The present disclosure generally relates to posture awareness and, in particular, to systems, devices, and methods for presenting a guided stretching session.
Many persons may spend a significant number of hours at their computers or other devices during both work and non-work hours. This time spent using a computer or other device may negatively impact the posture of said person.
So that the present disclosure can be understood by those of ordinary skill in the art, a more detailed description may be had by reference to aspects of some illustrative implementations, some of which are shown in the accompanying drawings.
In accordance with common practice the various features illustrated in the drawings may not be drawn to scale. Accordingly, the dimensions of the various features may be arbitrarily expanded or reduced for clarity. In addition, some of the drawings may not depict all of the components of a given system, method, or device. Finally, like reference numerals may be used to denote like features throughout the specification and figures.
Various implementations disclosed herein include devices, systems, and methods for presenting a guided stretching session. According to some implementations, the method is performed at a computing system including non-transitory memory and one or more processors, wherein the computing system is communicatively coupled to a display device and one or more input devices. The method includes: while presenting a three-dimensional (3D) environment via the display device, obtaining user profile information and head pose information for a user associated with the computing system; determining locations for a first plurality of visual cues within the 3D environment for a first portion of a guided stretching session based on the user profile information and the head pose information, wherein the first portion of the guided stretching session corresponds to a first stretch direction; presenting, via the display device, the first plurality of visual cues for the first portion of a guided stretching session at the determined locations within the 3D environment and a directional indicator; detecting, via the one or more input devices, a change to the head pose information associated with the user; and in response to detecting the change to the head pose information associated with the user: updating a location for the directional indicator based on the change to the head pose information associated with the user; and in accordance with a determination that the change to the head pose information associated with the user satisfies a criterion associated with a first visual cue among the first plurality of visual cues, providing at least one of audio, haptic, or visual feedback indicating that the first visual cue among the first plurality of visual cues has been completed for the first portion of the guided stretching session.
In accordance with some implementations, an electronic device includes one or more displays, one or more processors, a non-transitory memory, and one or more programs; the one or more programs are stored in the non-transitory memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing or causing performance of any of the methods described herein. In accordance with some implementations, a non-transitory computer readable storage medium has stored therein instructions, which, when executed by one or more processors of a device, cause the device to perform or cause performance of any of the methods described herein. In accordance with some implementations, a device includes: one or more displays, one or more processors, a non-transitory memory, and means for performing or causing performance of any of the methods described herein.
In accordance with some implementations, a computing system includes one or more processors, non-transitory memory, an interface for communicating with a display device and one or more input devices, and one or more programs; the one or more programs are stored in the non-transitory memory and configured to be executed by the one or more processors and the one or more programs include instructions for performing or causing performance of the operations of any of the methods described herein. In accordance with some implementations, a non-transitory computer readable storage medium has stored therein instructions which when executed by one or more processors of a computing system with an interface for communicating with a display device and one or more input devices, cause the computing system to perform or cause performance of the operations of any of the methods described herein. In accordance with some implementations, a computing system includes one or more processors, non-transitory memory, an interface for communicating with a display device and one or more input devices, and means for performing or causing performance of the operations of any of the methods described herein.
Numerous details are described in order to provide a thorough understanding of the example implementations shown in the drawings. However, the drawings merely show some example aspects of the present disclosure and are therefore not to be considered limiting. Those of ordinary skill in the art will appreciate that other effective aspects and/or variants do not include all of the specific details described herein. Moreover, well-known systems, methods, components, devices, and circuits have not been described in exhaustive detail so as not to obscure more pertinent aspects of the example implementations described herein.
In some implementations, the controller 110 is configured to manage and coordinate an extended reality (XR) experience (sometimes also referred to herein as a “XR environment” or a “virtual environment” or a “graphical environment” or a “3D environment”) for a user 150 and optionally other users. In some implementations, the controller 110 includes a suitable combination of software, firmware, and/or hardware. The controller 110 is described in greater detail below with respect to
In some implementations, the electronic device 120 is configured to present audio and/or video (A/V) content to the user 150. In some implementations, the electronic device 120 is configured to present a user interface (UI) and/or an XR environment 128 to the user 150. In some implementations, the electronic device 120 includes a suitable combination of software, firmware, and/or hardware. The electronic device 120 is described in greater detail below with respect to
According to some implementations, the electronic device 120 presents an XR experience to the user 150 while the user 150 is physically present within a physical environment 105 that includes a table 107 within the field-of-view (FOV) 111 of the electronic device 120. As such, in some implementations, the user 150 holds the electronic device 120 in his/her hand(s). In some implementations, while presenting the XR experience, the electronic device 120 is configured to present XR content (sometimes also referred to herein as “graphical content” or “virtual content”), including an XR cylinder 109, and to enable video pass-through of the physical environment 105 (e.g., including the table 107 (or a representations thereof) on a display 122. For example, the XR environment 128, including the XR cylinder 109, is volumetric or three-dimensional (3D).
In one example, the XR cylinder 109 corresponds to head/display-locked content such that the XR cylinder 109 remains displayed at the same location on the display 122 as the FOV 111 changes due to translational and/or rotational movement of the electronic device 120. As another example, the XR cylinder 109 corresponds to world/object-locked content such that the XR cylinder 109 remains displayed at its origin location as the FOV 111 changes due to translational and/or rotational movement of the electronic device 120. As such, in this example, if the FOV 111 does not include the origin location, the displayed XR environment 128 will not include the XR cylinder 109. As another example, the XR cylinder 109 corresponds to body-locked content such that it remains at a positional and rotational offset from the body of the user 150. In some examples, the electronic device 120 corresponds to a near-eye system, mobile phone, tablet, laptop, wearable computing device, or the like.
