1. Field
The field of the invention relates to microelectromechanical systems (MEMS).
2. Background
Microelectromechanical systems (MEMS) include micro mechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. An interferometric modulator may comprise a pair of conductive plates, one or both of which may be transparent and/or reflective in whole or part and capable of relative motion upon application of an appropriate electrical signal. One plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Preferred Embodiments” one will understand how the features of this invention provide advantages over other display devices.
One embodiment is a light modulator. The light modulator includes a fixed reflector comprising an electrically conductive layer and a partially reflective layer. The light modulator further comprises an electrode positioned at a distance from the fixed reflector and defining a first cavity therebetween. The light modulator further comprises a movable reflector comprising an electrically conductive material. The movable reflector is positioned between the fixed reflector and the electrode. The movable reflector is movable between an undriven position, a first driven position, and a second driven position. The first driven position is closer to the fixed reflector than is the undriven position and the second driven position is farther from the fixed reflector than is the undriven position.
Another embodiment is a light modulator comprising a first reflector, a first electrode positioned at a distance from the first reflector, and a second reflector positioned between the first reflector and the first electrode. The second reflector is movable between an undriven position, a first driven position, and a second driven position. The first driven position is closer to the first reflector than is the undriven position and the second driven position is farther from the first reflector than is the undriven position.
Another embodiment is a method of driving a MEMS device comprising a first electrode, a second electrode, and a movable electrode positioned between the first electrode and the second electrode and configured to move to at least two positions therebetween. The method includes applying a first voltage potential difference between the first electrode and the movable electrode so as to drive the movable electrode to a position substantially in contact with a dielectric layer, wherein an attractive force is created between the movable electrode and the dielectric layer. The method further includes applying a second voltage potential difference between the first electrode and the movable electrode and a third voltage potential difference between the second electrode and the movable electrode so as to overcome the attractive force between the movable electrode and the dielectric layer and to drive the movable electrode away from the dielectric layer.
Another embodiment is a method of fabricating a multistate light modulator. The method includes forming a first reflector. The method further includes forming a first electrode positioned at a distance from the first reflector. The method further includes forming a second reflector positioned between the first reflector and the first electrode. The second reflector is made movable between an undriven position, a first driven position, and a second driven position, wherein the first driven position is closer to the first reflector than is the undriven position and wherein the second driven position is farther from the first reflector than is the undriven position.
Another embodiment is a display comprising a plurality of display elements. Each of the display elements includes a first reflective member, a first conductive member positioned at a distance from the first reflective member, and a second reflective member positioned between the first reflective member and the first conductive member. The second reflective member is movable between an undriven position, a first driven position, and a second driven position. The first driven position is closer to the first reflective member than is the undriven position and the second driven position is farther from the first reflective member than is the undriven position.
An interferometric modulator has a reflector which is movable between three positions. In an undriven state of the modulator, the movable mirror is in an undriven position. In a first driven state of the modulator, the movable mirror is deflected toward a fixed mirror to a first driven position which is closer to the fixed mirror than is the undriven position. In a second driven state of the modulator, the movable mirror is deflected away from the fixed mirror to a second driven position which is farther from the fixed mirror than is the undriven position. In one embodiment, the modulator is non-reflective, e.g., black, when the movable mirror is in the undriven position, reflects white light when the movable mirror is in the first driven position, and reflects a selected color of light when the movable mirror is in the second driven position. A color display including such modulators thus reflects relatively intense white light while having a large color gamut.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the invention may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the invention may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The fixed layers 16a, 16b are electrically conductive, partially transparent and partially reflective, and may be fabricated, for example, by depositing one or more layers each of chromium and indium-tin-oxide onto a transparent substrate 20. The layers are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed metal layers by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form column electrodes in a display device.
With no applied voltage, the cavity 19 remains between the layers 14a, 16a and the deformable layer is in a mechanically relaxed state as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array controller 22. In one embodiment, the array controller 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a pixel array 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
Embodiments of interferometric modulators described above operate in one of a reflective state, which produces white light, or light of a color determined by the distance between the mirrors 14 and 16, or in a non-reflective, e.g., black, state. In other embodiments, for example, embodiments disclosed in U.S. Pat. No. 5,986,796, the movable mirror 14 may be positioned at a range of positions relative to the fixed mirror 16 to vary the size of the resonant gap 19, and thus the color of reflected light.
In one embodiment, a dielectric layer 104 of a material such as alumina (Al2O3) is positioned over a layer of chrome that forms a reflective surface of the mirror 16. As discussed above with reference to
As discussed above, the modulator 12 includes an optical cavity formed between the mirrors 14 and 16. The characteristic distance, or effective optical path length, L, of the optical cavity determines the resonant wavelengths, λ, of the optical cavity and thus of the interferometric modulator 12. The resonant wavelength, λ, of the interferometric modulator 12 generally corresponds to the perceived color of light reflected by the modulator 12. Mathematically, the distance L=½ N λ, where N is an integer. A given resonant wavelength, λ, is thus reflected by interferometric modulators 12 having distances L of ½λ (N=1), λ (N=2), 3/2λ (N=3), etc. The integer N may be referred to as the order of interference of the reflected light. As used herein, the order of a modulator 12 also refers to the order N of light reflected by the modulator 12 when the mirror 14 is in at least one position. For example, a first order red interferometric modulator 12 may have a distance L of about 325 nm, corresponding to a wavelength λ of about 650 nm. Accordingly, a second order red interferometric modulator 12 may have a distance L of about 650 nm. Generally, higher order modulators 12 reflect light over a narrower range of wavelengths and thus produce colored light that is more saturated.
Note that in certain embodiments, the distance, L, is substantially equal to the distance between the mirrors 14 and 16. Where the space between the mirrors 14 and 16 comprises only a gas (e.g., air) having an index of refraction of approximately 1, the effective optical path length is substantially equal to the distance between the mirrors 14 and 16. In embodiments that include the dielectric layer 104, which has an index of refraction greater than one, the optical cavity is formed to have the desired optical path length by selecting the distance between the mirrors 14 and 16 and by selecting the thickness and index of refraction of the dielectric layer 104, or of any other layers between the mirrors 14 and 16. In one embodiment, the mirror 14 may be deflected one or more positions within a range of positions to output a corresponding range of colors. For example, the voltage potential difference between the row and column electrodes may be adjusted to deflect the mirror 14 to one of a range of positions in relation to the mirror 16. In general, the greatest level of control of the position of the mirror by adjusting voltage is near the undeflected position of the path of the mirror 14 (for example, for smaller deflections, such as deflections within about ⅓rd of the maximum deflection from the undeflected position of the mirror 14).
Each of a particular group of positions 111-115 of the movable mirror 14 is denoted in
As the gap is increased to the position 112, the modulator 12 exhibits a shade of gray as the increased gap distance between the mirrors 14 and 16 reduces the reflectivity of the mirror 14. At the position 113, the distance L is such that the cavity operates interferometrically but reflects substantially no visible wavelengths of light because the resonant wavelength is outside the visible range.
As the distance L is increased further, a peak spectral response of the modulator 12 moves into visible wavelengths. Thus, when the movable mirror 14 is at position 114, the modulator 12 reflects blue light. When the movable mirror 14 is at the position 115, the modulator 12 reflects green light. When the movable mirror 14 is at the non-deflected position 116, the modulator 12 reflects red light.
In designing a display using interferometric modulators 12, the modulators 12 may be formed so as to increase the color saturation of reflected light. Saturation refers to the intensity of the hue of color light. A highly saturated hue has a vivid, intense color, while a less saturated hue appears more muted and grey. For example, a laser, which produces a very narrow range of wavelengths, produces highly saturated light. Conversely, a typical incandescent light bulb produces white light that may have a desaturated red or blue color. In one embodiment, the modulator 12 is formed with a distance L corresponding to higher order of interference, e.g., 2nd or 3rd order, to increase the saturation of reflected color light.
An exemplary color display includes red, green, and blue display elements. Other colors are produced in such a display by varying the relative intensity of light produced by the red, green, and blue elements. Such mixtures of primary colors such as red, green, and blue are perceived by the human eye as other colors. The relative values of red, green, and blue in such a color system may be referred to as tristimulus values in reference to the stimulation of red, green, and blue light sensitive portions of the human eye. In general, the more saturated the primary colors, the greater the range of colors that can be produced by the display. In other embodiments, the display may include modulators 12 having sets of colors that define other color systems in terms of sets of primary colors other than red, green, and blue.
Points 128 indicate the spectral response of another set of exemplary modulators 12. As indicated by the smaller distance between the points 128 and the white point 122 than between points 120 and point 122, the modulators 12 corresponding to the points 128 produce less saturated light that do the modulators 12 corresponding to the points 120. The trace 130 indicates the range of colors that can be produced by mixing the light of points 128. As is shown in
In a reflective display, white light produced using such saturated interferometric modulators tends to have a relatively low intensity to a viewer because only a small range of incident wavelengths is reflected to form the white light. In contrast, a mirror reflecting broadband white light, e.g., substantially all incident wavelengths, has a greater intensity because a greater range of incident wavelengths is reflected. Thus, designing reflective displays using combinations of primary colors to produce white light generally results in a tradeoff between color saturation and color gamut and the brightness of white light output by the display.
In certain embodiments, each of the mirrors 14 and 16 may be part of a stack of layers defining a reflector or reflective member that perform functions other than reflecting light. For example, in the exemplary modulator of
In one embodiment that includes modulators that reflect red, green, and blue light, different reflective materials are used for modulators that reflect different colors so as to improve the spectral response of such modulators 12. For example, the movable mirror 14 may include gold in the modulators 12 configured to reflect red light.
