1. Field of the Invention
The present invention relates to a component mounting method and device which are used in a component mounting apparatus for mounting an electronic component on an electrode in a process of mounting operation in which a paste of cream solder is applied on an electrode on a circuit board, on which an electronic component which is positioned above the electrode is mounted, after which the cream solder is heated and melted to join the component onto the electrode.
2. Description of the Related Art
The suction nozzle unit 41 has a rotary structure, which is constructed such that a plurality of suction nozzles 40 mounted thereon are successively moved on a circular track for picking up an electronic component from the parts cassette 42 in the component feeding unit 43 and mounting it onto the circuit substrate 44 which has been loaded to a mounting position. The suction nozzle unit 41 rotates to successively transfer each of the suction nozzles 40 from the positions denoted at encircled numerals 1 to 10 in a clockwise direction as shown in the figure. The electronic component is picked up from the parts cassette 42 at a component pick-up position (component pick-up point) denoted at encircled numeral 5, the picked-up posture of the component is recognized with image recognition process using a camera at a posture recognizing position (component recognizing point) denoted at encircled numeral 7, and the posture of the component is corrected around the axis of the suction nozzle 40 by its rotation based on the recognition results of the picked-up posture of the component at a posture correcting position (component position adjusting point) denoted at encircled numeral 9.
Meanwhile, the circuit substrate 44 is supported on an X-Y table (not shown) for free movements in X- and Y-directions, so as to bring a predetermined position of the circuit substrate 44 on which an electronic component is to be mounted is brought under a component mounting position (component mounting point) denoted at encircled numeral 10 of the suction nozzle unit 41. The circuit substrate 44 is also moved in directions for correcting displacement of the component in X- and Y-directions based on the picked-up posture recognition results. It is thus possible to mount an electronic component 45 picked up by the suction nozzle 40 which is displaced as shown in
However, in high density chip mounting of recent years, the space between two adjacent components have become smaller and smaller. As a result, especially in the case where the outer dimensions of the component are smaller than those of the suction nozzle, and under a condition that the center of the suction nozzle and that of the component are not in register with each other, it is often the case that the suction nozzle and an electronic component which has previously mounted on the circuit board interfere with each other, thus causing mounting errors. As shown in
Also, the electronic component mounting device has an automatic recovery function in the case of failing to mount a component due to errors in picking up action, which is implemented such that the component which the nozzle failed to mount is mounted after all the other components have been mounted. In such a case, since the mounting order is different from the normal one, the component has to be mounted between the other components which have already been mounted, wherefore if the position of the component held by the suction nozzle is displaced, it is more often the case that the suction nozzle and the previously mounted component interfere with each other, causing frequent errors in mounting operation of the components onto the circuit substrate 44. In particular, it may cause a serious problem if the height of the component which has already been mounted is larger than that of the component which is going to be mounted later.
In view of the foregoing, an object of the present invention is to provide a component mounting device and method, by which, when mounting components onto a circuit substrate, the quality of mounted conditions of the components is kept favorable without causing any interference between the previously mounted component and the nozzle, even when the center of the nozzle and that of the component are not correspondent to each other.
In order to achieve the above object, the component mounting device of the present invention comprises a means for measuring an amount of displacement between a center position of a component suction nozzle and a center position of the component held by the component suction nozzle with respect to each of the components fed from all parts cassettes set in a component feeding unit during the component mounting device is in operation, informing that a particular parts cassette from which the component has been fed is in abnormal condition when the amount of displacement is larger than a predetermined value, and for stopping the action of mounting the component.
With this arrangement, under a certain abnormal circumstance while the device is in operation, it is informed to an operator that abnormality has been occurred as well as the mounting action is stopped, thereby preventing interference between the component suction nozzle and the component, and enabling the operator to investigate and confirm the causes of the abnormality.
Further, the device comprises a means which measures an amount of displacement between a center position of a component suction nozzle and a center position of a component held by the component suction nozzle, and detects and informs that a particular component suction nozzle or parts cassette from which the component has been fed is in abnormal condition based on resultant data of measurement, wherein the component is respectively picked up by the component suction nozzle from all of the parts cassettes set in a component feeding unit and measurement of the displacement amount of the component is effected in a preparatory step before commencement of actual production.