In some implementations, the display 122 corresponds to an additive display that enables optical see-through of the physical environment 105 including the table 107. For example, the display 122 corresponds to a transparent lens, and the electronic device 120 corresponds to a pair of glasses worn by the user 150. As such, in some implementations, the electronic device 120 presents a user interface by projecting the XR content (e.g., the XR cylinder 109) onto the additive display, which is, in turn, overlaid on the physical environment 105 from the perspective of the user 150. In some implementations, the electronic device 120 presents the user interface by displaying the XR content (e.g., the XR cylinder 109) on the additive display, which is, in turn, overlaid on the physical environment 105 from the perspective of the user 150.
In some implementations, the user 150 wears the electronic device 120 such as a near-eye system. As such, the electronic device 120 includes one or more displays provided to display the XR content (e.g., a single display or one for each eye). For example, the electronic device 120 encloses the FOV of the user 150. In such implementations, the electronic device 120 presents the XR environment 128 by displaying data corresponding to the XR environment 128 on the one or more displays or by projecting data corresponding to the XR environment 128 onto the retinas of the user 150.
In some implementations, the electronic device 120 includes an integrated display (e.g., a built-in display) that displays the XR environment 128. In some implementations, the electronic device 120 includes a head-mountable enclosure. In various implementations, the head-mountable enclosure includes an attachment region to which another device with a display can be attached. For example, in some implementations, the electronic device 120 can be attached to the head-mountable enclosure. In various implementations, the head-mountable enclosure is shaped to form a receptacle for receiving another device that includes a display (e.g., the electronic device 120). For example, in some implementations, the electronic device 120 slides/snaps into or otherwise attaches to the head-mountable enclosure. In some implementations, the display of the device attached to the head-mountable enclosure presents (e.g., displays) the XR environment 128. In some implementations, the electronic device 120 is replaced with an XR chamber, enclosure, or room configured to present XR content in which the user 150 does not wear the electronic device 120.
In some implementations, the controller 110 and/or the electronic device 120 cause an XR representation of the user 150 to move within the XR environment 128 based on movement information (e.g., body pose data, eye tracking data, hand/limb/finger/extremity tracking data, etc.) from the electronic device 120 and/or optional remote input devices within the physical environment 105. In some implementations, the optional remote input devices correspond to fixed or movable sensory equipment within the physical environment 105 (e.g., image sensors, depth sensors, infrared (IR) sensors, event cameras, microphones, etc.). In some implementations, each of the remote input devices is configured to collect/capture input data and provide the input data to the controller 110 and/or the electronic device 120 while the user 150 is physically within the physical environment 105. In some implementations, the remote input devices include microphones, and the input data includes audio data associated with the user 150 (e.g., speech samples). In some implementations, the remote input devices include image sensors (e.g., cameras), and the input data includes images of the user 150. In some implementations, the input data characterizes body poses of the user 150 at different times. In some implementations, the input data characterizes head poses of the user 150 at different times. In some implementations, the input data characterizes hand tracking information associated with the hands of the user 150 at different times. In some implementations, the input data characterizes the velocity and/or acceleration of body parts of the user 150 such as his/her hands. In some implementations, the input data indicates joint positions and/or joint orientations of the user 150. In some implementations, the remote input devices include feedback devices such as speakers, lights, or the like.
In some implementations, the one or more communication buses 204 include circuitry that interconnects and controls communications between system components. In some implementations, the one or more I/O devices 206 include at least one of a keyboard, a mouse, a touchpad, a touchscreen, a joystick, one or more microphones, one or more speakers, one or more image sensors, one or more displays, and/or the like.
The memory 220 includes high-speed random-access memory such as dynamic random-access memory (DRAM), static random-access memory (SRAM), double-data-rate random-access memory (DDR RAM), or other random-access solid-state memory devices. In some implementations, the memory 220 includes non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices. The memory 220 optionally includes one or more storage devices remotely located from the one or more processing units 202. The memory 220 comprises a non-transitory computer readable storage medium. In some implementations, the memory 220 or the non-transitory computer readable storage medium of the memory 220 stores the following programs, modules and data structures, or a subset thereof described below with respect to
An operating system 230 includes procedures for handling various system services and for performing hardware dependent tasks.