In one embodiment, dielectric layers 144 may be positioned on either side of the conductor 142. The dielectric layers 144a and 104 advantageously prevent electrical shorts between conductive portions of the mirror 14 and other portions of the modulator 140. In one embodiment, the mirror 16 and the electrode 102 collectively form a reflective member.
In the exemplary embodiment, the distance between fixed mirror 16 and the movable mirror 14 in its undriven position corresponds to the optical path length L in which the modulator 140 is non-reflective or “black.” In the exemplary embodiment, the optical path length between the fixed mirror 16 and the movable mirror 14 when driven towards the fixed mirror 16 corresponds to the optical path length L in which the modulator 140 reflects white light. In the exemplary embodiment, the distance between the fixed mirror 16 and the movable mirror 14 when driven towards the conductor 142 corresponds to the optical path length L in which the modulator 140 reflects light of a color such as red, blue, or green. In certain embodiments, the distance between the undriven movable mirror 14 and the fixed mirror 16 is substantially equal to the distance between the undriven movable mirror 14 and the electrode 142. Such embodiments may be considered to be two modulators positioned around the single movable mirror 14.
When a first voltage potential difference is applied between the mirror 14 and the electrode 102, the mirror 14 deflects towards the mirror 16 to define a first optical path length, L, that corresponds to a first driven state. In this first driven state, the movable mirror 14 is closer to the mirror 16 than in the undriven state. When a second voltage potential difference is applied between the mirror 14 and the electrode 142, the mirror 14 is deflected away from the mirror 16 to define a second optical path length, L, that corresponds to a second driven state. In this second driven state, the movable mirror 14 is farther from the mirror 16 than in the undriven state. In certain embodiments, at least one of the first driven state and second driven state is achieved by applying voltage potential differences both between the mirror 14 and the electrode 102 and between the mirror 14 and the electrode 142. In certain embodiments, the second voltage difference is selected to provide a desired deflection of the mirror 14.
As illustrated in
In the second driven state, the mirror 14 deflects to a position indicated by the dashed line 154. In the exemplary modulator 140, this distance corresponds to a color of light, e.g., blue light. In the undriven state, the mirror 14 is positioned as shown in
In one embodiment, light enters the modulator 12 through the substrate 20 and is output to a viewing position 141. In another embodiment, the stack of layers illustrated in
As noted above, having a separate state for outputting white light in a modulator 140 decouples the selection of the properties of the modulator controlling color saturation from the properties affecting the brightness of white output. The distance and other characteristics of the modulator 140 may thus be selected to provide a highly saturated color without affecting the white light produced in the first state. For example, in an exemplary color display, one or more of the red, green, and blue modulators 12 may be formed with optical path lengths L corresponding to a higher order of interference.
The modulator 140 may be formed using lithographic techniques known in the art, and such as described above with reference to the modulator 12. For example, the fixed mirror 16 may be formed by depositing one or more layers of chromium onto the substantially transparent substrate 20. The electrode 102 may be formed by depositing one or more layers of a transparent conductor such as ITO onto the substrate 20. The conductor layers are patterned into parallel strips, and may form columns of electrodes. The movable mirror 14 may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the column electrodes 102) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. Vias through one or more of the layers described above may be provided so that etchant gas, such as xenon diflouride, can reach the sacrificial layers. When the sacrificial material is etched away, the deformable metal layers are separated from the fixed layers by an air gap. A highly conductive and reflective material such as aluminum may be used for the deformable layers, and these strips may form row electrodes in a display device. The conductor 142 may be formed by depositing posts 18a over the movable mirror 14, depositing an intervening sacrificial material between the posts 18a, depositing one or more layers of a conductor such as aluminum on top of the posts 18a, and depositing a conductive layer over the sacrificial material. When the sacrificial material is etched away, the conductive layer can serve as the electrode 142 which is separated from the mirror 14 by a second air gap. Each of the air gaps provides a cavity in which the mirror 14 may move to achieve each of the states described above.
As further illustrated in
As will be appreciated by one of skill in the art, this reverse driven state can be achieved in a number of ways. In one embodiment, the reverse driven state is achieved through the use of an additional charge plate or conductive layer 142 that can electrostatically pull the mirror 16 in the upward direction, as depicted in
In certain embodiments, the additional conductive layer 142 may be useful as an electrode in overcoming stictional forces (static friction) that may develop when the mirror 14 comes in close proximity, or contacts, the dielectric layer 104. These forces can include van der Waals or electrostatic forces, as well as other possibilities as appreciated by one of skill in the art. In one embodiment, a voltage pulse applied to the conductive layer of the mirror 16 may send the movable mirror 14 into the “normal” driven state of
As will be appreciated by one of skill in the art, not all of these elements will be required in every embodiment. For example, if the precise relative amount of upward deflection (e.g., as shown in
As will be appreciated by one of skill in the art, the materials used to produce the layers 142, 144a, and support surface 148 need not be similar to the materials used to produce the corresponding layers 16, 105 and 20. For example, light need not pass through the layer 148. Additionally, if the conductive layer 142 is positioned beyond the reach of the movable mirror 14 in its deformed upward position, then the modulator 150 may not include the dielectric layer 144a. Additionally, the voltages applied to the conductive layer 142 and the movable mirror 14 can be accordingly different based on the above differences.
As will be appreciated by one of skill in the art, the voltage applied to drive the movable mirror 14 from the driven state of
