Furthermore, it is advantageous to obtain an image of the interior from a superimposition of an image of the surrounding area and of the interior; a processing unit subtracts an image of the exterior only from this superimposition. As a result, when the system alternates between capturing the surrounding area and the interior, there is no need to interrupt recording of the exterior, because the system simply interrupts recording of the interior. As a result, there is no need for optical interrupt elements, such as in particular mechanical shutters or mirrors. In particular, if the interior is illuminated by an infra-red radiation source and the image of the interior is captured via an infra-red filter, an image of the interior is essentially only captured if the infra-red radiation source is activated. Thus alternating monitoring of the interior and the surrounding area is feasible via a switch-off/switch-on sequence for the infra-red radiation source provided the camera device has a further beam path which extends into the area surrounding the vehicle and can capture the area surrounding the vehicle.
Furthermore, it is advantageous to capture only the visible part of the surrounding area in a first process step, and to capture only the visible part of the interior in a second process step. Thus it is not necessary for the images of the interior and the surrounding area to be separated in processing terms, which means the processing unit in which the image data is evaluated does not have to be especially powerful. Herein, it is particularly advantageous to carry out the switching over between capturing the part of the surrounding area visible to the camera and capturing the part of the interior visible to the camera via an electro-optical light valve, in particular via a liquid crystal cell, which can be switched back and forth between a transparent mode and an absorptive mode based on a signal applied.
Furthermore, it is advantageous when switching back and forth between capturing image signals from the surrounding area and image signals from the interior to switch back and forth as soon as partial areas of the maximum area that can be captured by the camera device have been captured. In particular, switching back and forth may be carried out after image columns or image rows have been captured or after groups of pixels have been captured. As the image data also has to be transmitted to the processing unit and processed there, this method has the advantage that it allows quicker switching back and forth between capturing the interior and the exterior, so that the shift between two captured images, e.g., of the exterior, which is based on the movement of the vehicle, is reduced.
Furthermore, it is advantageous to capture the driver's face, in particular his eyes, as well as the road markings and, the position of the vehicle relative to the road markings. This information can be used to determine whether the driver may have fallen asleep and may therefore be driving in an uncontrolled manner, and can be used to activate a warning device that wakes up the driver. Since the driver's face is also captured, safety, as compared to conventional methods and devices, in which a camera device only captures the road markings, is increased. For example, when the vehicle is traveling in a straight line for a long period, the vehicle may travel for a considerable time within the road markings, even though the driver has already been asleep for a number of seconds. Using the method according to the present invention, it is possible to detect that the driver has fallen asleep in a case of this kind.
If the camera is used for monitoring, it is not necessary to place electrodes on the driver's body, which is necessary in the case of the method in which the driver's brain waves are monitored. Since electrodes of this kind may be cumbersome and may limit the driver's freedom of movement, and the driver may also forget to put them on when he starts driving or may deliberately not put them on because they are uncomfortable, a warning indicating that the driver has fallen asleep is easier to implement and less unpleasant for the driver to use. Furthermore, the method according to the present invention has the advantage that as well as monitoring the interior, the system can capture road signs in the area surrounding the vehicle and can therefore alert the driver, for example, to warning signs or speed limit signs via a visual or acoustic output unit.
Furthermore, it is advantageous to determine the number of people in the vehicle or, respectively, the seat occupancy. This information can be used, for example, to control the chassis so as to compensate for an uneven load in the vehicle if, for example, people are only sitting on the left side of the vehicle, for example the driver and one person behind him. Furthermore, this information can be use to control a seat heater, which is only activated if someone is actually sitting on the seat. For example, it is possible to determine whether a seat is occupied or is occupied by a child seat, as it is advantageous that deployment of an airbag can be blocked if a seat is unoccupied or is occupied by a child seat. As a result, unnecessary deployments of an airbag can be avoided if the seat is unoccupied, and injury to a child by an airbag can be prevented if the seat is occupied by a child seat.
Furthermore, it is advantageous to also capture the lip movements of a predefinable person in the vehicle, for example the driver, in order to support a speech input system. If, for example, during speech input it is unclear, which command has been input due to driving noise, the driver's lip movements can be captured by the camera device and evaluated so as to check the speech input. This is possible, for example, if the lip movements are analyzed to determine whether the syllables that correspond to the lip movements captured are contained in the command understood by the speech input unit. If the speech input unit cannot make unambiguous assignments based on what it has understood, this can possibly be achieved by performing a comparison with the lip movements.
Furthermore, it is advantageous to provide a device to allow capturing of the area surrounding the vehicle and the vehicle interior. For example, it is advantageous to design a camera device so that one beam path points in the direction of the interior and one beam path points in the direction of the road, for example in the direction of travel, because as a general rule from the driver's point of view the road, i.e., the edge of the road, and objects in his own lane are the most important information in the area surrounding the vehicle.