By this means, defective nozzles or parts cassettes are identified prior to actual production, by which mounting errors when mounting the component onto the circuit substrate can be avoided.
Also, in order to achieve the above object, the component mounting method of the present invention comprises the steps of: measuring an amount of displacement of the component with respect to the component suction nozzle; and adjusting the component pick-up position of the parts cassette which requires position adjustment based on resultant data of measurement.
More specifically, the method comprises the steps of: obtaining data on an amount of displacement of the component from a prescribed holding position of the component suction nozzle corresponding to each of the parts cassettes based on posture recognition results detected at the posture recognizing position; and adjusting a feeding position of the electronic component to the component pick-up position based on this displacement amount data.
According to the above described component mounting method, from the data on the posture of the component held by the component suction nozzle with respect to all the electronic components detected at the posture recognizing position, the data on displacement amount of the component per each parts cassettes can be obtained, wherefore the tendency of displacement in the component feeding position with respect to the pick-up position of the suction nozzle can be recognized. Specifically, if it is found that all of the electronic components are displaced in the same direction, it is determined that the position of the component feeding unit or the parts cassettes in its entirety is inappropriate in relation to the component pick-up position, whereas if it is found that only a specific type of electronic components are always picked up in a displaced position, it is determined that the feeding position of the parts cassette which feeds this type of electronic component is inappropriate. Accordingly, by adjusting the component feeding position to the component pick-up position in a direction for correcting displacement based on the displacement tendency obtained from displacement data, it is possible to pick up the component precisely in a predetermined position of the component suction nozzle, whereby it is possible to mount electronic components accurately on the circuit substrate with high mounting density.
If it is detected from the displacement amount data that all of the electronic components are picked up in a displaced position in the same direction, such displacement can be corrected by adjusting the position of the component feeding unit or the loading position of the parts cassettes on the component feeding unit in a direction for correcting the displacement. Also, if it is detected from the displacement amount data that one specific type of electronic component is picked up in a displaced position, such displacement can be corrected by adjusting the component feeding position to the component pick-up position from the parts cassette which feeds this type of component.
Also, in order to achieve the above object, the device for mounting an electronic component in which a plurality of parts cassettes respectively accommodating different types of electronic components are moved by a component feeding unit to a component pick-up position in a mounting order for feeding electronic components, and a plurality of component suction nozzles are successively moved along a circular track from the component pick-up position, where the component suction nozzle picks up the electronic component, to a posture recognizing position, where the posture of the electronic component held with the component suction nozzle is detected, based on which the position and angle of the electronic component in relation to a predetermined position on a circuit substrate are corrected, and further to a component mounting position, where the picked-up electronic component is mounted on the predetermined position on the circuit substrate, according to the present invention, comprises: a displacement amount data processing means for obtaining data on an amount of displacement of the electronic component from a prescribed holding position of the suction nozzle corresponding to each of the parts cassettes based on posture recognition results detected at the posture recognizing position, and a drive means for moving the component feeding unit or the parts cassette so as to adjust the component feeding position to the component pick-up position in a direction for correcting the amount of displacement of the electronic component which is obtained from the displacement amount data.
With the above described structure, from the data on the posture of the component held by the nozzle with respect to all the electronic components detected at the posture recognizing position, the data on displacement amount of the component per each parts cassettes can be obtained by means of the displacement data processing means, wherefore the tendency of displacement in the component feeding position with respect to the pick-up position of the component suction nozzle can be recognized. Specifically, if it is found that all of the electronic components are displaced in the same direction, it is determined that the position of the component feeding unit or the parts cassettes in its entirety is inappropriate in relation to the component pick-up position, whereupon the component feeding unit or the entire group of parts cassettes is moved in a direction for correcting the displacement based on the obtained amount of displacement. Also, if it is found that only a specific type of electronic components are always picked up in a displaced position, it is determined that the feeding position of the parts cassette which feeds this type of electronic component is inappropriate, whereupon the feeding position of the parts cassette which feeds the component is adjusted.
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings for better understanding of the present invention.
