The invention is represented in the drawings and explained in more detail below. In which:
The external interconnection is also schematically represented. Furthermore, a possible equivalent circuit diagram for the impedances existing between the electrodes among themselves and the electrodes and chassis or ground is represented inside the measurement tube.
The resistor R is connected in front of the electrode E2. With the switch S closed, the real ohmic impedance R is therefore grounded in parallel with the impedance Z2. Measurements are taken once with the switch open and once with the switch closed, specifically the voltage at E1 as a function of the current and the voltage at E2 as a function of the current.
The following formal relations are obtained for the two switching states switch S open and switch S closed:
All signals are processed with amplitude and phase information ( complex notation in the aforementioned formulae)
The signal evaluation is substantially different to that which has been carried out in known measuring instruments. The impedance determined in this way also does not correspond to the impedance which is measured in the known measuring instrument, since here the impedance of a part of the system is represented by the equivalent circuit diagram.
The electric field, or a voltage induced on the electrode E2, is in this case measured as a function of time. The signal is fed to the electrode E1, usually an AC signal with a frequency of 2 kHz, at 0.1 V. The output signal or response signal is then measured at E2. As a formal relation, the standard deviation σn of the signal E2 (for example of the amplitude A) and its evaluation according to formula:
are used.
The lower image part of
Moreover, the determination of the conductivity aL in the measurement medium furthermore plays a role in respect of
The formal relation used for this is
Here, k is a geometrical constant. Re(Z) denotes the real part of the impedance Z.
In respect of the undesired covering of the electrodes with adsorbates from the liquid, this is determined by evaluating the imaginary part of the aforementioned impedances and displayed as a measurement series, or the values are stored in an adaptive memory array (not further represented here). Drifts in the impedance values can then be identified, so that deposit formation can in turn be deduced. By ultrasound or electromagnetically fed short-term signals on the electrodes, these can then be freed from the deposit again. In this case, however, it is necessary that the deposits can already be registered very early, that is to say in very thin layers.
For this evaluation, the effect that a deposit formation leads to a very pronounced change of the boundary layer between the electrode and the fluid is physically employed. It is visible as a strong capacitance change, which is visible in the imaginary part of the impedance. This is utilized here.
It should furthermore be mentioned that this method may be employed both for magnetically inductive flow meters and for capacitive flow meters, and all those via which a signal can be fed into the measurement medium by means of electrodes.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 033 112.5 | Jul 2006 | DE | national |