The present invention pertains to a method for function control of a high pressure pump in a system for fuel injection in a combustion engine. The system comprises an independent feeding pump, controllable by the combustion engine, for the supply of fuel in a low pressure part of the system to the high pressure pump. The latter comprises at least one pump element connected between the low pressure part and an accumulator tank for fuel injection to the combustion engine. The pump element has a cylinder with a pump chamber with a movable piston inside the chamber for purposes of pumping. In the connecting opening in this cylinder, there is an inlet valve to the low pressure part. The inlet valve is controllable for controlling the flow of fuel into the pump chamber. The invention also pertains to a device that performs the method.
The invention is not limited to any specific type of combustion engine or fuel, and diesel and ethanol may be mentioned as a couple of nonexhaustive examples of fuel. Also, the invention pertains to function control of a high pressure pump for supply of fuel to combustion engines that are designed for all types of use, such as in industrial applications, crushing machines and in various types of motor vehicles. The invention is particularly applicable to wheeled motor vehicles, especially commercial vehicles, such as trucks and buses, and will for this reason sometimes be discussed in this application with the objective of elucidating, but not limiting, the invention.
With respect to the low pressure part in a system for fuel injection in a combustion engine, the invention is applicable to systems in which the feeding pump is controllable independently of the combustion engine. This is advantageously achieved since the pump is driven by an electric engine, which may be controlled totally independently of the combustion engine's function. In other respects, the low pressure part of the system may have any appearance.
In order to ensure a secure and efficient operation of a system, it is desirable to be able to discover impaired performance ability in the high pressure pump early, in order to be able to take suitable measures for the pump to function optimally again, or in order to replace the pump. Herein, limited performance ability of the high pressure pump may be due to the occurrence of a leak in one or several of the pump elements between the inlet valve and the pump chamber's connecting opening to the low pressure part, e.g. because of a somewhat damaged valve, or leakage between the piston and pump chamber wall because of wear particles getting caught in the fuel and damaging the wall.
U.S. Pat. No. 7,431,018 describes a method for detecting faults in a high pressure pump by measuring the fuel pressure in the area of the accumulator tank and comparing this with reference values. This is done with the help of a pressure regulator and pressure fault sensor, and the method described therein consists of a relatively blunt instrument for function control of a high pressure pump, and is more focused on discovering larger faults in the function of the same.
The objective of the present invention is to provide a method and a device of the type defined above, which are improved in at least some respect in relation to prior art methods and devices of this type, with respect to achieving a reliable function control of a said high pressure pump.
The invention is thus based on the insight that in stationary operating conditions of the combustion engine, with a constantly requested reference value of the fuel pressure in the accumulator tank, the feeding pump may be controlled so that the fuel pressure in the low pressure part at the inlet to the high pressure pump is reduced. At the same time, the pressure in the accumulator tank is measured and compared to the requested reference value of the fuel pressure in the accumulator tank, in order to use the outcome of this comparison as an indication of the high pressure pump's functionality. It has been found that with such a method, the occurrence of both the above mentioned types of leakage, i.e. at the inlet valve and between the piston and the pump chamber wall, in the high pressure pump may be discovered.
Thus, the function control only requires stationary operating conditions in the combustion engine for a brief period of time, in the range of one second, in order to be carried out. When the combustion engine is located in a wheeled motor vehicle, the method may for example be carried out with desired intervals, when the vehicle is driven on a substantially horizontal base at a substantially constant speed.
According to one embodiment of the invention, the reduction of the fuel pressure at said position in the low pressure part is carried out toward a predetermined minimum pressure, at which the high pressure pump at normal functioning is incapable of delivering a fuel pressure in the accumulator tank which achieves the requested reference value, and the fuel pressure at the position in the low pressure part, at which the fuel pressure in the accumulator tank falls below the reference value, is registered as a limit pressure. By deciding the value of the limit pressure and its size in relation to the size of said minimum pressure, a measure of the high pressure pump's functionality may be obtained.
According to one further development of this embodiment, the pressure reduction in step b) is made down to a pressure which is higher than or equal to the minimum pressure, and the fuel pressure in the low pressure part at which the comparison in step d) gives a measurable difference, is registered as the limit pressure and used to determine the pump's functionality. If, by carrying out this method, a limit pressure which is higher than the minimum pressure is confirmed, then the conclusion may be drawn that the high pressure pump functions inadequately in its compression phase, because of the occurrence of a leakage between the piston and the pump chamber wall in one or several pump elements.
According to another embodiment of the invention, the pressure reduction is interrupted in the position, when the fuel pressure in the accumulator tank falls below the requested reference value by a predetermined difference value. This difference value may for example be 25-100 bar, 30-70 bar or around 50 bar, and when this occurs, the then prevailing pressure at the position may be determined as the limit pressure.
According to another embodiment of the invention, in step b) the feeding pump is controlled, so that the fuel pressure at the position falls until it is below a minimum pressure by at least 5%, 5-20% or 5-10% when the high pressure pump is unable, during normal functioning, to deliver a fuel pressure in the accumulator tank in accordance with the requested reference value. By reducing the pressure in the position in the low pressure part down to this level, the occurrence of so-called self-pumping due to the occurrence of a leakage in one or several pump elements between the inlet valve and the pump chamber's connecting opening to the low pressure part may be discovered. Where such a noticeable leakage occurs, the fuel pressure in the accumulator tank will not fall below the reference value, even though the pressure is at or below the minimum pressure at the position.