Meanwhile, as shown in
It is possible to carry out accurate mounting operation thanks to the position correcting actions as described above, even in the case where the electronic component is held with the suction nozzle 11 in a displaced posture. However, in a circuit substrate 5 with high mounting density as previously shown in
Therefore, in the component mounting device of the present invention, there is provided a means for adjusting the pick-up position of the electronic component by the suction nozzle 11. The amount of displacement of the electronic component from a predetermined position of the suction nozzle 11 can be recognized by image recognition using the posture recognition camera 4 disposed under the posture recognizing position B, which is then inputted in a displacement detecting section (displacement amount data processing means) 7. As shown in
Displacement of the electronic component from a predetermined position of the suction nozzle 11 is caused sporadically when being picked up by the nozzle 11. On the other hand, if the position of the suction nozzle 11 at the component pick-up position A and the position of the parts cassettes 3 are not correspondent to each other, it is also the cause of displacement of the component. Consequently, data can be obtained as to whether the displacement is found only in one specific type of electronic component or in all types of the electronic component by storing data of displacement amount for each of the different types of electronic components.
If displacement is found only in a specific type of electronic components, it can be determined that the component feeding position of the parts cassette 3 which feeds this type of component is inappropriate. Accordingly, adjustment is made so that components are accurately fed to the component feeding position A from the parts cassette 3 in question. Also, if it is found that all of the electronic components are picked up in a displaced posture, it can be determined that the disposition of the component feeding unit 2 or the loading position of the entire group of the parts cassettes 3 on the component feeding unit 2 is displaced, and adjustment is made accordingly.
Such adjustment can be accomplished manually at the time when it is detected at the displacement detecting section 7 that the amount of displacement is beyond a permissible range, but it is also possible to construct such that the component feeding unit 2 is provided with a drive mechanism 10 (drive means) as shown in
It is also possible to provide each of the parts cassettes 3 with a mechanism for moving in a minute amount in the X-axis direction and to construct such that the movement of each parts cassette 3 (in the Y-axis direction) imparted by the component feeding unit 2 toward the component feeding position A is adjusted based on the amount of displacement, whereby displacement of a specific electronic component can be also corrected.
The component mounting device of the above described construction is constituted such that in case the amount of displacement of the component is larger than a prescribed value, it is informed that the parts cassette 3 from which the component being held by the suction nozzle 11 is in abnormal condition, and the action of mounting that component is stopped. Such mounting action is performed as will be described below.
At the component pick-up position A, the component loaded on the parts cassette 3 is picked up by the suction nozzle 11 and is transferred to the next position or the posture recognizing position B with the rotation of the head 1a of the suction nozzle unit 1. At the posture recognizing position B where the electrode or the shape of the picked-up component is recognized, an amount of displacement between a central position of the nozzle and that of the component is measured and the data is saved in a displacement detecting section (data measurement/process unit) 7. The displacement detecting section 7 controls the device to pause so that the component 12 currently held by the suction nozzle 11 is not to be mounted, or pauses the device and simultaneously generates a warning sign, in order to prevent interference between a component 12a which has previously been mounted and the suction nozzle 11, when the measured amount of displacement p, i.e., the difference q between the outer edge of the component 12 and that of the suction nozzle 11, is equal to or larger than the space r between two adjacent components (q≧r). At the same time, a warning sign indicating abnormality of the parts cassette 3 from which the currently held component 12 has been fed is generated.
An alarm indicator 21 shown in
First, at step S1, it is determined whether the height h of the component 12 which is going to be mounted is larger than the height H of the adjacent component 12a which has previously been mounted (see
Although the above embodiment has been described in relation to a case in which the apparatus is in operation, various modifications are of course possible. For example, in a preparation step prior to actual manufacturing operation, components accommodated in the parts cassettes which are installed in a component feeding unit may be picked up from all of the parts cassettes with suction nozzles and the measurement with respect to center positions of the nozzles and the components may be made, so that abnormality of each nozzle and parts cassette can be detected based on that data. In such a case, if there are defective nozzles or parts cassettes, they can be identified prior to actual production, whereby mounting errors can be prevented.