In some implementations, a data obtainer 242 is configured to obtain data (e.g., captured image frames of the physical environment 105, presentation data, input data, user interaction data, camera pose tracking information, eye tracking information, head/body pose tracking information, hand/limb/finger/extremity tracking information, sensor data, location data, etc.) from at least one of the I/O devices 206 of the controller 110, the I/O devices and sensors 306 of the electronic device 120, and the optional remote input devices. To that end, in various implementations, the data obtainer 242 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, a mapper and locator engine 244 is configured to map the physical environment 105 and to track the position/location of at least the electronic device 120 or the user 150 with respect to the physical environment 105. To that end, in various implementations, the mapper and locator engine 244 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, a data transmitter 246 is configured to transmit data (e.g., presentation data such as rendered image frames associated with the XR environment, location data, etc.) to at least the electronic device 120 and optionally one or more other devices. To that end, in various implementations, the data transmitter 246 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, a privacy architecture 408 is configured to ingest data and filter user information and/or identifying information within the data based on one or more privacy filters. The privacy architecture 408 is described in more detail below with reference to
In some implementations, a motion state estimator 410 is configured to obtain (e.g., receive, retrieve, or determine/generate) a motion state vector 411 associated with the electronic device 120 (and the user 150) (e.g., including a current motion state associated with the electronic device 120) based on input data and update the motion state vector 411 over time. For example, as shown in
In some implementations, an eye tracking engine 412 is configured to obtain (e.g., receive, retrieve, or determine/generate) an eye tracking vector 413 as shown in
In some implementations, a head/body pose tracking engine 414 is configured to obtain (e.g., receive, retrieve, or determine/generate) a pose characterization vector 415 based on the input data and update the pose characterization vector 415 over time. For example, as shown in
In some implementations, a content selector 522 is configured to select XR content (sometimes also referred to herein as “graphical content” or “virtual content”) from a content library 525 based on one or more user requests and/or inputs (e.g., a voice command, a selection from a user interface (UI) menu of XR content items or virtual agents (VAs), and/or the like). The content selector 522 is described in more detail below with reference to
In some implementations, a content library 525 includes a plurality of content items such as audio/visual (A/V) content, virtual agents (VAs), and/or XR content, objects, items, scenery, etc. As one example, the XR content includes 3D reconstructions of user captured videos, movies, TV episodes, and/or other XR content. In some implementations, the content library 525 is pre-populated or manually authored by the user 150. In some implementations, the content library 525 is located local relative to the controller 110. In some implementations, the content library 525 is located remote from the controller 110 (e.g., at a remote server, a cloud server, or the like).
In some implementations, a characterization engine 416 is configured to determine/generate a characterization vector 419 based on at least one of the motion state vector 411, the eye tracking vector 413, and the pose characterization vector 415 as shown in
In some implementations, a context analyzer 460 is configured to obtain (e.g., receive, retrieve, or determine/generate) a context information vector 470 based on input data shown in
In some implementations, a muscle strain engine 463 is configured to obtain (e.g., receive, retrieve, or determine/generate) current strain information 480 based on input data shown in
In some implementations, an interactive stretching engine 468A generates stretching session visualizations 469. The interactive stretching engine 468A is described in more detail below with reference to
In some implementations, an application programing interface (API) 468B is configured to provide access to the current strain information 480 to at least one of: the operating system of the controller 110, the electronic device 120, or a combination thereof; third-party programs or applications; and/or the like. As such, the current strain information 480 may be used in various downstream processes. The API 468B is described in more detail below with reference to
In some implementations, a content manager 530 is configured to manage and update the layout, setup, structure, and/or the like for the XR environment 128 including one or more of VA(s), XR content, one or more user interface (UI) elements associated with the XR content, and/or the like. The content manager 530 is described in more detail below with reference to
In some implementations, the content updater 534 is configured to modify the XR environment 128 over time based on translational or rotational movement of the electronic device 120 or physical objects within the physical environment 105, user inputs (e.g., a change in context, hand/extremity tracking inputs, eye tracking inputs, touch inputs, voice commands, modification/manipulation inputs with the physical object, and/or the like), and/or the like. To that end, in various implementations, the content updater 534 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, the feedback engine 536 is configured to generate sensory feedback (e.g., visual feedback such as text or lighting changes, audio feedback, haptic feedback, etc.) associated with the XR environment 128. To that end, in various implementations, the feedback engine 536 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, a rendering engine 550 is configured to render an XR environment 128 (sometimes also referred to herein as a “graphical environment” or “virtual environment”) or image frame associated therewith as well as the VA(s), XR content, one or more UI elements associated with the XR content, and/or the like. To that end, in various implementations, the rendering engine 550 includes instructions and/or logic therefor, and heuristics and metadata therefor. In some implementations, the rendering engine 550 includes a pose determiner 552, a renderer 554, an optional image processing architecture 556, and an optional compositor 558. One of ordinary skill in the art will appreciate that the optional image processing architecture 556 and the optional compositor 558 may be present for video pass-through configurations but may be removed for fully VR or optical see-through configurations.
In some implementations, the pose determiner 552 is configured to determine a current camera pose of the electronic device 120 and/or the user 150 relative to the A/V content and/or XR content. The pose determiner 552 is described in more detail below with reference to
In some implementations, the renderer 554 is configured to render the A/V content and/or the XR content according to the current camera pose relative thereto. The renderer 554 is described in more detail below with reference to
In some implementations, the image processing architecture 556 is configured to obtain (e.g., receive, retrieve, or capture) an image stream including one or more images of the physical environment 105 from the current camera pose of the electronic device 120 and/or the user 150. In some implementations, the image processing architecture 556 is also configured to perform one or more image processing operations on the image stream such as warping, color correction, gamma correction, sharpening, noise reduction, white balance, and/or the like. The image processing architecture 556 is described in more detail below with reference to
In some implementations, the compositor 558 is configured to composite the rendered A/V content and/or XR content with the processed image stream of the physical environment 105 from the image processing architecture 556 to produce rendered image frames of the XR environment 128 for display. The compositor 558 is described in more detail below with reference to
Although the data obtainer 242, the mapper and locator engine 244, the data transmitter 246, the privacy architecture 408, the motion state estimator 410, the eye tracking engine 412, the head/body pose tracking engine 414, the characterization engine 416, the context analyzer 460, the muscle strain engine 463, the interactive stretching engine 468A, the API 468B, the content selector 522, the content manager 530, and the rendering engine 550 are shown as residing on a single device (e.g., the controller 110), it should be understood that in other implementations, any combination of the data obtainer 242, the mapper and locator engine 244, the data transmitter 246, the privacy architecture 408, the motion state estimator 410, the eye tracking engine 412, the head/body pose tracking engine 414, the characterization engine 416, the context analyzer 460, the muscle strain engine 463, the interactive stretching engine 468A, the API 468B, the content selector 522, the content manager 530, and the rendering engine 550 may be located in separate computing devices.