In some embodiments, the amount of force or duration that a force is applied between the conductive layer 142 and the movable mirror 14 is such that it only increases the rate at which the interferometric modulator transitions between the driven state and the undriven state. Since the movable mirror 14 can be attracted to either conductive layer 142 or the conductive mirror 16, which are located on opposite sides of movable mirror 14, a very brief driving force can be provided to weaken the interaction of movable mirror 14 with the opposite layer. For example, as the movable mirror 14 is driven to interact with fixed conductive mirror 16, a pulse of energy to the opposite conductive layer 142 can be used to weaken the interaction of the movable mirror 14 and the fixed mirror 16, thereby make it easier for the movable mirror 14 to move to the undriven state.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others. The scope of the invention is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application is a continuation of U.S. patent application Ser. No. 12/940,884, filed Nov. 5, 2010, now U.S. Pat. No. 8,213,075, which is a continuation of U.S. patent application Ser. No. 12/115,829, filed May 6, 2008, now U.S. Pat. No. 7,839,557, which is a continuation of U.S. patent application Ser. No. 11/112,734, filed Apr. 22, 2005, now U.S. Pat. No. 7,372,613, which claims the benefit of U.S. Provisional Application No. 60/613,486 filed Sep. 27, 2004, and U.S. Provisional Application No. 60/613,499 filed Sep. 27, 2004. Each of the foregoing applications is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2534846 | Ambrose et al. | Dec 1950 | A |
2590906 | Tripp | Apr 1952 | A |
2677714 | Auwarter | May 1954 | A |
3247392 | Thelen | Apr 1966 | A |
3439973 | Bernt et al. | Apr 1969 | A |
3443854 | Herbert | May 1969 | A |
3653741 | Alvin | Apr 1972 | A |
3656836 | De Cremoux et al. | Apr 1972 | A |
3679313 | Rosenberg | Jul 1972 | A |
3725868 | Malmer et al. | Apr 1973 | A |
3728030 | Hawes | Apr 1973 | A |
3813265 | Marks | May 1974 | A |
3886310 | Guldberg | May 1975 | A |
3955190 | Teraishi | May 1976 | A |
3955880 | Lierke | May 1976 | A |
4099854 | Decker et al. | Jul 1978 | A |
4196396 | Smith | Apr 1980 | A |
4228437 | Shelton | Oct 1980 | A |
4377324 | Durand et al. | Mar 1983 | A |
4389096 | Hori et al. | Jun 1983 | A |
4392711 | Moraw et al. | Jul 1983 | A |
4403248 | te Velde | Sep 1983 | A |
4421381 | Ueda et al. | Dec 1983 | A |
4441789 | Pohlack | Apr 1984 | A |
4441791 | Hornbeck | Apr 1984 | A |
4445050 | Marks | Apr 1984 | A |
4459182 | Te Velde | Jul 1984 | A |
4482213 | Piliavin et al. | Nov 1984 | A |
4497974 | Deckman et al. | Feb 1985 | A |
4498953 | Cook et al. | Feb 1985 | A |
4500171 | Penz et al. | Feb 1985 | A |
4519676 | Te Velde | May 1985 | A |
4531126 | Sadones | Jul 1985 | A |
4560435 | Brown et al. | Dec 1985 | A |
4566935 | Hornbeck | Jan 1986 | A |
4571603 | Hornbeck et al. | Feb 1986 | A |
4596992 | Hornbeck | Jun 1986 | A |
4615595 | Hornbeck | Oct 1986 | A |
4655554 | Armitage | Apr 1987 | A |
4662746 | Hornbeck | May 1987 | A |
4663083 | Marks | May 1987 | A |
4666254 | Itoh et al. | May 1987 | A |
4681403 | Te Velde et al. | Jul 1987 | A |
4705361 | Frazier et al. | Nov 1987 | A |
4710732 | Hornbeck | Dec 1987 | A |
4748366 | Taylor | May 1988 | A |
4779959 | Saunders | Oct 1988 | A |
4786128 | Birnbach | Nov 1988 | A |
4790635 | Apsley | Dec 1988 | A |
4822993 | Dillon et al. | Apr 1989 | A |
4856863 | Sampsell et al. | Aug 1989 | A |
4857978 | Goldburt et al. | Aug 1989 | A |
4859060 | Katagiri et al. | Aug 1989 | A |
4900136 | Goldburt et al. | Feb 1990 | A |
4900395 | Syverson et al. | Feb 1990 | A |
4925259 | Emmett | May 1990 | A |
4937496 | Neiger et al. | Jun 1990 | A |
4954789 | Sampsell | Sep 1990 | A |
4956619 | Hornbeck | Sep 1990 | A |
4965562 | Verhulst | Oct 1990 | A |
4973131 | Carnes | Nov 1990 | A |
4982184 | Kirkwood | Jan 1991 | A |
5018256 | Hornbeck | May 1991 | A |
5022745 | Zayhowski et al. | Jun 1991 | A |
5028939 | Hornbeck et al. | Jul 1991 | A |
5037173 | Sampsell et al. | Aug 1991 | A |
5044736 | Jaskie et al. | Sep 1991 | A |
5061049 | Hornbeck | Oct 1991 | A |
5062689 | Koehler | Nov 1991 | A |
5075796 | Schildkraut et al. | Dec 1991 | A |
5078479 | Vuilleumier | Jan 1992 | A |
5079544 | DeMond et al. | Jan 1992 | A |
5083857 | Hornbeck | Jan 1992 | A |
5091983 | Lukosz | Feb 1992 | A |
5096279 | Hornbeck et al. | Mar 1992 | A |
5099353 | Hornbeck | Mar 1992 | A |
5124834 | Cusano et al. | Jun 1992 | A |
5136669 | Gerdt | Aug 1992 | A |
5142405 | Hornbeck | Aug 1992 | A |
5142414 | Koehler | Aug 1992 | A |
5153771 | Link et al. | Oct 1992 | A |
5162787 | Thompson et al. | Nov 1992 | A |
5168406 | Nelson | Dec 1992 | A |
5170156 | DeMond et al. | Dec 1992 | A |
5170283 | O'Brien et al. | Dec 1992 | A |
5172262 | Hornbeck | Dec 1992 | A |
5179274 | Sampsell | Jan 1993 | A |
5192395 | Boysel et al. | Mar 1993 | A |
5192946 | Thompson et al. | Mar 1993 | A |
5206629 | DeMond et al. | Apr 1993 | A |
5212582 | Nelson | May 1993 | A |
5214419 | DeMond et al. | May 1993 | A |
5214420 | Thompson et al. | May 1993 | A |
5216537 | Hornbeck | Jun 1993 | A |
5226099 | Mignardi et al. | Jul 1993 | A |
5228013 | Bik | Jul 1993 | A |
5231532 | Magel et al. | Jul 1993 | A |
5233385 | Sampsell | Aug 1993 | A |
5233456 | Nelson | Aug 1993 | A |
5233459 | Bozler et al. | Aug 1993 | A |
5254980 | Hendrix et al. | Oct 1993 | A |
5272473 | Thompson et al. | Dec 1993 | A |
5278652 | Urbanus et al. | Jan 1994 | A |
5280277 | Hornbeck | Jan 1994 | A |
5287096 | Thompson et al. | Feb 1994 | A |
5293272 | Jannson et al. | Mar 1994 | A |
5296950 | Lin et al. | Mar 1994 | A |
5305640 | Boysel et al. | Apr 1994 | A |
5311360 | Bloom et al. | May 1994 | A |
5312513 | Florence et al. | May 1994 | A |
5315370 | Bulow | May 1994 | A |
5323002 | Sampsell et al. | Jun 1994 | A |
5324683 | Fitch et al. | Jun 1994 | A |
5325116 | Sampsell | Jun 1994 | A |
5326430 | Cronin et al. | Jul 1994 | A |
5327286 | Sampsell et al. | Jul 1994 | A |
5331454 | Hornbeck | Jul 1994 | A |
5339116 | Urbanus et al. | Aug 1994 | A |
5345328 | Fritz et al. | Sep 1994 | A |
5355357 | Yamamori et al. | Oct 1994 | A |
5358601 | Cathey | Oct 1994 | A |
5365283 | Doherty et al. | Nov 1994 | A |
5381232 | Van Wijk | Jan 1995 | A |
5381253 | Sharp et al. | Jan 1995 | A |
5401983 | Jokerst et al. | Mar 1995 | A |
5411769 | Hornbeck | May 1995 | A |
5444566 | Gale et al. | Aug 1995 | A |
5446479 | Thompson et al. | Aug 1995 | A |
5448314 | Heimbuch et al. | Sep 1995 | A |
5452024 | Sampsell | Sep 1995 | A |
5452138 | Mignardi et al. | Sep 1995 | A |
5454906 | Baker et al. | Oct 1995 | A |
5457493 | Leddy et al. | Oct 1995 | A |
5457566 | Sampsell et al. | Oct 1995 | A |
5459602 | Sampsell | Oct 1995 | A |
5459610 | Bloom et al. | Oct 1995 | A |
5461411 | Florence et al. | Oct 1995 | A |
5471341 | Warde et al. | Nov 1995 | A |
5474865 | Vasudev | Dec 1995 | A |
5489952 | Gove et al. | Feb 1996 | A |
5497172 | Doherty et al. | Mar 1996 | A |
5497197 | Gove et al. | Mar 1996 | A |
5499037 | Nakagawa et al. | Mar 1996 | A |
5499062 | Urbanus | Mar 1996 | A |
5500635 | Mott | Mar 1996 | A |
5500761 | Goossen et al. | Mar 1996 | A |
5506597 | Thompson et al. | Apr 1996 | A |
5515076 | Thompson et al. | May 1996 | A |
5517347 | Sampsell | May 1996 | A |
5523803 | Urbanus et al. | Jun 1996 | A |
5526051 | Gove et al. | Jun 1996 | A |
5526172 | Kanack | Jun 1996 | A |
5526327 | Cordova, Jr. | Jun 1996 | A |
5526688 | Boysel et al. | Jun 1996 | A |
5535047 | Hornbeck | Jul 1996 | A |
5548301 | Kornher et al. | Aug 1996 | A |
5550373 | Cole et al. | Aug 1996 | A |
5551293 | Boysel et al. | Sep 1996 | A |
5552924 | Tregilgas | Sep 1996 | A |
5552925 | Worley | Sep 1996 | A |
5559358 | Burns et al. | Sep 1996 | A |