Also, although the above described embodiment has been described in relation to a component mounting device of rotary structure provided with a suction nozzle unit, the present invention is not limited to this and may be also adopted to a device of another type in which, for example, the suction nozzle moves in X- and Y-directions. Furthermore, the parts cassettes as have been described in the above embodiment are not limited to a tape-like component assembly but may be, for example, a stocker type component feeder.
While a preferred embodiment of the invention has been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
P9-181261 | Jul 1997 | JP | national |
P9-353293 | Dec 1997 | JP | national |
This is a division of application Ser. No. 09/109,352, filed Jul. 2, 1998 now U.S. Pat. No. 6,230,393.
Number | Name | Date | Kind |
---|---|---|---|
4494902 | Kuppens et al. | Jan 1985 | A |
4615093 | Tews et al. | Oct 1986 | A |
4631816 | Fujita et al. | Dec 1986 | A |
4768647 | Lehtola | Sep 1988 | A |
4827436 | Sabersky et al. | May 1989 | A |
4858308 | Komori | Aug 1989 | A |
4880106 | Falconer et al. | Nov 1989 | A |
4952109 | Hendricks | Aug 1990 | A |
4969256 | Shimizu et al. | Nov 1990 | A |
4995157 | Hall | Feb 1991 | A |
4999909 | Eguchi et al. | Mar 1991 | A |
5033185 | Hidese | Jul 1991 | A |
5060366 | Asai et al. | Oct 1991 | A |
RE33780 | Itagaki et al. | Dec 1991 | E |
5070598 | Itagaki et al. | Dec 1991 | A |
5086556 | Toi | Feb 1992 | A |
5145099 | Wood et al. | Sep 1992 | A |
5208969 | Hidese | May 1993 | A |
5278634 | Skunes et al. | Jan 1994 | A |
5329692 | Kashiwagi | Jul 1994 | A |
5337465 | Tamaki et al. | Aug 1994 | A |
5384956 | Sakurai et al. | Jan 1995 | A |
5457874 | Konezawa et al. | Oct 1995 | A |
5498942 | Ijuin | Mar 1996 | A |
5539977 | Kano et al. | Jul 1996 | A |
5568264 | Nakatsuka et al. | Oct 1996 | A |
5570993 | Onodera et al. | Nov 1996 | A |
5588195 | Asai et al. | Dec 1996 | A |
5605430 | Legrady | Feb 1997 | A |
5607097 | Sato et al. | Mar 1997 | A |
5608642 | Onodera | Mar 1997 | A |
5639009 | Abe | Jun 1997 | A |
5651176 | Ma et al. | Jul 1997 | A |
5660519 | Ohta et al. | Aug 1997 | A |
5671527 | Asai et al. | Sep 1997 | A |
5727311 | Ida et al. | Mar 1998 | A |
5741114 | Onodera | Apr 1998 | A |
5743005 | Nakao et al. | Apr 1998 | A |
5768759 | Hudson | Jun 1998 | A |
5768765 | Fujioka et al. | Jun 1998 | A |
5778524 | Stridsberg | Jul 1998 | A |
5855059 | Togami et al. | Jan 1999 | A |
5858806 | Nishida | Jan 1999 | A |
5864944 | Kashiwagi et al. | Feb 1999 | A |
5867897 | Mimura et al. | Feb 1999 | A |
5884831 | Sato et al. | Mar 1999 | A |
5924192 | Wuyts | Jul 1999 | A |
6056109 | Hidai et al. | May 2000 | A |
6088911 | Isogai et al. | Jul 2000 | A |
6230393 | Hirano et al. | May 2001 | B1 |
6493931 | Hirano et al. | Dec 2002 | B2 |
Number | Date | Country |
---|---|---|
2-191400 | Jul 1990 | JP |
4-49405 | Feb 1992 | JP |
4-162500 | Jun 1992 | JP |
6-244598 | Sep 1994 | JP |
7-79096 | Mar 1995 | JP |
9-186493 | Jul 1997 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 09109352 | Jul 1998 | US |
Child | 09809488 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09809488 | Mar 2001 | US |
Child | 11388168 | US |