In some implementations, the functions and/or components of the controller 110 are combined with or provided by the electronic device 120 shown below in
In some implementations, the one or more communication buses 304 include circuitry that interconnects and controls communications between system components. In some implementations, the one or more I/O devices and sensors 306 include at least one of an inertial measurement unit (IMU), an accelerometer, a gyroscope, a magnetometer, a thermometer, one or more physiological sensors (e.g., blood pressure monitor, heart rate monitor, blood oximetry monitor, blood glucose monitor, etc.), one or more microphones, one or more speakers, a haptics engine, a heating and/or cooling unit, a skin shear engine, one or more depth sensors (e.g., structured light, time-of-flight, LiDAR, or the like), a localization and mapping engine, an eye tracking engine, a head/body pose tracking engine, a hand/limb/finger/extremity tracking engine, a camera pose tracking engine, and/or the like.
In some implementations, the one or more displays 312 are configured to present the XR environment to the user. In some implementations, the one or more displays 312 are also configured to present flat video content to the user (e.g., a 2-dimensional or “flat” AVI, FLV, WMV, MOV, MP4, or the like file associated with a TV episode or a movie, or live video pass-through of the physical environment 105). In some implementations, the one or more displays 312 correspond to touchscreen displays (e.g., similar to the display 122 in
In some implementations, the image capture device 370 correspond to one or more RGB cameras (e.g., with a complementary metal-oxide-semiconductor (CMOS) image sensor or a charge-coupled device (CCD) image sensor), IR image sensors, event-based cameras, and/or the like. In some implementations, the image capture device 370 includes a lens assembly, a photodiode, and a front-end architecture. In some implementations, the image capture device 370 includes exterior-facing and/or interior-facing image sensors.
The memory 320 includes high-speed random-access memory such as DRAM, SRAM, DDR RAM, or other random-access solid-state memory devices. In some implementations, the memory 320 includes non-volatile memory such as one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or other non-volatile solid-state storage devices. The memory 320 optionally includes one or more storage devices remotely located from the one or more processing units 302. The memory 320 comprises a non-transitory computer readable storage medium. In some implementations, the memory 320 or the non-transitory computer readable storage medium of the memory 320 stores the following programs, modules and data structures, or a subset thereof including an optional operating system 330 and a presentation engine 340.
The operating system 330 includes procedures for handling various basic system services and for performing hardware dependent tasks. In some implementations, the presentation engine 340 is configured to present media items and/or XR content to the user via the one or more displays 312. To that end, in various implementations, the presentation engine 340 includes a data obtainer 342, an interaction handler 520, a presenter 560, and a data transmitter 350.
In some implementations, the data obtainer 342 is configured to obtain data (e.g., presentation data such as rendered image frames associated with the user interface or the XR environment, input data, user interaction data, head tracking information, camera pose tracking information, eye tracking information, hand/limb/finger/extremity tracking information, sensor data, location data, etc.) from at least one of the I/O devices and sensors 306 of the electronic device 120, the controller 110, and the remote input devices. To that end, in various implementations, the data obtainer 342 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, the interaction handler 520 is configured to detect user interactions (e.g., gestural inputs detected via hand/extremity tracking, eye gaze inputs detected via eye tracking, voice commands, etc.) with the presented A/V content and/or XR content. To that end, in various implementations, the interaction handler 520 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, the presenter 560 is configured to present and update A/V content and/or XR content (e.g., the rendered image frames associated with the user interface or the XR environment 128 including the VA(s), the XR content, one or more UI elements associated with the XR content, and/or the like) via the one or more displays 312. To that end, in various implementations, the presenter 560 includes instructions and/or logic therefor, and heuristics and metadata therefor.
In some implementations, the data transmitter 350 is configured to transmit data (e.g., presentation data, location data, user interaction data, head tracking information, camera pose tracking information, eye tracking information, hand/limb/finger/extremity tracking information, etc.) to at least the controller 110. To that end, in various implementations, the data transmitter 350 includes instructions and/or logic therefor, and heuristics and metadata therefor.
Although the data obtainer 342, the interaction handler 520, the presenter 560, and the data transmitter 350 are shown as residing on a single device (e.g., the electronic device 120), it should be understood that in other implementations, any combination of the data obtainer 342, the interaction handler 520, the presenter 560, and the data transmitter 350 may be located in separate computing devices.