5561523 | Blomberg et al. | Oct 1996 | A |
5563398 | Sampsell | Oct 1996 | A |
5567334 | Baker et al. | Oct 1996 | A |
5570135 | Gove et al. | Oct 1996 | A |
5579149 | Moret et al. | Nov 1996 | A |
5581272 | Conner et al. | Dec 1996 | A |
5583688 | Hornbeck | Dec 1996 | A |
5589852 | Thompson et al. | Dec 1996 | A |
5597736 | Sampsell | Jan 1997 | A |
5600383 | Hornbeck | Feb 1997 | A |
5602671 | Hornbeck | Feb 1997 | A |
5606441 | Florence et al. | Feb 1997 | A |
5608468 | Gove et al. | Mar 1997 | A |
5610438 | Wallace et al. | Mar 1997 | A |
5610624 | Bhuva | Mar 1997 | A |
5610625 | Sampsell | Mar 1997 | A |
5614937 | Nelson | Mar 1997 | A |
5619059 | Li et al. | Apr 1997 | A |
5619365 | Rhoads et al. | Apr 1997 | A |
5619366 | Rhoads et al. | Apr 1997 | A |
5629790 | Neukermans et al. | May 1997 | A |
5633652 | Kanbe et al. | May 1997 | A |
5636052 | Arney et al. | Jun 1997 | A |
5636185 | Brewer et al. | Jun 1997 | A |
5638084 | Kalt | Jun 1997 | A |
5638946 | Zavracky | Jun 1997 | A |
5641391 | Hunter et al. | Jun 1997 | A |
5646729 | Koskinen et al. | Jul 1997 | A |
5646768 | Kaeiyama | Jul 1997 | A |
5650881 | Hornbeck | Jul 1997 | A |
5654741 | Sampsell et al. | Aug 1997 | A |
5657099 | Doherty et al. | Aug 1997 | A |
5659374 | Gale, Jr. et al. | Aug 1997 | A |
5661591 | Lin et al. | Aug 1997 | A |
5661592 | Bornstein et al. | Aug 1997 | A |
5665997 | Weaver et al. | Sep 1997 | A |
5673139 | Johnson | Sep 1997 | A |
5683591 | Offenberg | Nov 1997 | A |
5699181 | Choi | Dec 1997 | A |
5703710 | Brinkman et al. | Dec 1997 | A |
5710656 | goossen | Jan 1998 | A |
5719068 | Suzawa et al. | Feb 1998 | A |
5726480 | Pister | Mar 1998 | A |
5734177 | Sakamoto | Mar 1998 | A |
5739945 | Tayebati | Apr 1998 | A |
5740150 | Uchimaru et al. | Apr 1998 | A |
5745193 | Urbanus et al. | Apr 1998 | A |
5745281 | Yi et al. | Apr 1998 | A |
5751469 | Arney et al. | May 1998 | A |
5771116 | Miller et al. | Jun 1998 | A |
5784190 | Worley | Jul 1998 | A |
5784212 | Hornbeck | Jul 1998 | A |
5786927 | Greywall et al. | Jul 1998 | A |
5793504 | Stoll | Aug 1998 | A |
5808780 | McDonald | Sep 1998 | A |
5808781 | Arney et al. | Sep 1998 | A |
5818095 | Sampsell | Oct 1998 | A |
5825528 | goossen | Oct 1998 | A |
5835255 | Miles | Nov 1998 | A |
5838484 | Goossen et al. | Nov 1998 | A |
5842088 | Thompson | Nov 1998 | A |
5867302 | Fleming | Feb 1999 | A |
5870221 | Goossen | Feb 1999 | A |
5905482 | Hughes et al. | May 1999 | A |
5912758 | Knipe et al. | Jun 1999 | A |
5914804 | Goossen | Jun 1999 | A |
5920418 | Shiono et al. | Jul 1999 | A |
5943158 | Ford et al. | Aug 1999 | A |
5959763 | Bozler et al. | Sep 1999 | A |
5961848 | Jacquet et al. | Oct 1999 | A |
5986796 | Miles | Nov 1999 | A |
5994174 | Carey et al. | Nov 1999 | A |
6028689 | Michalicek et al. | Feb 2000 | A |
6028690 | Carter et al. | Feb 2000 | A |
6031653 | Wang | Feb 2000 | A |
6038056 | Florence et al. | Mar 2000 | A |
6040937 | Miles | Mar 2000 | A |
6046659 | Loo et al. | Apr 2000 | A |
6046840 | Huibers | Apr 2000 | A |
6049317 | Thompson et al. | Apr 2000 | A |
6055090 | Miles | Apr 2000 | A |
6056406 | Park | May 2000 | A |
6061075 | Nelson et al. | May 2000 | A |
6097145 | Kastalsky et al. | Aug 2000 | A |
6099132 | Kaeriyama | Aug 2000 | A |
6100861 | Cohen et al. | Aug 2000 | A |
6100872 | Aratani et al. | Aug 2000 | A |
6113239 | Sampsell et al. | Sep 2000 | A |
6124851 | Jacobsen | Sep 2000 | A |
6147790 | Meier et al. | Nov 2000 | A |
6158156 | Patrick | Dec 2000 | A |
6160833 | Floyd et al. | Dec 2000 | A |
6171945 | Mandal et al. | Jan 2001 | B1 |
6172797 | Huibers | Jan 2001 | B1 |
6180428 | Peeters et al. | Jan 2001 | B1 |
6195196 | Kimura et al. | Feb 2001 | B1 |
6201633 | Peeters et al. | Mar 2001 | B1 |
6215221 | Cabuz et al. | Apr 2001 | B1 |
6232936 | Gove et al. | May 2001 | B1 |
6239777 | Sugahara et al. | May 2001 | B1 |
6242932 | Hembree | Jun 2001 | B1 |
6243149 | Swanson et al. | Jun 2001 | B1 |
6262697 | Stephenson | Jul 2001 | B1 |
6282010 | Sulzbach et al. | Aug 2001 | B1 |
6288472 | Cabuz et al. | Sep 2001 | B1 |
6288824 | Kastalsky | Sep 2001 | B1 |
6295154 | Laor et al. | Sep 2001 | B1 |
6301000 | Johnson | Oct 2001 | B1 |
6323982 | Hornbeck | Nov 2001 | B1 |
6323987 | Rinaudo et al. | Nov 2001 | B1 |
6327071 | Kimura | Dec 2001 | B1 |
6331909 | Dunfield | Dec 2001 | B1 |
6335235 | Bhekta et al. | Jan 2002 | B1 |
6335831 | Kowarz et al. | Jan 2002 | B2 |
6351329 | Greywall | Feb 2002 | B1 |
6356254 | Kimura | Mar 2002 | B1 |
6356378 | Huibers | Mar 2002 | B1 |
6358021 | Cabuz | Mar 2002 | B1 |
6376787 | Martin et al. | Apr 2002 | B1 |
6377233 | Colgan et al. | Apr 2002 | B2 |
6381022 | Zavracky | Apr 2002 | B1 |
6384952 | Clark et al. | May 2002 | B1 |
6400738 | Tucker et al. | Jun 2002 | B1 |
6407851 | Islam et al. | Jun 2002 | B1 |
6417868 | Bock et al. | Jul 2002 | B1 |
6433917 | Mei et al. | Aug 2002 | B1 |
6437583 | Tartagni et al. | Aug 2002 | B1 |
6438282 | Takeda et al. | Aug 2002 | B1 |
6447126 | Hornbeck | Sep 2002 | B1 |
6449084 | Guo | Sep 2002 | B1 |
6452712 | Atobe et al. | Sep 2002 | B2 |
6456420 | Goodwin-Johansson | Sep 2002 | B1 |
6465355 | Horsley | Oct 2002 | B1 |
6466190 | Evoy | Oct 2002 | B1 |
6466354 | Gudeman | Oct 2002 | B1 |
6466358 | Tew | Oct 2002 | B2 |
6473072 | Comiskey et al. | Oct 2002 | B1 |
6473274 | Maimone et al. | Oct 2002 | B1 |
6480177 | Doherty et al. | Nov 2002 | B2 |
6496122 | Sampsell | Dec 2002 | B2 |
6519073 | Goossen | Feb 2003 | B1 |
6545335 | Chua et al. | Apr 2003 | B1 |
6548908 | Chua et al. | Apr 2003 | B2 |
6549338 | Wolverton et al. | Apr 2003 | B1 |
6552840 | Knipe | Apr 2003 | B2 |
6556338 | Han et al. | Apr 2003 | B2 |
6574033 | Chui et al. | Jun 2003 | B1 |
6589625 | Kothari et al. | Jul 2003 | B1 |
6597490 | Tayebati | Jul 2003 | B2 |
6600201 | Hartwell et al. | Jul 2003 | B2 |
6606175 | Sampsell et al. | Aug 2003 | B1 |
6608268 | Goldsmith | Aug 2003 | B1 |
6624944 | Wallace et al. | Sep 2003 | B1 |
6625047 | Coleman, Jr. | Sep 2003 | B2 |
6630786 | Cummings et al. | Oct 2003 | B2 |
6632698 | Ives | Oct 2003 | B2 |
6635919 | Melendez et al. | Oct 2003 | B1 |
6643069 | Dewald | Nov 2003 | B2 |
6650455 | Miles | Nov 2003 | B2 |
6657832 | Williams et al. | Dec 2003 | B2 |
6660656 | Cheung et al. | Dec 2003 | B2 |
6661561 | Fitzpatrick et al. | Dec 2003 | B2 |
6666561 | Blakley | Dec 2003 | B1 |
6674033 | Wang | Jan 2004 | B1 |
6674090 | Chua et al. | Jan 2004 | B1 |
6674562 | Miles et al. | Jan 2004 | B1 |
6680792 | Miles | Jan 2004 | B2 |
6698295 | Sherrer | Mar 2004 | B1 |
6710908 | Miles et al. | Mar 2004 | B2 |
6738194 | Ramirez et al. | May 2004 | B1 |
6741377 | Miles | May 2004 | B2 |
6741383 | Huibers et al. | May 2004 | B2 |
6741384 | Martin et al. | May 2004 | B1 |
6741503 | Farris et al. | May 2004 | B1 |
6747785 | Chen et al. | Jun 2004 | B2 |
6747800 | Lin | Jun 2004 | B1 |
6768555 | Chen | Jul 2004 | B2 |
6775174 | Huffman et al. | Aug 2004 | B2 |
6778155 | Doherty et al. | Aug 2004 | B2 |
6794119 | Miles | Sep 2004 | B2 |
6809788 | Yamada et al. | Oct 2004 | B2 |
6811267 | Allen et al. | Nov 2004 | B1 |
6813059 | Hunter et al. | Nov 2004 | B2 |
6819469 | Koba | Nov 2004 | B1 |
6822628 | Dunphy et al. | Nov 2004 | B2 |
6829132 | Martin et al. | Dec 2004 | B2 |
6836366 | Flanders et al. | Dec 2004 | B1 |
6841081 | Chang et al. | Jan 2005 | B2 |
6844959 | Huibers et al. | Jan 2005 | B2 |
6849471 | Patel et al. | Feb 2005 | B2 |
