The invention relates to a method and a device for operating a creel designed for a winding system and a corresponding creel according to the preambles of the independent claims. Methods of this type are aimed at as optimal a tension equalization as possible for all the threads on a creel, because the different running lengths of the threads between bobbin stations and the winding machine and the thread routing associated with this will lead to different thread tensions without corresponding equalization. This will result in an uneven winding density.
Methods for operating a creel are already known, in which the thread pull of each thread is to be kept as near as possible to a constant desired value. Thus, for example, EP-A-1 162 295 describes a method for operating a creel for a warping system having a plurality of bobbin stations, in which method the respective thread is acted upon with a braking force by a thread tensioner at each bobbin station. The thread pull is in this case measured continuously during the winding operation. The thus measured actual value of the thread pull or of the initial thread tension is compared with a desired value and, if a deviation is detected, is approximated to this, each thread tensioner being activated via a corresponding drive motor. It has been shown, in practice, that the regulating method described admittedly achieves good results during normal operation at a constant rotational speed of the winding machine, for example a cone warping machine. However, in other operating states, in particular during the run-up or stopping operation, regulation is often overtaxed. Particularly in winding systems with long thread sections between the creel and winding machine, it has proved difficult to handle the method. In high-speed operations, particularly during the run-up or during a stop of the winding machine, the thread section may oscillate due to too rapid a tension adaption during the regulation of the thread pull. The threads may tear (in the case of too great a thread pull) or sag (in the case of too low a thread pull, risk of entanglement).
An object of the present invention, therefore, is to avoid the disadvantages of what is known, in particular to provide a method of the type initially mentioned, which ensures an optimal equalization of the tension of all the threads even during nonstationary operating states, particularly during a run-up operation or a stopping operation. In particular, the thread pull of each thread is to be capable of being maintained at an especially constant desired value in all operating states. The method is to be suitable particularly for winding systems having long thread sections between the creel and winding machine. The installation of a device for operating the creel is, further, to entail as little cost as possible.
These objects are achieved, according to the invention, by means of a method which has the features in claim 1.
Winding machines, for example a cone warping machine with a warping drum, rotate at an angular speed. The angular speed may be approximately constant in stationary normal operation and vary in nonstationary operating states. At each bobbin station, the thread is acted upon with a variable braking force with the aid of at least one thread tensioner in order to generate a specific thread pull which corresponds essentially to the initial thread tension. To keep the thread pull at a desired value, each thread tensioner is controlled via the angular speed of the winding machine during a run-up operation and/or a stopping operation. A run-up operation is in this context to be understood as meaning that nonstationary operating state in which the winding machine accelerates from zero to the stationary normal operation. During the stopping operation, a braking of the winding machine from stationary normal operation to a standstill takes place. Each thread tensioner has a drive motor assigned to it. To control the thread tensioner, a drive motor is activated. Each thread can thus be acted upon with the necessary braking force in a simple way. The angular speed can, further, be measured by simple means. The advantage of this control is that each thread tensioner is set exactly in all operating states, particularly even during the entire period of time of the run-up operation or stopping operation. As compared with regulation, the control of the thread tensioner during nonstationary operating states has the advantage that an oscillation build-up or an unfavorable excitation of the threads is avoided. Alternatively to the measurement of the angular speed, it is, of course, also conceivable for each thread tensioner to be controlled directly via the thread speed of the thread.
An input variable for controlling each thread tensioner is the thread speed. To control the thread tensioner, therefore, it may be advantageous if the angular speed of the winding machine is measured continuously during the run-up operation and/or the stopping operation and is converted into a thread speed. This takes place particularly advantageously by including the layer thickness of the thread package on the winding machine. The layer thickness can be measured by means of a corresponding device. Since the layer thickness depends essentially on the type of yarn, the layer thickness could even be calculated without being measured. In this case, to achieve exact results, the pressure force of the pressing roller could also be included. By the angular speed of the winding machine being measured, the thread acceleration, too, can, of course, be detected in a similar way to the thread speed. Thus, during the nonstationary operating states, the behavior of the threads over the entire duration is known, thus ensuring an exact control of the thread tensioners. As mentioned above, it is also conceivable to measure the thread speed directly on the thread between the creel and winding machine.
The necessary braking force for controlling the thread tensioner may be calculated from the thread speed and from thread tensioner-specific and, in particular, motor-specific parameters of the drive motor of the thread tensioner. In particular, the motor inertia and the coefficient of friction of the drive motor come under consideration as control-relevant parameters for controlling the thread tensioner.