Moreover,
As shown in
Similarly, as shown in
According to some implementations, the privacy architecture 408 ingests the local sensor data 403 and the remote sensor data 405. In some implementations, the privacy architecture 408 includes one or more privacy filters associated with user information and/or identifying information. In some implementations, the privacy architecture 408 includes an opt-in feature where the electronic device 120 informs the user 150 as to what user information and/or identifying information is being monitored and how the user information and/or the identifying information will be used. In some implementations, the privacy architecture 408 selectively prevents and/or limits the data processing architecture 400A/400B/400C or portions thereof from obtaining and/or transmitting the user information. To this end, the privacy architecture 408 receives user preferences and/or selections from the user 150 in response to prompting the user 150 for the same. In some implementations, the privacy architecture 408 prevents the data processing architecture 400A/400B/400C from obtaining and/or transmitting the user information unless and until the privacy architecture 408 obtains informed consent from the user 150. In some implementations, the privacy architecture 408 anonymizes (e.g., scrambles, obscures, encrypts, and/or the like) certain types of user information. For example, the privacy architecture 408 receives user inputs designating which types of user information the privacy architecture 408 anonymizes. As another example, the privacy architecture 408 anonymizes certain types of user information likely to include sensitive and/or identifying information, independent of user designation (e.g., automatically).
According to some implementations, the motion state estimator 410 obtains the local sensor data 403 and the remote sensor data 405 after it has been subjected to the privacy architecture 408. In some implementations, the motion state estimator 410 obtains (e.g., receives, retrieves, or determines/generates) a motion state vector 411 based on the input data and updates the motion state vector 411 over time.
According to some implementations, the eye tracking engine 412 obtains the local sensor data 403 and the remote sensor data 405 after it has been subjected to the privacy architecture 408. In some implementations, the eye tracking engine 412 obtains (e.g., receives, retrieves, or determines/generates) an eye tracking vector 413 based on the input data and updates the eye tracking vector 413 over time.
For example, the gaze direction indicates a point (e.g., associated with x, y, and z coordinates relative to the physical environment 105 or the world-at-large), a physical object, or a region of interest (ROI) in the physical environment 105 at which the user 150 is currently looking. As another example, the gaze direction indicates a point (e.g., associated with x, y, and z coordinates relative to the XR environment 128), an XR object, or a region of interest (ROI) in the XR environment 128 at which the user 150 is currently looking.
According to some implementations, the head/body pose tracking engine 414 obtains the local sensor data 403 and the remote sensor data 405 after it has been subjected to the privacy architecture 408. In some implementations, the head/body pose tracking engine 414 obtains (e.g., receives, retrieves, or determines/generates) a pose characterization vector 415 based on the input data and updates the pose characterization vector 415 over time.
According to some implementations, the characterization engine 416 obtains the motion state vector 411, the eye tracking vector 413 and the pose characterization vector 415. In some implementations, the characterization engine 416 obtains (e.g., receives, retrieves, or determines/generates) the characterization vector 419 based on the motion state vector 411, the eye tracking vector 413, and the pose characterization vector 415.
According to some implementations, the context analyzer 460 obtains the motion state vector 411 from the motion state estimator 410. As shown in
In some implementations, the context analyzer 460 obtains (e.g., receives, retrieves, or determines/generates) a context information vector 470 based on the input data and updates the context information vector 470 over time.
According to some implementations, the head/body/neck mechanics engine 462 obtains (e.g., receives, retrieves, or determines/generates) displacement, velocity, acceleration, jerk, torque, etc. values for the head/body/neck of the user 150 based on changes to the pose characterization vector 415. In some implementations, the strain analyzer 464 determines current strain information 480 for one or more muscles or muscles groups based on: the displacement, velocity, acceleration, jerk, torque, etc. values for the head/body/neck of the user 150 from the head/body/neck mechanics engine 462; historical information 466; and the context information vector 470. In some implementations, the strain analyzer 464 determines the current strain information 480 based on strain increase logic 465A and/or strain decrease logic 465B. In some implementations, the historical information 466 corresponds to local or remote storage repository, including: strain information for one or more previous time periods on an overall basis, individual muscle or muscle group/region basis, etc.; context information for one or more previous time periods; and/or displacement, velocity, acceleration, jerk, torque, etc. values for the head/body/neck of the user 150 for one or more previous time periods.
As shown in
As shown in
As shown in
As described above with respect to
In some implementations, the interactive stretching engine 468A generates the stretching session visualizations 469 in response to detecting a user input to initiate a guided stretching session (e.g., a touch input, a hand/extremity tracking input, an eye tracking input, a voice command, or the like). In some implementations, the interactive stretching engine 468A generates the stretching session visualizations 469 in response to detecting an accumulated strain value greater than a threshold value. In some implementations, the threshold value corresponds to a deterministic or non-deterministic value. According to some implementations, the threshold value corresponds to the fourth posture awareness threshold mentioned in provisional patent application No xxx,xxx, filed on xxx (Attorney Docket Number 27753-50497US1), which is incorporated by reference in its entirety.
According to some implementations, the API 468B provides access to the current strain information 480 to at least one of: the operating system of the controller 110, the electronic device 120, or a combination thereof; third-party programs or applications; and/or the like. As such, the current strain information 480 may be used in various downstream processes.
According to some implementations, the interaction handler 520 obtains (e.g., receives, retrieves, or detects) one or more user inputs 521 provided by the user 150 that are associated with selecting A/V content, one or more VAs, and/or XR content for presentation. For example, the one or more user inputs 521 correspond to a gestural input selecting XR content from a UI menu detected via hand/extremity tracking, an eye gaze input selecting XR content from the UI menu detected via eye tracking, a voice command selecting XR content from the UI menu detected via a microphone, and/or the like. In some implementations, the content selector 522 selects XR content 527 from the content library 525 based on one or more user inputs 521 (e.g., a voice command, a selection from a menu of XR content items, and/or the like).