6853129 | Cummings et al. | Feb 2005 | B1 |
6855610 | Tung et al. | Feb 2005 | B2 |
6859218 | Luman et al. | Feb 2005 | B1 |
6861277 | Monroe et al. | Mar 2005 | B1 |
6862022 | Slupe | Mar 2005 | B2 |
6862029 | D'Souza et al. | Mar 2005 | B1 |
6862127 | Ishii | Mar 2005 | B1 |
6867896 | Miles | Mar 2005 | B2 |
6870581 | Li et al. | Mar 2005 | B2 |
6870654 | Lin et al. | Mar 2005 | B2 |
6882458 | Lin et al. | Apr 2005 | B2 |
6882461 | Tsai et al. | Apr 2005 | B1 |
6891658 | Whitehead et al. | May 2005 | B2 |
6912022 | Lin et al. | Jun 2005 | B2 |
6913942 | Patel et al. | Jul 2005 | B2 |
6940630 | Xie | Sep 2005 | B2 |
6947200 | Huibers | Sep 2005 | B2 |
6952303 | Lin et al. | Oct 2005 | B2 |
6958847 | Lin | Oct 2005 | B2 |
6959990 | Penn | Nov 2005 | B2 |
6960305 | Doan et al. | Nov 2005 | B2 |
6980350 | Hung et al. | Dec 2005 | B2 |
6982820 | Tsai | Jan 2006 | B2 |
6983820 | Boast et al. | Jan 2006 | B2 |
7002726 | Patel et al. | Feb 2006 | B2 |
7006272 | Tsai | Feb 2006 | B2 |
7008812 | Carley | Mar 2006 | B1 |
7009754 | Huibers | Mar 2006 | B2 |
7012732 | Miles | Mar 2006 | B2 |
7027204 | Trisnadi et al. | Apr 2006 | B2 |
7034981 | Makigaki | Apr 2006 | B2 |
7046422 | Kimura et al. | May 2006 | B2 |
7053737 | Schwartz et al. | May 2006 | B2 |
7072093 | Piehl et al. | Jul 2006 | B2 |
7075700 | Muenter | Jul 2006 | B2 |
7113339 | Taguchi et al. | Sep 2006 | B2 |
7119945 | Kothari et al. | Oct 2006 | B2 |
7123216 | Miles | Oct 2006 | B1 |
7126738 | Miles | Oct 2006 | B2 |
7126741 | Wagner et al. | Oct 2006 | B2 |
7130104 | Cummings | Oct 2006 | B2 |
7138984 | Miles | Nov 2006 | B1 |
7142346 | Chui et al. | Nov 2006 | B2 |
7161728 | Sampsell et al. | Jan 2007 | B2 |
7184195 | Yang | Feb 2007 | B2 |
7184202 | Miles et al. | Feb 2007 | B2 |
7187489 | Miles | Mar 2007 | B2 |
7196837 | Sampsell et al. | Mar 2007 | B2 |
7198973 | Lin et al. | Apr 2007 | B2 |
7221495 | Miles et al. | May 2007 | B2 |
7236284 | Miles | Jun 2007 | B2 |
7242512 | Chui et al. | Jul 2007 | B2 |
7245285 | Yeh et al. | Jul 2007 | B2 |
7250315 | Miles | Jul 2007 | B2 |
7297471 | Miles | Nov 2007 | B1 |
7301704 | Miles | Nov 2007 | B2 |
7302157 | Chui | Nov 2007 | B2 |
7321456 | Cummings | Jan 2008 | B2 |
7321457 | Heald | Jan 2008 | B2 |
7327510 | Cummings et al. | Feb 2008 | B2 |
7355782 | Miles | Apr 2008 | B2 |
7369296 | Floyd | May 2008 | B2 |
7372613 | Chui et al. | May 2008 | B2 |
7372619 | Miles | May 2008 | B2 |
7379227 | Miles | May 2008 | B2 |
7382515 | Chung et al. | Jun 2008 | B2 |
7385748 | Miles | Jun 2008 | B2 |
7388697 | Chui et al. | Jun 2008 | B2 |
7388706 | Miles | Jun 2008 | B2 |
RE40436 | Kothari et al. | Jul 2008 | E |
7405852 | Hagood et al. | Jul 2008 | B2 |
7405863 | Tung et al. | Jul 2008 | B2 |
7417746 | Lin et al. | Aug 2008 | B2 |
7417784 | Sasagawa et al. | Aug 2008 | B2 |
7420725 | Kothari | Sep 2008 | B2 |
7436573 | Doan et al. | Oct 2008 | B2 |
7459402 | Doan et al. | Dec 2008 | B2 |
7460291 | Sampsell et al. | Dec 2008 | B2 |
7460292 | Chou | Dec 2008 | B2 |
7463421 | Miles | Dec 2008 | B2 |
7471444 | Miles | Dec 2008 | B2 |
7476327 | Tung et al. | Jan 2009 | B2 |
7477440 | Huang | Jan 2009 | B1 |
7483197 | Miles | Jan 2009 | B2 |
7486867 | Wang | Feb 2009 | B2 |
7489428 | Sampsell et al. | Feb 2009 | B2 |
7492503 | Chui | Feb 2009 | B2 |
7508566 | Feenstra et al. | Mar 2009 | B2 |
7511875 | Miles | Mar 2009 | B2 |
7527995 | Sampsell | May 2009 | B2 |
7527996 | Luo et al. | May 2009 | B2 |
7532377 | Miles | May 2009 | B2 |
7532381 | Miles | May 2009 | B2 |
7532386 | Cummings et al. | May 2009 | B2 |
7534640 | Sasagawa et al. | May 2009 | B2 |
7535466 | Sampsell et al. | May 2009 | B2 |
7535621 | Chiang | May 2009 | B2 |
7545554 | Chui et al. | Jun 2009 | B2 |
7547565 | Lin | Jun 2009 | B2 |
7550794 | Miles et al. | Jun 2009 | B2 |
7550810 | Mignard et al. | Jun 2009 | B2 |
7554711 | Miles | Jun 2009 | B2 |
7554714 | Chui et al. | Jun 2009 | B2 |
7556917 | Miles | Jul 2009 | B2 |
7561321 | Heald | Jul 2009 | B2 |
7564613 | Sasagawa et al. | Jul 2009 | B2 |
7566664 | Yan et al. | Jul 2009 | B2 |
7566940 | Sasagawa et al. | Jul 2009 | B2 |
7569488 | Rafanan | Aug 2009 | B2 |
7586484 | Sampsell et al. | Sep 2009 | B2 |
7605969 | Miles | Oct 2009 | B2 |
7612932 | Chui et al. | Nov 2009 | B2 |
7619810 | Miles | Nov 2009 | B2 |
7623287 | Sasagawa et al. | Nov 2009 | B2 |
7630119 | Tung et al. | Dec 2009 | B2 |
7630121 | Endisch et al. | Dec 2009 | B2 |
7642110 | Miles | Jan 2010 | B2 |
7649671 | Kothari et al. | Jan 2010 | B2 |
7660031 | Floyd | Feb 2010 | B2 |
7660058 | Qiu et al. | Feb 2010 | B2 |
7663794 | Cummings | Feb 2010 | B2 |
7672035 | Sampsell et al. | Mar 2010 | B2 |
7679627 | Sampsell et al. | Mar 2010 | B2 |
7679812 | Sasagawa et al. | Mar 2010 | B2 |
7684104 | Chui et al. | Mar 2010 | B2 |
7692844 | Miles | Apr 2010 | B2 |
7704772 | Tung et al. | Apr 2010 | B2 |
7704773 | Kogut et al. | Apr 2010 | B2 |
7711239 | Sasagawa et al. | May 2010 | B2 |
7719500 | Chui | May 2010 | B2 |
7719754 | Patel et al. | May 2010 | B2 |
7723015 | Miles | May 2010 | B2 |
7738157 | Miles | Jun 2010 | B2 |
7747109 | Zhong et al. | Jun 2010 | B2 |
7768690 | Sampsell | Aug 2010 | B2 |
7776631 | Miles | Aug 2010 | B2 |
7781850 | Miles et al. | Aug 2010 | B2 |
7782522 | Lan | Aug 2010 | B2 |
7782525 | Sampsell et al. | Aug 2010 | B2 |
7787173 | Chui | Aug 2010 | B2 |
7791787 | Miles | Sep 2010 | B2 |
7800809 | Miles | Sep 2010 | B2 |
7808694 | Miles | Oct 2010 | B2 |
7826120 | Miles | Nov 2010 | B2 |
7830586 | Miles | Nov 2010 | B2 |
7830587 | Miles | Nov 2010 | B2 |
7830588 | Miles | Nov 2010 | B2 |
7830589 | Floyd | Nov 2010 | B2 |
7835093 | Wang | Nov 2010 | B2 |
7839556 | Miles | Nov 2010 | B2 |
7839557 | Chui et al. | Nov 2010 | B2 |
7839559 | Miles | Nov 2010 | B2 |
7846344 | Miles | Dec 2010 | B2 |
7848001 | Miles | Dec 2010 | B2 |
7852544 | Sampsell et al. | Dec 2010 | B2 |
7852545 | Miles | Dec 2010 | B2 |
7864402 | Chui et al. | Jan 2011 | B2 |
7872792 | Miles | Jan 2011 | B2 |
7875485 | Sasagawa et al. | Jan 2011 | B2 |
7884989 | Gally et al. | Feb 2011 | B2 |
7889415 | Kothari | Feb 2011 | B2 |
7893919 | Kothari et al. | Feb 2011 | B2 |
7898722 | Miles | Mar 2011 | B2 |
7898723 | Khazeni et al. | Mar 2011 | B2 |
7903316 | Kothari et al. | Mar 2011 | B2 |
7907319 | Miles | Mar 2011 | B2 |
7916980 | Lasiter et al. | Mar 2011 | B2 |
7920135 | Sampsell et al. | Apr 2011 | B2 |
7924494 | Tung et al. | Apr 2011 | B2 |
7929197 | Miles | Apr 2011 | B2 |
7936031 | Sampsell et al. | May 2011 | B2 |
7936497 | Chui et al. | May 2011 | B2 |
7944500 | Nihei et al. | May 2011 | B2 |
7944599 | Chui et al. | May 2011 | B2 |
7944603 | Sasagawa et al. | May 2011 | B2 |
7948671 | Tung et al. | May 2011 | B2 |
7982700 | Chui et al. | Jul 2011 | B2 |
7999993 | Chui et al. | Aug 2011 | B2 |
8009347 | Chui et al. | Aug 2011 | B2 |
8014059 | Miles | Sep 2011 | B2 |
8023167 | Sampsell | Sep 2011 | B2 |
8035883 | Kothari | Oct 2011 | B2 |
8035884 | Miles | Oct 2011 | B2 |
8054532 | Miles | Nov 2011 | B2 |
8058549 | Kothari et al. | Nov 2011 | B2 |
8059326 | Miles | Nov 2011 | B2 |
8064124 | Chung et al. | Nov 2011 | B2 |
8081369 | Miles | Dec 2011 | B2 |
8081370 | Sampsell | Dec 2011 | B2 |
8081373 | Kothari et al. | Dec 2011 | B2 |
8098416 | Kothari et al. | Jan 2012 | B2 |
8105496 | Miles | Jan 2012 | B2 |
8115988 | Chui et al. | Feb 2012 | B2 |
8120125 | Sasagawa et al. | Feb 2012 | B2 |
8124434 | Gally et al. | Feb 2012 | B2 |