Accordingly, by reducing the pressure in the position of the low pressure part down toward the minimum pressure, the leakage between the piston and the pump chamber wall may be detected, but the limit value is not reached until the minimum pressure has been reached, or if it has not been reached, the pressure may be reduced a little to determine whether the high pressure pump has optimal functionality (the pressure in the accumulator tank should then fall) or whether one of the inlet valves is damaged (the pressure in the accumulator tank in that case does not fall).
According to another embodiment of the invention, the method for a high pressure pump is carried out with several of the pump elements connected in parallel between the low pressure part of the system and the accumulator tank, and in the stationary operating mode of the combustion engine, at which a single pump element is capable of delivering a fuel pressure in the accumulator tank according to the requested reference value alone, and steps a)-d) are carried out during the control of the high pressure pump's elements, so that the single pump element delivers the fuel pressure requested in the accumulator tank in order to determine the functionality of such pump element. By carrying out the method according to the invention in a stationary operating mode, which only requires the use of one pump element, a reliable functionality control of such specific pump element may be carried out. It is pointed out that the minimum pressure will thus be higher than in the event the functionality control is carried out in an operating mode with several pump elements operating simultaneously.
According to a further development of this embodiment, the steps a)-d) are carried out at intervals for all the pump elements during the control of the high pressure pump's pump elements, so that a single one of the high pressure pump's pump elements delivers a fuel pressure in the accumulator tank alone, according to the requested reference value for the determination of the functionality of all the pump elements. This embodiment thus facilitates the identification of a failing pump element, or a pump element with poorer functionality than normal.
According to another embodiment of the invention, the method comprises storage of data produced during the performance of the method steps, in order to provide the possibility of later assessment of the functionality of the high pressure pump or the high pressure pump and its pump elements. Thus, during maintenance of the high pressure pump, the parts of the latter which so require it, may be appropriately addressed.
The invention also provides a device according to the invention equipped with the features disclosed herein.
Other advantageous features and advantages with the invention are set out in the description below.
Below are descriptions of example embodiments of the invention with reference to the enclosed drawings, in which:
The feeding pump 2 is operated by an electric engine 10, which is controlled by a control device 11 and is thus controllable independently of the combustion engine.
Reference is now made to
Generally this means that when the piston 15 moves in
The function of a pump element may be degraded mainly through two types of leakage. One is due to fuel leaking past the piston 15, as indicated with the arrows 26, since the piston does not seal tightly against the surrounding pump chamber walls. This may be due to wear particles having entered the fuel and damaged the walls. The other type of leakage is a leakage past the inlet valve 17, from the pump chamber to the low pressure part 3, when the piston 15 is in the fuel compression phase and the inlet valve must fully close the connecting opening 16. This may be due to the valve being damaged, for example due to wear and tear.
There follows a description of characterising features of the present invention. For functionality control of the high pressure pump 5, a device according to the invention comprises elements 27 configured and operable to measure the fuel pressure in a position in the low pressure part at the inlet to the high pressure pump. This pressure measurement element 27 is configured to send information about the measured fuel pressure to the control device 11 to control the feeding pump 2, and to a device 28 arranged in the engine control device configured and operable to compare the pressure measured by the element 24 in the accumulator tank with a reference value for this, and, during the performance of the method according to the invention, to carry out this comparison in connection with a pressure reduction measured at one of the elements 27.
A method according to a first embodiment of the invention is designed to be carried out as described below with reference to the diagram in
A computer program code for the implementation of a method according to the invention is suitably included in a computer program, loadable into the non-volatile internal memory of a computer, such as the internal memory of an electronic control device of a combustion engine. Such a computer program is suitably provided via a computer program product, comprising a non-volatile data storage medium readable by an electronic control device, which data storage medium has the computer program stored thereon. The data storage medium is e.g. an optical data storage medium in the form of a CD-ROM, a DVD, etc., a magnetic data storage medium in the form of a hard disk drive, a diskette, a cassette, etc., or a Flash memory or a ROM, PROM, EPROM or EEPROM type memory.
The invention is obviously not limited in any way to the embodiments described above, but numerous possible modifications thereof should be obvious to a person skilled in the area, without such person departing from the spirit of the invention as defined by the appended claims.
The appearance of the high pressure pump's pump element could be different than as illustrated schematically in
Is respect of the fuel, it would be fully possible to carry out the method on a combustion engine which is operated with a fuel which is gaseous at the pressure prevailing in the low pressure part, but which becomes liquid in the high pressure part, such as for example DME (dimethyl).
The methods could very well be carried out in the form of workshops tests. This also applies where the combustion engine is arranged in a motor vehicle.
Number | Date | Country | Kind |
---|---|---|---|
1350628-2 | May 2013 | SE | national |
The present application is a 35 U.S.C. §§371 national phase conversion of PCT/SE2014/050627, filed May 22, 2014, which claims priority of Swedish Patent Application No. 1350628-2, filed May 23, 2013, the contents of which are incorporated by reference herein. The PCT International Application was published in the English language.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2014/050627 | 5/22/2014 | WO | 00 |