In various implementations, the content manager 530 manages and updates the layout, setup, structure, and/or the like for the XR environment 128, including one or more of VAs, XR content, one or more UI elements associated with the XR content, and/or the like, based on the characterization vector 419, (optionally) the user inputs 521, and/or the like. To that end, the content manager 530 includes the frame buffer 532, the content updater 534, and the feedback engine 536.
In some implementations, the frame buffer 532 includes XR content, a rendered image frame, and/or the like for one or more past instances and/or frames. In some implementations, the content updater 534 modifies the XR environment 128 over time based on the characterization vector 419, the stretching session visualizations 469 (e.g., the first plurality of visual cues 614A, 614B, 614C and the directional indicator 612A in
According to some implementations, the pose determiner 552 determines a current camera pose of the electronic device 120 and/or the user 150 relative to the XR environment 128 and/or the physical environment 105 based at least in part on the pose characterization vector 415. In some implementations, the renderer 554 renders the VA(s), the XR content 527, one or more UI elements associated with the XR content, and/or the like according to the current camera pose relative thereto.
According to some implementations, the optional image processing architecture 556 obtains an image stream from an image capture device 370 including one or more images of the physical environment 105 from the current camera pose of the electronic device 120 and/or the user 150. In some implementations, the image processing architecture 556 also performs one or more image processing operations on the image stream such as warping, color correction, gamma correction, sharpening, noise reduction, white balance, and/or the like. In some implementations, the optional compositor 558 composites the rendered XR content with the processed image stream of the physical environment 105 from the image processing architecture 556 to produce rendered image frames of the XR environment 128. In various implementations, the presenter 560 presents the rendered image frames of the XR environment 128 to the user 150 via the one or more displays 312. One of ordinary skill in the art will appreciate that the optional image processing architecture 556 and the optional compositor 558 may not be applicable for fully virtual environments (or optical see-through scenarios).
In some implementations, the plurality of 3D environments in
As shown in
As shown in
One of ordinary skill in the art will appreciate that the usage of rotational yaw movement for the guided stretching session in
According to some implementations, the electronic device 120 determines locations for the first plurality of visual cues 614A, 614B, 614C within the 3D environment 602A based on user profile information and the head pose information associated with the user. For example, the user profile information corresponds to visual acuity metrics for the user, user height, user preferences, and/or the like. For example, the head pose information at least includes three-degrees of freedom (3DOF) rotational values determined by, for example, the head/body pose tracking engine 414 described above with reference to
In some implementations, the electronic device 120 determines the locations for the first plurality of visual cues 614A, 614B, 614C to suit the user's height and/or sightline (e.g., in front of and level with the user's sightline). In some implementations, the electronic device 120 determines the locations for the first plurality of visual cues 614A, 614B, 614C so as not to occlude or collide with objects within the 3D environment. In some implementations, the electronic device 120 determines the locations for the first plurality of visual cues 614A, 614B, 614C based on user flexibility/range of motion (taking user history into account) or user preferences. For example, the angular range associated with the first plurality of visual cues 614A, 614B, 614C may be limited by the user's maximum range of observed motion, a present maximum range of motion provided by the user, or a historical range of motion associated with the user.
As shown in
As shown in
In response to detecting the change 622 to the head pose information associated with the user 150 in
In some implementations, the visual feedback is replaced with or supplemented by haptic feedback, audio feedback, and/or the like. According to some implementations, each of the visual cues, save for the final visual cue, is associated with similar haptic and/or audio feedback, and the final visual cue is associated with distinct haptic and/or audio feedback with a greater intensity, length, pitch, frequency, volume, and/or the like. According to some implementations, audio feedback may be spatialized to coincide with the location of the visual cue or at a distance in a direction of the stretch that satisfies the visual cue. In one example, with reference to yaw rotational movement, the audio feedback may be spatialized at a distance and at the angle such that the user moves their head side-to-side about the y axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session. In another example, with reference to roll rotational movement for the guided stretching session, the audio feedback may be spatialized relative to a location above the user's head and at an angle such that the user tilts their head about the z axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session. In yet another example, with reference to pitch rotational movement, the audio feedback may be spatialized at a location in front of the user and at an angle such that the user moves their head about the x axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session.
As shown in
In response to detecting the change 632 to the head pose information associated with the user 150 in
As shown in
In response to detecting the change 642 to the head pose information associated with the user 150 in
As shown in
In response to detecting the change 642 to the head pose information associated with the user 150 in
As shown in
According to some implementations, the electronic device 120 determines locations for the second plurality of visual cues 664A, 664B, 664C, 664D, 664E, 664F within the 3D environment 672 based on the user profile information and the head pose information associated with the user. In some implementations, the electronic device 120 determines the locations for the second plurality of visual cues 664A, 664B, 664C, 664D, 664E, 664F to suit the user's height and/or sightline. In some implementations, the electronic device 120 determines the locations for the second plurality of visual cues 664A, 664B, 664C, 664D, 664E, 664F so as not to occlude or collide with objects within the 3D environment. In In some implementations, the electronic device 120 determines the locations for the second plurality of visual cues 664A, 664B, 664C, 664D, 664E, 664F based on user flexibility/range of motion (taking user history into account) or user preferences.