8149497 | Sasagawa et al. | Apr 2012 | B2 |
8213075 | Chui et al. | Jul 2012 | B2 |
8218229 | Sasagawa et al. | Jul 2012 | B2 |
8229253 | Zhong et al. | Jul 2012 | B2 |
8264763 | Miles | Sep 2012 | B2 |
8278726 | Miles et al. | Oct 2012 | B2 |
8284474 | Miles | Oct 2012 | B2 |
8289613 | Chui et al. | Oct 2012 | B2 |
8298847 | Kogut et al. | Oct 2012 | B2 |
8344470 | Sampsell et al. | Jan 2013 | B2 |
8368124 | Miles et al. | Feb 2013 | B2 |
8416487 | Miles | Apr 2013 | B2 |
8422108 | Miles | Apr 2013 | B2 |
20010003487 | Miles | Jun 2001 | A1 |
20010028503 | Flanders et al. | Oct 2001 | A1 |
20010043171 | Van Gorkom et al. | Nov 2001 | A1 |
20020014579 | Dunfield | Feb 2002 | A1 |
20020015215 | Miles | Feb 2002 | A1 |
20020021485 | Pilossof | Feb 2002 | A1 |
20020027636 | Yamada | Mar 2002 | A1 |
20020054424 | Miles | May 2002 | A1 |
20020070931 | Ishikawa | Jun 2002 | A1 |
20020075555 | Miles | Jun 2002 | A1 |
20020114558 | Nemirovsky | Aug 2002 | A1 |
20020126364 | Miles | Sep 2002 | A1 |
20020139981 | Young | Oct 2002 | A1 |
20020146200 | Kudrle et al. | Oct 2002 | A1 |
20020149828 | Miles | Oct 2002 | A1 |
20020149834 | Mei et al. | Oct 2002 | A1 |
20020149850 | Heffner et al. | Oct 2002 | A1 |
20020154422 | Sniegowski et al. | Oct 2002 | A1 |
20020167072 | Andosca | Nov 2002 | A1 |
20020167730 | Needham et al. | Nov 2002 | A1 |
20020186483 | Hagelin et al. | Dec 2002 | A1 |
20020197761 | Patel et al. | Dec 2002 | A1 |
20030011864 | Flanders | Jan 2003 | A1 |
20030015936 | Yoon et al. | Jan 2003 | A1 |
20030016428 | Kato et al. | Jan 2003 | A1 |
20030029705 | Qiu et al. | Feb 2003 | A1 |
20030035196 | Walker | Feb 2003 | A1 |
20030043157 | Miles | Mar 2003 | A1 |
20030053078 | Missey et al. | Mar 2003 | A1 |
20030119221 | Cunningham et al. | Jun 2003 | A1 |
20030123125 | Little | Jul 2003 | A1 |
20030138669 | Kojima et al. | Jul 2003 | A1 |
20030156315 | Li et al. | Aug 2003 | A1 |
20030173504 | Cole et al. | Sep 2003 | A1 |
20030202264 | Weber et al. | Oct 2003 | A1 |
20030202265 | Reboa et al. | Oct 2003 | A1 |
20030202266 | Ring et al. | Oct 2003 | A1 |
20030210851 | Fu et al. | Nov 2003 | A1 |
20040008396 | Stappaerts | Jan 2004 | A1 |
20040008438 | Sato | Jan 2004 | A1 |
20040027671 | Wu et al. | Feb 2004 | A1 |
20040027701 | Ishikawa | Feb 2004 | A1 |
20040043552 | Strumpell et al. | Mar 2004 | A1 |
20040051929 | Sampsell et al. | Mar 2004 | A1 |
20040056742 | Dabbaj | Mar 2004 | A1 |
20040058532 | Miles et al. | Mar 2004 | A1 |
20040066477 | Morimoto et al. | Apr 2004 | A1 |
20040075967 | Lynch et al. | Apr 2004 | A1 |
20040076802 | Tompkin et al. | Apr 2004 | A1 |
20040080035 | Delapierre | Apr 2004 | A1 |
20040100594 | Huibers et al. | May 2004 | A1 |
20040100677 | Huibers et al. | May 2004 | A1 |
20040124483 | Partridge et al. | Jul 2004 | A1 |
20040125281 | Lin et al. | Jul 2004 | A1 |
20040125282 | Lin et al. | Jul 2004 | A1 |
20040125347 | Patel et al. | Jul 2004 | A1 |
20040136045 | Tran | Jul 2004 | A1 |
20040140557 | Sun et al. | Jul 2004 | A1 |
20040145049 | McKinnell et al. | Jul 2004 | A1 |
20040145811 | Lin et al. | Jul 2004 | A1 |
20040147056 | McKinnell et al. | Jul 2004 | A1 |
20040147198 | Lin et al. | Jul 2004 | A1 |
20040148009 | Buzzard et al. | Jul 2004 | A1 |
20040150939 | Huff | Aug 2004 | A1 |
20040160143 | Shreeve et al. | Aug 2004 | A1 |
20040174583 | Chen et al. | Sep 2004 | A1 |
20040175577 | Lin et al. | Sep 2004 | A1 |
20040179281 | Reboa | Sep 2004 | A1 |
20040179445 | Park et al. | Sep 2004 | A1 |
20040184134 | Makigaki | Sep 2004 | A1 |
20040184766 | Kim et al. | Sep 2004 | A1 |
20040188599 | Viktorovitch et al. | Sep 2004 | A1 |
20040201908 | Kaneko | Oct 2004 | A1 |
20040207897 | Lin | Oct 2004 | A1 |
20040209195 | Lin | Oct 2004 | A1 |
20040212026 | Van Brocklin et al. | Oct 2004 | A1 |
20040217264 | Wood et al. | Nov 2004 | A1 |
20040217378 | Martin et al. | Nov 2004 | A1 |
20040217919 | Pichi et al. | Nov 2004 | A1 |
20040218251 | Piehl et al. | Nov 2004 | A1 |
20040218334 | Martin et al. | Nov 2004 | A1 |
20040227493 | Van Brocklin et al. | Nov 2004 | A1 |
20040233503 | Kimura | Nov 2004 | A1 |
20040240138 | Martin et al. | Dec 2004 | A1 |
20040245588 | Nikkel et al. | Dec 2004 | A1 |
20040259010 | Kanbe | Dec 2004 | A1 |
20050001828 | Martin et al. | Jan 2005 | A1 |
20050002082 | Miles | Jan 2005 | A1 |
20050003667 | Lin et al. | Jan 2005 | A1 |
20050014374 | Partridge et al. | Jan 2005 | A1 |
20050024557 | Lin | Feb 2005 | A1 |
20050035699 | Tsai | Feb 2005 | A1 |
20050036095 | Yeh et al. | Feb 2005 | A1 |
20050036192 | Lin et al. | Feb 2005 | A1 |
20050038950 | Adelmann | Feb 2005 | A1 |
20050042117 | Lin | Feb 2005 | A1 |
20050046919 | Taguchi et al. | Mar 2005 | A1 |
20050046922 | Lin et al. | Mar 2005 | A1 |
20050046948 | Lin | Mar 2005 | A1 |
20050057442 | Way | Mar 2005 | A1 |
20050068583 | Gutkowski et al. | Mar 2005 | A1 |
20050068627 | Nakamura et al. | Mar 2005 | A1 |
20050069209 | Damera-Venkata et al. | Mar 2005 | A1 |
20050078348 | Lin | Apr 2005 | A1 |
20050117190 | Iwauchi et al. | Jun 2005 | A1 |
20050117623 | Shchukin et al. | Jun 2005 | A1 |
20050128543 | Phillips et al. | Jun 2005 | A1 |
20050133761 | Thielemans | Jun 2005 | A1 |
20050168849 | Lin | Aug 2005 | A1 |
20050179378 | Oooka et al. | Aug 2005 | A1 |
20050195462 | Lin | Sep 2005 | A1 |
20050275930 | Patel et al. | Dec 2005 | A1 |
20060007517 | Tsai | Jan 2006 | A1 |
20060017379 | Su et al. | Jan 2006 | A1 |
20060017689 | Faase et al. | Jan 2006 | A1 |
20060024880 | Chui et al. | Feb 2006 | A1 |
20060038643 | Xu et al. | Feb 2006 | A1 |
20060044654 | Vandorpe et al. | Mar 2006 | A1 |
20060065940 | Kothari | Mar 2006 | A1 |
20060066596 | Sampsell et al. | Mar 2006 | A1 |
20060066641 | Gally et al. | Mar 2006 | A1 |
20060066926 | Kwak et al. | Mar 2006 | A1 |
20060067633 | Gally | Mar 2006 | A1 |
20060067651 | Chui | Mar 2006 | A1 |
20060077155 | Chui et al. | Apr 2006 | A1 |
20060077503 | Palmateer et al. | Apr 2006 | A1 |
20060082588 | Mizuno et al. | Apr 2006 | A1 |
20060082863 | Piehl et al. | Apr 2006 | A1 |
20060132927 | Yoon | Jun 2006 | A1 |
20060176241 | Sampsell | Aug 2006 | A1 |
20060180886 | Tsang | Aug 2006 | A1 |
20060220160 | Miles | Oct 2006 | A1 |
20060262126 | Miles | Nov 2006 | A1 |
20070020948 | Piehl et al. | Jan 2007 | A1 |
20070040777 | Cummings | Feb 2007 | A1 |
20070075942 | Martin et al. | Apr 2007 | A1 |
20070077525 | Davis et al. | Apr 2007 | A1 |
20070097694 | Faase et al. | May 2007 | A1 |
20070138608 | Ikehashi | Jun 2007 | A1 |
20070153860 | Chang-Hasnain et al. | Jul 2007 | A1 |
20070177247 | Miles | Aug 2007 | A1 |
20070216987 | Hagood et al. | Sep 2007 | A1 |
20070249078 | Tung et al. | Oct 2007 | A1 |
20070253054 | Miles | Nov 2007 | A1 |
20070285761 | Zhong et al. | Dec 2007 | A1 |
20080037093 | Miles | Feb 2008 | A1 |
20080068697 | Haluzak et al. | Mar 2008 | A1 |
20080088904 | Miles | Apr 2008 | A1 |
20080088910 | Miles | Apr 2008 | A1 |
20080088912 | Miles | Apr 2008 | A1 |
20080106782 | Miles | May 2008 | A1 |
20080110855 | Cummings | May 2008 | A1 |
20080157413 | Lin | Jul 2008 | A1 |
20080191978 | Miles | Aug 2008 | A1 |
20080297880 | Steckl et al. | Dec 2008 | A1 |
20090021884 | Nakamura | Jan 2009 | A1 |
20090078316 | Khazeni et al. | Mar 2009 | A1 |
20090159123 | Kothari et al. | Jun 2009 | A1 |
20090211885 | Steeneken et al. | Aug 2009 | A1 |
20090256218 | Mignard et al. | Oct 2009 | A1 |