To determine a manipulated variable for the necessary braking force for controlling the thread tensioner, a disturbance variable compensation, with the thread speed as the input variable, can calculate a correcting variable. In this case, advantageously, at least the motor inertia and the coefficient of friction of the drive motor are to be compensated. The values for the motor inertia, the coefficient of friction and advantageously also the torque constant of the drive motor can be detected in a simple way. For example, the values for motor inertia, coefficient of friction and torque constant can be read out from data sheets of the respective manufacturers. Costly measuring devices may be dispensed with. The disturbance variable compensation can thus be carried out in a simple way. The drive motor may be torque-regulated, said manipulated variable and the correcting variable being in the form of currents. The above-described control of the thread tension during the run-up or stopping of the winding machine may be combined with regulation for the stationary phase (normal operation) of the winding machine. For this purpose, during normal operation, the actual value of the thread pull of each thread is detected continuously by a thread tension sensor and is regulated to the desired value by means of a controller. Such regulation is described, for example, in EP-A-1 162 295. This combined control and regulation ensures an optimal thread pull profile of all the threads in all operating states.
The controller can detect from the thread speed profile which operating state (run-up, normal operation, stop) prevails. At the time point of a change or transition from one operating state to another operating state (for example, run-up to a stationary normal operation), regulation is either switched on or switched off. For example, the threads have rising thread speeds during the run-up of the winding machine (in this case, particularly preferably, a constant acceleration is provided for the thread or for the winding machine). As soon as the thread acceleration is near to or exactly zero, the controller is switched on. Control can thus be changed to regulation in a simple way. Of course, the change from control to regulation (or vice versa) could also take place directly via the angular speed of the winding machine on the basis of specific final values.
A further aspect of the invention relates to a device, in particular a control and regulating device, for operating a creel for a winding system, in particular a warping system, with a creel having a plurality of bobbin stations of a winding machine for the joint winding of a plurality of threads of identical or different generic type, which are taken up from the bobbin stations. To maintain a constant thread pull of each thread, the device has a disturbance variable compensation for controlling the thread pull during the run-up operation and/or the stopping operation of the winding machine, which is operatively connected on the input side to a rotary encoder of the winding machine, said rotary encoder delivering a signal for the angular speed of the winding machine. The variable angular speed in this case represents the disturbance variable. Changes in the thread speed lead to a varying thread pull. With the aid of disturbance variable compensation, faults in the thread system can be compensated in a simple way. The control and regulating device can be used, in particular, for the above-described method for operating a creel for a winding system. Instead of being connected to the rotary encoder, the disturbance variable compensation could also be connected to a measuring device for measuring the thread speed of the threads, for example in the form of a deflecting roller.
The control and regulating device may have a speed measurement device by means of which the thread speed of the threads can be measured. The winding machine driven via the rotary encoder can deliver a signal for the angular speed of the winding machine, which signal can be converted into the thread speed. Alternatively, the thread speed could also be detected directly, for example, with the aid of a deflecting roller.
Further, a controller may be provided for regulating the thread pull during the normal operation of the winding machine. The combination of such a regulating device with a control device having disturbance variable compensation ensures a virtually optimal setting of the thread pull of each thread. The thread pull of each thread can thus be kept at an approximately constant desired value for each operating state in a simple way.
It is advantageous if a summing device for generating the manipulated variable for the necessary braking force for controlling the thread tensioner is provided, by means of which the correcting variable output by the disturbance variable compensation is added to (or subtracted from, depending on the sign) a desired value for the braking force of the thread tensioner. It is particularly advantageous if the summing device can also sum a controller correcting variable which is output by the controller for regulating the thread pull during the normal operation of the winding machine.
A control device with disturbance variable compensation and a regulating device with a controller may be provided for each thread. These components can be linked to one another via a bus system, in particular a CAN and/or PROFI bus system.
A further aspect of the invention relates to a creel which can be operated particularly according to the method of the abovementioned type and which may also be provided, in particular, with a control and regulating device of the abovementioned type. The creel has a control device for controlling the thread pull as a function of the angular speed of the winding machine or of the thread speed of the threads during a run-up operation and/or stopping operation of the winding machine. Further, it has a regulating device with at least one controller for regulating the thread pull during the stationary normal operation of the winding machine. The control device and the regulating device are in this case configured in such a way that the thread pull of each thread can be kept approximately constant with respect to a desired value with the aid of the thread tensioners capable of being set via their drive motors. Particularly suitable drive motors are direct-current motors.