As shown in
As discussed above, many persons (e.g., the user 150 in
As represented by block 702, while presenting a three-dimensional (3D) environment via the display device, the method 700 includes obtaining (e.g., receiving, retrieving, determining/generating, etc.) user profile information and head pose information for a user associated with the computing system. For example, the user profile information includes to visual acuity metrics for the user, user height, user preferences, and/or the like. In some implementations, the head pose information includes 3DOF rotational values. In some implementations, the computing system also obtains FOV information indicating a current viewing frustum of the user based on the gaze direction.
In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
As one example, with reference to
In some implementations, the display device corresponds to a transparent lens assembly, and wherein presenting the 3D environment includes projecting a least a portion of the 3D environment onto the transparent lens assembly. In some implementations, the display device corresponds to a near-eye system, and wherein presenting the 3D environment includes compositing at least a portion of the 3D environment with one or more images of a physical environment captured by an exterior-facing image sensor.
As represented by block 704, the method 700 includes determining locations for a first plurality of visual cues (e.g., detents) within the 3D environment for a first portion of a guided stretching session based on the user profile information and the head pose information, wherein the first portion of the guided stretching session corresponds to a first stretch direction. In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
In some implementations, as represented by block 706, the user profile information includes at least one of range of motion information or flexibility information associated with the user, and wherein spacing between the determined locations for the first plurality of visual cues is based on the range of motion information or the flexibility information associated with the user.
In some implementations, the computing system determines the locations for the first plurality of visual cues to suit the user's height and/or sightline. In some implementations, the computing system determines the locations for the first plurality of visual cues so as not to occlude or collide with objects within the 3D environment. In some implementations, the computing system determines the locations for the first plurality of visual cues based on user flexibility/range of motion (taking user history into account) or user preferences. In some implementations, the computing system tailors the guided stretching session based on the user's current and/or historical flexibility/range of motion. As one example, if the user is unable to complete the first portion of the guided stretching session, the computing system may decrease the range of motion for the second portion of the guided stretching session or for subsequent guided stretching sessions.
In some implementations, as represented by block 708, the method 700 includes obtaining (e.g., receiving, retrieving, or determining/generating) environment information associated with a physical environment including dimensional information for the physical environment, localization information for physical objects within the physical environment, and dimensional information for the physical objects within the physical environment, wherein the locations for the first plurality of visual cues are determined based on the user profile information, the head pose information, and the environment information. In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
For example, the environment information corresponds to SLAM information for localizing the user relative to the physical environment and determining the dimensions thereof. For example, the environment information corresponds to semantic segmentation information (e.g., labels) and/or the like. in order to identify physical objects within the physical environment as well as their dimensions and locations within the physical environment.
As represented by block 710, the method 700 includes presenting, via the display device, the first plurality of visual cues for the first portion of the guided stretching session at the determined locations within the 3D environment and a directional indicator (e.g., an arrow, text indicating a direction, or the like). For example, with reference to
In some implementations, the first plurality of visual cues corresponds to volumetric extended reality (XR) objects. In some implementations, the first plurality of visual cues is overlaid on a representation of a physical environment while presented within the 3D environment. In some implementations, the first plurality of visual cues is composited with a representation of a physical environment while presented within the 3D environment.
In some implementations, as represented by block 712, the directional indicator includes a visual representation (e.g., a numeral or an alphanumeric text string) associated with a count of the first plurality of visual cues that have not been completed for the first portion of the guided stretching session. As one example, with reference to
In some implementations, as represented by block 714, the directional indicator is initially presented at an origin location relative to the head pose information associated with the user, and wherein the first plurality of visual cues is spaced in a 90-degree arc in the first stretch direction relative to the origin location. In some implementations, the first plurality of visual cues is evenly spaced along the 90° arc. For example, if the first plurality of visual cues includes N visual cues, the computing system presents the N visual cues on the 90° arc with
degrees between each of the N visual cues.
In some implementations, the computing system initially presents the directional indicator at a deterministic or non-deterministic origin location. In one example, with reference to
As represented by block 716, the method 700 includes detecting, via the one or more input devices, a change to the head pose information associated with the user. As one example, with reference to
As represented by block 718, in response to detecting the change to the head pose information associated with the user, the method 700 includes: updating a location for the directional indicator based on the change to the head pose information associated with the user; and in accordance with a determination that the change to the head pose information associated with the user satisfies a criterion associated with a first visual cue among the first plurality of visual cues, providing at least one of audio, spatial audio, haptic, or visual feedback indicating that the first visual cue among the first plurality of visual cues has been completed for the first portion of the guided stretching session. In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
For example, in response to detecting the change 622 to the head pose information associated with the user 150 in
In some implementations, the criterion associated with a visual cue is satisfied when the location for the directional indicator coincides with the location for the visual cue. In some implementations, the visual feedback is replaced with or supplemented by haptic feedback, audio feedback, and/or the like. According to some implementations, each of the visual cues, save for the final visual cue, is associated with similar haptic and/or audio feedback, and the final visual cue is associated with distinct haptic and/or audio feedback with a greater intensity, length, pitch, frequency, volume, and/or the like.