20090267953 | Sampsell et al. | Oct 2009 | A1 |
20090279162 | Chui | Nov 2009 | A1 |
20090293955 | Kothari et al. | Dec 2009 | A1 |
20100039370 | Miles | Feb 2010 | A1 |
20100085625 | Endisch et al. | Apr 2010 | A1 |
20100096006 | Griffiths et al. | Apr 2010 | A1 |
20100096011 | Griffiths et al. | Apr 2010 | A1 |
20100134503 | Sampsell et al. | Jun 2010 | A1 |
20100220248 | Miles | Sep 2010 | A1 |
20100236624 | Khazeni et al. | Sep 2010 | A1 |
20100290102 | Lan | Nov 2010 | A1 |
20110019380 | Miles | Jan 2011 | A1 |
20110026096 | Miles | Feb 2011 | A1 |
20110038027 | Miles | Feb 2011 | A1 |
20110043891 | Miles | Feb 2011 | A1 |
20110058243 | Wang | Mar 2011 | A1 |
20110080632 | Miles | Apr 2011 | A1 |
20110148828 | Sampsell et al. | Jun 2011 | A1 |
20110157010 | Kothari et al. | Jun 2011 | A1 |
20110170166 | Miles | Jul 2011 | A1 |
20110170167 | Miles | Jul 2011 | A1 |
20110177745 | Lasiter | Jul 2011 | A1 |
20110188110 | Miles | Aug 2011 | A1 |
20120062310 | Miles | Mar 2012 | A1 |
20120085731 | Miles | Apr 2012 | A1 |
20120088027 | Kothari et al. | Apr 2012 | A1 |
20120099174 | Miles | Apr 2012 | A1 |
20120105385 | Sasagawa et al. | May 2012 | A1 |
20120127556 | Gally et al. | May 2012 | A1 |
20120134008 | Bita et al. | May 2012 | A1 |
20120162232 | He et al. | Jun 2012 | A1 |
20120182595 | Miles | Jul 2012 | A1 |
20120188215 | Bushankuchu | Jul 2012 | A1 |
20120194897 | Zhong et al. | Aug 2012 | A1 |
20120287138 | Zhong et al. | Nov 2012 | A1 |
20130069958 | Chui et al. | Mar 2013 | A1 |
20130249964 | Sampsell et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
1474954 | Feb 2004 | CN |
4108966 | Sep 1992 | DE |
10228946 | Jan 2004 | DE |
0 035 299 | Sep 1983 | EP |
0310176 | Apr 1989 | EP |
0361981 | Apr 1990 | EP |
0 668 490 | Aug 1995 | EP |
0667548 | Aug 1995 | EP |
0 695 959 | Feb 1996 | EP |
0788005 | Aug 1997 | EP |
0 879 991 | Nov 1998 | EP |
0 969 306 | Jan 2000 | EP |
0 986 077 | Mar 2000 | EP |
1 122 577 | Aug 2001 | EP |
1 205 782 | May 2002 | EP |
1 227 346 | Jul 2002 | EP |
1 275 997 | Jan 2003 | EP |
1 403 212 | Mar 2004 | EP |
1435336 | Jul 2004 | EP |
1 473 581 | Nov 2004 | EP |
1473691 | Nov 2004 | EP |
1484635 | Dec 2004 | EP |
1 640 765 | Mar 2006 | EP |
1 643 288 | Apr 2006 | EP |
2 824 643 | Nov 2002 | FR |
56-088111 | Jul 1981 | JP |
62082454 | Apr 1987 | JP |
04276721 | Oct 1992 | JP |
5-49238 | Feb 1993 | JP |
5-281479 | Oct 1993 | JP |
5275401 | Oct 1993 | JP |
08-051230 | Feb 1996 | JP |
9127439 | May 1997 | JP |
11211999 | Aug 1999 | JP |
2002-062490 | Feb 2000 | JP |
2000 147262 | May 2000 | JP |
2000306515 | Nov 2000 | JP |
2001-221913 | Aug 2001 | JP |
2001 249283 | Sep 2001 | JP |
2002-221678 | Aug 2002 | JP |
2002277771 | Sep 2002 | JP |
2003-340795 | Feb 2003 | JP |
2003 177336 | Jun 2003 | JP |
2003195201 | Jul 2003 | JP |
2004-012642 | Jan 2004 | JP |
2004157527 | Jun 2004 | JP |
2004-212638 | Jul 2004 | JP |
2004-212680 | Jul 2004 | JP |
2004235465 | Aug 2004 | JP |
2004286825 | Oct 2004 | JP |
2005 279831 | Oct 2005 | JP |
2005-308871 | Nov 2005 | JP |
2007 027150 | Feb 2007 | JP |
157313 | May 1991 | TW |
585834 | May 2004 | TW |
200522132 | Jul 2005 | TW |
200605392 | Feb 2006 | TW |
WO-9530924 | Nov 1995 | WO |
WO-9717628 | May 1997 | WO |
WO 9814804 | Apr 1998 | WO |
WO 9843129 | Oct 1998 | WO |
WO-9952006 | Oct 1999 | WO |
WO 0153113 | Jul 2001 | WO |
WO 0224570 | Mar 2002 | WO |
WO 02086582 | Oct 2002 | WO |
WO-02079853 | Oct 2002 | WO |
WO-03007049 | Jan 2003 | WO |
WO-03014789 | Feb 2003 | WO |
WO-03054925 | Jul 2003 | WO |
WO 03069413 | Aug 2003 | WO |
WO-03069404 | Aug 2003 | WO |
WO-03073151 | Sep 2003 | WO |
WO-03085728 | Oct 2003 | WO |
WO 03105198 | Dec 2003 | WO |
WO-2004006003 | Jan 2004 | WO |
WO-2004026757 | Apr 2004 | WO |
WO-2005006364 | Jan 2005 | WO |
WO 2005122123 | Dec 2005 | WO |
WO-2006014929 | Feb 2006 | WO |
WO 2006036386 | Apr 2006 | WO |
WO-2006035698 | Apr 2006 | WO |
WO-2007036422 | Apr 2007 | WO |
WO-2007045875 | Apr 2007 | WO |
WO-2007053438 | May 2007 | WO |
WO 2008057228 | May 2008 | WO |
Entry |
---|
Notice to Submit a Response dated Sep. 25, 2012 in Korean App. No. 10-2011-0133844. |
Wang et al., Flexible Circuit-Based RF MEMS Switches, Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, pp. 757-762, Nov. 11-16, 2001. |
Office Action dated Dec. 13, 2011 in U.S. Appl. No. 13/086,113. |
Extended European Search Report dated Aug. 19, 2011 in App. No. 08075221.5. |
Office Action dated Apr. 13, 2011 in Chinese App. No. 200880023131.4. |
Notice of Reasons for Rejection dated Apr. 3, 2012 in Japanese App. No. 2010-515043. |
Notice to Submit a Response dated Mar. 12, 2012 in Korean App. No. 10-2011-0133844. |
Office Action dated May 17, 2012 in Chinese App. No. 200880023131.4. |
Office Action dated Dec. 25, 2012 in Taiwanese patent application No. 094128428. |
Conner, Hybrid Color Display Using Optical Interference Filter Array, SID Digest, pp. 577-580 (1993). |
Jerman et al., A Miniature Fabry-Perot Interferometer with a Corrugated Silicon Diaphragm Support, (1988). |
Jerman et al., Miniature Fabry-Perot Interferometers Micromachined in Silicon for Use in Optical Fiber WDM Systems, Transducers, San Francisco, Jun. 24-27, 1991, Proceedings on the Int'l. Conf. on Solid State Sensors and Actuators, Jun. 24, 1991, pp. 372-375. |
Kowarz et al., Conformal grating electromechanical system (GEMS) for high-speed digital light modulation, Proceedings of the IEEEE 15th. Annual International Conference on Micro Electro Mechanical Systems, MEMS 2002, pp. 568-573. |
Longhurst, 1963, Chapter IX: Multiple Beam Interferometry, in Geometrical and Physical Optics, pp. 153-157. |
Miles, A New Reflective FPD Technology Using Interferometric Modulation, Journal of the SID, 5/4, 1997. |
Miles, Interferometric modulation: MOEMS as an enabling technology for high performance reflective displays, Proceedings of SPIE, 4985:131-139, 2003. |
Nakagawa et al., Feb. 1, 2002, Wide-field-of-view narrow-band spectral filters based on photonic crystal nanocavities, Optics Letters, 27(3):191-193. |
Pape et al., Characteristics of the deformable mirror device for optical information processing, Optical Engineering, 22(6):676-681, Nov.-Dec. 1983. |
Tolansky, 1948, Chapter II: Multiple-Beam Interference, in Multiple-bean Interferometry of Surfaces and Films, Oxford at the Clarendon Press, pp. 8-11. |
Office Action mailed Apr. 20, 2007 in U.S. Appl. No. 11/112,734. |
Office Action mailed Oct. 10, 2007 in U.S. Appl. No. 11/112,734. |
Office Action dated Jun. 24, 2010 in U.S. Appl. No. 11/772,777. |
European Search Report for App. No. 05255637.0, dated Nov. 22, 2005. |
First Office Action in Chinese App. No. 200510105050.7, dated Mar. 28, 2008. |
Second Office Action in Chinese App. No. 200510105050.7, dated Oct. 24, 2008. |
Notice of Reasons for Rejection dated Aug. 26, 2008 in Japanese App. No. 2005-250539. |
Final Notice of Rejection dated Nov. 10, 2010 in Japanese App. No. 2005-250539. |
ISR and WO for PCT/US08/068063 filed Jun. 24, 2008. |
IPRP for PCT/US08/068063 dated Sep. 24, 2009. |
Office Action dated Jan. 7, 2010 in U.S. Appl. No. 12/115,829. |
Billard, Tunable Capacitor, 5th Annual Review of LETI, Jun. 24, 2003, p. 7. |
Hohlfeld et al., Jun. 2003, Micro-machined tunable optical filters with optimized band-pass spectrum, 12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems, 2:1494-1497. |