Furthermore, it is advantageous to provide a deviation mirror that is semi-transparent in the camera device. One beam path, e.g., from the interior, may enter the camera device via reflection, and another beam path may enter via transmission through the semi-transparent mirror. As a result, there is no need for mechanical adjusting between the two beam paths. Furthermore, it is advantageous to design at least one deviation mirror to be concave or convex; as a result, the area that can be monitored by the camera can be limited or enlarged, depending on the use of the device.
Furthermore, it is advantageous to design the camera as, for example, a CCD camera or a CMOS camera. As a result, the camera device according to the present invention can be designed inexpensively. Furthermore, it is advantageous to equip the camera device with at least two cameras, so that stereoscopic image capturing is possible, and so that conclusions can be drawn regarding the distances between the vehicle and objects, and distances in the interior, respectively, by evaluating distance-dependent image shift.
In addition, it is advantageous to arrange the camera device in an upper part of the windshield or to integrate the camera device into the roof of the vehicle. A position at least close to the vehicle roof allows an especially good overview of the area surrounding the vehicle and the vehicle's interior.
Furthermore it is advantageous to design at least one deviation mirror so that it can be adjusted by an adjustment device so that at least the eyes and/or lips of the driver can be captured by the camera. This is useful if drivers alternate and are of different heights and may arrange the seat in different positions. Furthermore, it enables the driver's movements while driving to be taken into account. By designing the deviation mirror so that the visible range captured can be readjusted, it is possible to ensure that the driver's eyes and/or lips are always within the capturing area of the camera device. This ensures that the means for monitoring whether the driver has fallen asleep and the means for checking speech input function properly, especially during driving.
a shows a first process step of a method according to the present invention.
b shows a second process step of a method according to the present invention.
c shows an evaluation method according to the present invention.
a shows a first embodiment of a deviation mirror according to the present invention.
b shows a second embodiment of a deviation mirror according to the present invention.
In
Camera device 10 is arranged in the upper part of windshield 12 close enough to the vehicle roof (not shown) so that the vehicle interior and the road in front of the vehicle can be monitored effectively. Therefore, the camera device is arranged, for example in the middle of the vehicle with respect to the sides of the vehicle. It is also feasible for it to be arranged in the left upper part of windshield 12 in a left-hand-drive vehicle, as this ensures that not only the driver but also the entire road can be effectively captured by the camera device. In a right-hand-drive car, the camera is arranged in a right upper section of windshield 12. First and second optical openings 13, 16 may be designed in various ways. Any of the following ways are feasible: A filter, an opening, a lens, or a combination thereof in which the aforementioned components are arranged behind one another.
In
In
c shows an evaluation process carried out by the processing unit that includes processing of the image information recorded by the camera device, first output 33, and second output 36, respectively. An example of an evaluation process is a falling-asleep warning generated by monitoring driver 15, monitoring of the vehicle's interior being necessary and second output 36 consequently being output. A method for detecting the surrounding area, e.g., for detecting road signs and/or road markings, can be embodied in a similar manner, first output 33 being output.
In a first initialization step 50, the processing unit obtains an image of the driver's eye section from first and second image information 32 and 35. In a first decision step 52, the recorded image is compared with image information 51 regarding the driver's eye section that has been stored previously. Herein, image information 51 is an empty image if the vehicle has just been started up and as yet no image information has been stored. If it is determined that the driver's eyes are open, i.e., the driver is not asleep, or if image information 51 is an empty image, processing branches along decision path N, and in process step 53 the recorded partial image is stored. Furthermore, the fact that the driver is awake at the time the image was recorded is stored in another memory. The evaluation process is ended in a completion step 54. The evaluation process is started again the next time first and second image information 32 and 35, respectively, are transmitted to the processing unit. A new start is performed each time the evaluation process ends provided the vehicle or the camera device have not been switched off.
If the processing unit determines that the driver's eyes are closed, processing branches from first decision step 52 to a second decision step 55 along decision path Y. Here, a check is performed to determine whether the driver's eyes were already closed the last time an image was recorded. If not, processing branches to a sub-step 56, where data is stored indicating that the driver's eyes are closed at the point in time the image was recorded. In a completion step 57, the evaluation process is ended. If the driver's eyes are already closed the last time an image was recorded, processing branches along decision path Y from second decision step 55 to a first warning step 58. This warning is an audible warning and/or a visual warning, for example via display unit 21. Because a warning is not issued until a second image has been recorded and thus after second decision step 55, it is generally possible to avoid a situation where a warning is issued because, by chance, the image was taken exactly at the moment the driver blinked, thus causing camera device 10 to detect that the driver's eyes are closed.