Dynamic thread tensioners are advantageously to be selected as thread tensioners (or thread brakes). Such thread tensioners may have at least one rotatable rotary body with an axis of rotation, the thread engaging at least partially on the circumferential region of the rotary body for action with a braking force, and the rotary body being drivable via the respective drive motor for setting the braking force. Such thread tensioners have been described, for example, in EP-A-950 742 or in U.S. Pat. No. 4,413,981. However, other thread tensioners, for example thread tensioners with disk brakes, but also, if appropriate, eye-type pretensioners or crepe-type pretensioners, may, of course, also be envisaged. Thread tensioners with a rotary body have, as compared with friction brakes, such as, for example, disk brakes, the advantage that the mass inertia of the rotary body has a beneficial (steadying) effect on the thread run. Thread tensioners with only one rotatable rotary body are, however, particularly suitable also because they have only a few control-relevant and regulation-relevant parameters and can therefore be handled simply.
Further advantages and individual features of the invention may be gathered from the following description of exemplary embodiments and from the drawings in which:
a shows a measured profile of the thread pull during a stopping operation of the winding machine,
b shows an associated profile of the actuating current for the drive motor of
Bobbins of different generic type, for example of different yarn qualities or different yarn colors, can be attached to the creel, independently of the thread run length, at different stations. The threads of different generic type can be exposed in each case to an individual braking force independently of what is known as the creel length compensation.
The thread tension sensors 9 for each individual thread are preferably arranged in the region of the creel side 8 which lies nearest to the winding machine 3. However, the arrangement of the thread tension sensors at this point is not mandatory. Basically, it would be advantageous to lead the thread tension sensors as near as possible to the winding point of the winding machine.
After leaving the creel, the threads pass into the region of the winding machine 3, where they first pass through a leasing reed 10, in which the threads acquire their correct sequence. The threads are subsequently supplied to the warping reed 11 in which they are brought together in order subsequently to be wound as a thread composite 12 onto the package 15 or onto the winding beam 14 via a deflecting and/or measuring roller 13.
A control and regulating device 17 is provided for operating the creel 2 for the winding system 1. This device 17 is connected to a rotary encoder 16 for the rotation of the winding machine 3. In the highly diagrammatic illustration according to
However, thread tensioners with only one rotatable rotary body have proved particularly suitable. As shown in
For special operating states, in particular for the run-up or stopping of the winding machine, the regulating method described may be somewhat unsuitable. This applies particularly to winding systems with long thread lengths. For these nonstationary operating states, such as the run-up or stopping of the winding machine, a disturbance variable compensation 24 is provided. The measured thread speed v serves in this case as input signal 29 for the disturbance variable compensation 24. The disturbance variable compensation 24 delivers on the output side a correcting variable (correcting current) 34 which is subtracted from the DES variable or the DES current 36 in the summing unit During the run-up operation or stopping operation, the correcting current 35 from the controller 25 may be, for example, zero.
A value for the acceleration of the thread is calculated with the aid of the unit 55. The multiplier 53 (motor inertia J) will convert the acceleration into a value for a torque. This torque is added in a summing unit 41 to a further torque which has been generated by the friction of the drive motor. For this purpose, the rotational speed of the thread wheel is multiplied by the friction kr (multiplier 54). Finally, the sum of the torques is converted by the multiplier 52 (torque constant 1/Km) into a correcting variable 34 (correcting current for a drive motor).
a and 9b show the profile of the thread pull during a stopping operation and the associated profile of the manipulated variable or of the actuating current 32 for the drive motor of a thread tensioner. The curve 29 shows the thread speed of the thread. This is essentially constant up to a time point T0 and goes in an approximately straight line during a time span ΔT to a standstill. The predetermined DES value for the thread pull is designated by 31. Clearly, up to the time point T0, the measured ACT value 30 runs in a narrow band range along the constant DES value by virtue of regulation. At the time point T0, the change from the regulation to the control of the thread tensioner then takes place. As curve 30 shows, this is relatively near to the DES straight line 31 during the time span ΔT.
Number | Date | Country | Kind |
---|---|---|---|
05102526.0 | Mar 2005 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP06/60619 | 3/10/2006 | WO | 00 | 9/28/2007 |