Mehregany et al., 1996, MEMS applicatons in optical systems, IEEE/LEOS 1996 Summer Topical Meetings, pp. 75-76. |
Miles et al, Oct. 21, 1997, A MEMS based interferometric modulator (IMOD) for display applications, Proceedings of Sensors Expo, pp. 281-284. |
Nieminen et al., 2004, Design of a temperature-stable RF MEM capacitor, IEEE Journal of Microelectromechanical Systems, 13(5):705-714. |
Wang, Jun. 29-Jul. 1, 2002, Design and fabrication of a novel two-dimenstion MEMS-based tunable capacitor, IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, 2:1766-1769. |
Office Action dated Dec. 1, 2010 in U.S. Appl. No. 11/772,777. |
Brosnihan et al., Jun. 2003, Optical IMEMS—a fabrication process for MEMS optical switches with integrated on-chip electronic, Transducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference 2003, 2(8-12):1638-1642. |
Cacharelis et al., 1997, A reflective-mode PDLC light valve display technology, Get Cite. |
Maier et al., 1996, 1.3″ active matrix liquid crystal spatial light modulator with 508 dpi resolution, SPIE vol. 2754, pp. 171-179. |
Official Communication dated Jun. 6, 2011 in European App. No. 05255637.0. |
Akasaka Y., “Three-Dimensional IC Trends,” Proceedings of IEEE, 1986, vol. 74 (12), pp. 1703-1714. |
Aratani K, et al., “Process and Design Considerations for Surface Micromachined Beams for a Tuneable Interferometer Array in Silicon,” Proc. IEEE Microelectromechanical workshop fort Lauderdale FL, 1993, 230-235. |
Aratani K. et al., “Surface Micromachined Tuneable Interferometer Array,” Sensors and Actuators A, Elsevier Sequoia S.A., Lausanne, CH, A, 1994, 43(1/3), 17-23. |
Austrian Search Report for Ex144/2005 dated Aug. 11, 2005. |
Austrian Search Report No. 140/2005, dated Jul. 15, 2005. |
Austrian Search Report No. 150/2005, dated Jul. 29, 2005. |
Austrian Search Report No. 161/2005, dated Jul. 15, 2005. |
Austrian Search Report No. 162/2005, dated Jul. 14, 2005. |
Austrian Search Report No. 164/2005, dated Jul. 4, 2005. |
Austrian Search Report No. 66/2005 Dated May 9, 2005. |
Bass, M., et al., Handbook of Optics vol. I: Fundamentals, Techniques, and Design. Second Edition, McGraw-Hill, Inc., New York, 1995, pp. 2.29-2.36. |
Butler, et al., “An Embedded Overlay Concept for Microsystems Packaging,” IEEE Transactions on Advanced Packaging IEEE, 2000, vol. 23(4), 617-622. |
Chiou, et al., “A Novel Capacitance Control Design of Tunable Capacitor using Multiple Electrostatic Driving Electrodes,” IEEE Nanoelectronics and Giga-Scale Systems , 2001, 319-324. |
Dokmeci, et al., “Two-Axis Single-Crytal Silicon Micromirror Arrays,” Journal of Microelectromechanical Systems, Dec. 2004, 13(6), 1006-1017. |
Fan, et al., “Channel Drop Filters in Photonic Crystals,” Optics Express, 1998, vol. 3(1), pp. 4-11. |
Feenstra, et al., “Electrowetting displays,” Liquavista BV, Jan. 2006, 16 pp. |
Giles, et al., “A Silicon Mems Optical Switch Attenuator and its Use in Lightwave Subsystems,” IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5 (1), 18-25. |
Goossen, et al., “Silicon Modulator Based on Mechnically-Active Anti-Reflection Layer With 1Mbit/Sec Capability for Fiber-In-The-Loop Applications,” IEEE Photonics Technology Letters, 1994, 1119-1121. |
Goossen K.W. et al., “Possible Display Applications of the Silicon Mechanical Antireflection Switch,” Society for Information Display, 1994. |
Goossen K.W., “MEMS-Based Variable Optical Interference Devices,” IEEE/Lens International Conference on Optical Mems, Conference Digest, Piscataway, NJ, USA, IEEE Aug. 21, 2000, pp. 17-18. |
Gosch, “West Germany Grabs the Lead in X-Ray Lithography,” Electronics, 1987, 78-80. |
Howard, et al., “Nanometer-Scale Fabrication Techniques,” VLSI Electronics: Microstructure Science, 1982, vol. 5, 145-153, 166-173. |
Ibbotson, et al., “Comparison of XeF.sub.2 and F-atom Reactions with Si and SiO.sub.2,” Applied Physics Letters, 1984, 44(12), 1129-1131. |
Jackson, “Classical Electrodynamics,” John Wiley & Sons Inc, 1962, pp. 568-573. |
Joannopoulos, et al., “Photonic Crystals Molding the Flow of Light,” Princeton University Press, 1995. |
Johnson, “Optical Scanners,” Microwave Scanning Antennas, 1964, vol. 1(2), 251-261. |
Kim, et al., “Control of Optical Transmission Through Metals Perforated With Subwave-Length Hole Arrays,” Optic Letters, 1999, vol. 24(4), 256-258. |
Light Over Matter Circle No. 36, Jun. 1993. |
Lin, et al., “Free-Space Micromachined Optical Switches for Optical NetWorking,” IEEE Journal of Selected Topics in Quantum Electronics, 1999, vol. 5(1), 4-9. |
Little, et al., “Vertically Coupled Glass Microring Resonator Channel Dropping Filters,” IEEE Photonics Technology Letters, Feb. 1999, 11(2), 215-217. |
Londergan, et al., “Advanced processes for MEMS-based displays,” Proceedings of the Asia Display, 2007, SID, 1, 107-112. |
Magel G.A., “Integrated Optic Devices using Micromachined Metal Membranes,” SPIE, 1996, vol. 2686, 54-63. |
Nagami, et al., “Plastic Cell Architecture: Towards Reconfigurable Computing for General-Purpose, 0-8186-8900,” IEEE, 1998, 68-77. |
Newsbreaks, “Quantum-trench devices might operated at terahertz frequencies”, Laser Focus World, May 1993. |
Oliner, “Radiating Elements and Mutual Coupling,” Microwave Scanning Antennas, 1966, vol. 2, 131-157 and pp. 190-194. |
Peerlings et al., “Long Resonator Micromachined Tunable GaAs-A1As Fabry-Perot Filter,” IEEE Photonics Technology Letters, IEEE Service Center, 1997, vol. 9(9), 1235-1237. |
Raley, et al., “A Fabry-Perot Microinterferometer for Visible Wavelengths,” IEEE Solid-State Sensor and Actuator Workshop, 1992, 170-173. |
Schnakenberg, et al., “TMAHW Etchants for Silicon Micromachining,” International Conference on Solid State Sensors and Actuators-Digest of Technical Papers, 1991, 815-818. |
Science and Technology, The Economist, pp. 89-90, (May 1999). |
Sperger, et al., “High Performance Patterned All-Dielectric Interference Colour Filter for Display Applications,” SID Digest, 1994, 81-83. |
Stone J.M., “Radiation and Optics, An Introduction to the Classic Theory,” 1963, McGraw-Hill, pp. 340-343. |
Taii Y. et al., “A Transparent Sheet Display by Plastic MEMS,” Journal of the SID, 2006, vol. 14 (8), 735-741. |
Walker, et al., “Electron-Beam-Tunable Interference Filter Spatial Light Modulator,” Optics Letters, 1988, vol. 13(5), 345-347. |
Williams, et al., “Etch Rates for Micromachining Processing,” Journal of Microelectromechanical Systems, 1996, vol. 5(4), 256-269. |
Winters, et al., “The Etching of Silicon with XeF2 Vapor,” Applied Physics Letters, 1979, vol. 34(1), 70-73. |
Winton et al., “A novel way to capture solar energy,” Chemical Week, pp. 17-18 (May 15, 1985). |
Wu, et al., “Design of a Reflective Color LCD using Optical Interference Reflectors,” Asia Display, Changchun Institute of Physics, 1995, 929-931. |
Wu, et al., “MEMS Designed for Tunable Capacitors,” Microwave Symposium Digest, IEEE MTT-S Int'l., 1998, vol. 1, 127-129. |
Zhou et al., “Waveguide Panel Display Using Electromechanism Spatial Modulators,” SID Digest, 1998, vol. XXIX. |
Number | Date | Country | |
---|---|---|---|
20120139976 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
60613486 | Sep 2004 | US | |
60613499 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12940884 | Nov 2010 | US |
Child | 13398636 | US | |
Parent | 12115829 | May 2008 | US |
Child | 12940884 | US | |
Parent | 11112734 | Apr 2005 | US |
Child | 12115829 | US |