After first warning step 58, a third decision step 59, in which image information 67 regarding a further image of the driver's face section is taken into account, is performed. If the driver's eyes have reopened, processing branches along decision path Y to a processing step 60, and image information 67 that has been newly recorded is stored. Furthermore, data indicating that the driver's eyes are open is stored in a memory. The evaluation process is ended in a subsequent completion step 61. However, if the driver's eyes are still closed, processing branches from third decision step 59 along decision path N to a second warning step 62. In second warning step 62, a significantly louder audible warning is issued than that issued in first warning step 58. In a fourth decision step 63, image information 68 regarding the driver's facial section is captured again and status 69 of a switch is queried. If it is determined that the driver's eyes are now open or if the driver operates the switch, processing branches along decision path Y. In a first sub-step 64, data indicating that the driver's eyes are open is stored and the evaluation process is ended in a completion step 65. If it is not determined that the driver's eyes are open or if it is not determined that the switch has been triggered, processing branches along decision path N to a third warning step 66. A loud audible warning is now issued again, and the vehicle is decelerated, the hazard warning lights system and the brake lights being activated so that driverless driving is avoided. As there are circumstances in which the camera device cannot obtain an image of the driver's eyes, e.g., if he is wearing sunglasses, the process shown in
Furthermore, it is possible to increase the number of times the image information regarding the driver's eye section is queried before an appropriate warning step is performed, so as to avoid incorrect issuing of warnings. Herein, the number of queries is based on how frequently image information regarding the interior is captured. The process shown in
First beam path 103 and second beam path 108 are denoted by the optical axis of the beam in question. Here and in
Processing unit 110 and camera device 10 may also be arranged in a single housing near the vehicle roof i.e., near the upper edge of windshield 12. However, processing unit 110 and camera device 10 may also be arranged in different places within the vehicle. In an exemplary embodiment, processing unit 110 is integrated into display unit 21.
In first process step 31 of
Sensors 116 may be designed as, for example, seat sensors, which supply information as to whether a seat is occupied. If a seat sensor reports that a seat is unoccupied, the camera can check whether this is true or whether there is movement, for example, on the seat indicating that the seat is in fact occupied. In such cases, an airbag is not deactivated and/or seat heating is not deactivated. Furthermore, sensors also include input elements via which, for example, a falling-asleep warning can be deactivated if the driver is wearing sunglasses since, his eyes cannot be seen by camera 100. Output units include audible and/or visual warning elements that may be embodied as, for example a loudspeaker, a warning light or a liquid crystal display. Evaluation unit 113 and control unit 112 may also be integrated in a device. Furthermore, control unit 112 controls the position of second deviation mirror 104 via a connection line (not shown), based on instructions transmitted from evaluation unit 113 via second data circuit 114. If an object being monitored by camera device 10 threatens to move beyond the visible range, the processing unit can in this way modify the visible range via the control means of the second deviation mirror. First data circuit 111 and fifth data circuit 120 constitute a connection between camera device 10 and processing unit 110. Herein, first data circuit 111 is used to transmit image information from camera 100 to processing unit 110, in particular to evaluation unit 113. Processing unit 110, in particular control unit 112, controls camera 100 via fifth data circuit 120. First data circuit 111 and fifth data circuit 120 may also be combined as a single data circuit.
In
Furthermore, in the case of all the aforementioned exemplary embodiments, two closely adjacent cameras, whose first and second beam paths are offset slightly relative to one another, may be provided instead of single camera 100. This allows images to be captured stereoscopically. With the help of suitable calculations performed by evaluation unit 113, conclusions regarding the distances to individual objects can be drawn from the captured stereoscopic images. This is advantageous in the case of detection of objects, e.g., road signs.
a and 8b show exemplary embodiments of second deviation mirror 104. In
Number | Date | Country | Kind |
---|---|---|---|
199 21 488 | May 1999 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE00/01426 | 5/5/2000 | WO | 00 | 3/5/2001 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO00/68910 | 11/16/2000 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5065236 | Diner | Nov 1991 | A |
5293427 | Ueno et al. | Mar 1994 | A |
5598145 | Shimotani et al. | Jan 1997 | A |
5642093 | Kinoshita et al. | Jun 1997 | A |
5845000 | Breed et al. | Dec 1998 | A |
6396954 | Kondo | May 2002 | B1 |
6654019 | Gilbert et al. | Nov 2003 | B2 |
6690374 | Park et al. | Feb 2004 | B2 |
Number | Date | Country |
---|---|---|
195 46 391 | Jun 1996 | DE |
197 36 774 | Feb 1999 | DE |
2224358 | May 1990 | GB |
10-35320 | Feb 1998 | JP |
WO 93216515 | Oct 1993 | WO |