In some implementations, as represented by block 720, the method 700 includes obtaining (e.g., receiving, retrieving, determining/generating, etc.) body pose information for the user associated with the computing system, wherein updating the location for the directional indicator is based on the change to at least one of the head pose information or the body pose information associated with the user. In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
In some implementations, as represented by block 722, the method 700 includes: while presenting the first plurality of visual cues for the first portion of a guided stretching session at the determined locations within the 3D environment and the directional indicator, concurrently presenting, via the display device, a representation of the user within the 3D environment; and in response to detecting the change to the head pose information associated with the user, updating the representation of the user based on the change to the head pose information associated with the user. In some implementations, the computing system or a component thereof (e.g., the interactive stretching engine 468A in
In some implementations, as represented by block 724, the feedback indicating that the first visual cue among the first plurality of visual cues has been completed for the first portion of the guided stretching session corresponds to spatial audio feedback spatialized based on the relative spacing between the representation of the user and the first visual cue. As one example, when the first visual cue directly above the avatar's head is completed, the computing system provides (e.g., outputs or plays) the spatial audio directly above the user's head instead of emanating from the location of the first visual cue in front of the user.
According to some implementations, audio feedback may be spatialized to coincide with the location of the visual cue or at a distance in a direction of the stretch that satisfies the visual cue. In one example, with reference to yaw rotational movement, the audio feedback may be spatialized at a distance and at the angle such that the user moves their head side-to-side about they axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session. In another example, with reference to roll rotational movement for the guided stretching session, the audio feedback may be spatialized relative to a location above the user's head and at an angle such that the user tilts their head about the z axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session. In yet another example, with reference to pitch rotational movement, the audio feedback may be spatialized at a location in front of the user and at an angle such that the user moves their head about the x axis (e.g., based on the user's head and sightline) to satisfy the current portion of the guided stretching session.
In some implementations, as represented by block 726, in accordance with the determination that the change to the head pose information associated with the user satisfies the criterion associated with the first visual cue among the first plurality of visual cues, the method 700 includes ceasing display of the first visual cue within the 3D environment. In response to detecting the change 622 to the head pose information associated with the user 150 in
In some implementations, as represented by block 728, in accordance with the determination that the change to the head pose information associated with the user satisfies the criterion associated with the first visual cue among the first plurality of visual cues, the method 700 includes maintaining display of the first visual cue within the 3D environment.
In some implementations, as represented by block 730, in accordance with the determination that the change to the head pose information associated with the user satisfies the criterion associated with the first visual cue among the first plurality of visual cues, the method 700 includes changing an appearance of the first visual cue within the 3D environment. In some implementations, the computing system changes the color, texture, shape, etc. of the first visual target changes once reached. In some implementations, the computing system changes the opacity or translucency of the first visual target changes once reached. In some implementations, the computing system changes the first visual target to a dotted or ghosted outline representation once reached.
In some implementations, as represented by block 732, in accordance with a determination that the change to the head pose information associated with the user satisfies a criterion associated with a final visual cue among the first plurality of visual cues, the method 700 includes providing at least one of audio, haptic, or visual feedback indicating that the final visual cue among the first plurality of visual cues has been completed for the first portion of the guided stretching session; and ceasing display of the first plurality of visual cues. As represented by block 732, the method 700 further includes: after ceasing display of the first plurality of visual cues, determining locations for a second plurality of visual cues (e.g., detents) within the 3D environment for a second portion of a guided stretching session based on the user profile information and the head pose information, wherein the second portion of the guided stretching session corresponds to a second stretch direction; and concurrently presenting, via the display device, the second plurality of visual cues for the second portion of a guided stretching session at the determined locations within the 3D environment and the directional indicator. In some implementations, the computing system or a component thereof (e.g., the strain decrease logic 465B in
As one example, in response to detecting the change 642 to the head pose information associated with the user 150 in
For example, the second stretch direction corresponds to rotational movement opposite the first stretch direction. In some implementations, while presenting the second plurality of visual cues for the second portion of a guided stretching session, the directional indicator is presented at the location associated with the final visual cue among the first plurality of visual cues, and the second plurality of visual cues induces 180° of rotational movement in the second stretch direction relative to the stopping point for the first portion of the guided stretching session (e.g., the second plurality of visual cues is evenly spaced along a 180° arc in the second stretch direction).
In some implementations, while presenting the second plurality of visual cues for the second portion of a guided stretching session, the directional indicator is presented back at the origin location, and the second plurality of visual cues induces 90° of rotational movement in the second direction relative to the origin location (e.g., the second plurality of visual cues is evenly spaced along a 90° arc in the second stretch direction).
In some implementations, after completing the second portion of a guided stretching session, the computing system may induce the user into performing multiple repetitions of the first and second portions of the guided stretching session. In some implementations, after completing the second portion of a guided stretching session, the computing system may induce the user into performing a third portion of the guided stretching session in a third stretch direction orthogonal to the first and second stretch direction. As one example, the first stretch direction corresponds to left-to-right rotational yaw movement (about the y-axis of the user's head), the second stretch direction corresponds to right-to-left rotational yaw movement (about the y-axis of the user's head), the third stretch direction corresponds to left-to-right roll rotational movement (about the z-axis of the user's head), or the like. One of ordinary skill will appreciate that the guided stretching session may induce the user to perform any of the roll, pitch, and/or rotational yaw movements with their head and/or body in an arbitrary sequence in various implementations. In some implementations, the computing system prompts the user to perform different stretch types during the guided stretching session such as a shoulder shrug or the like in addition to head rotation.
In some implementations, as represented by block 734, in accordance with a determination that the change to the head pose information associated with the user does not satisfy the criterion associated with the first visual cue among the first plurality of visual cues (within a deterministic or non-deterministic length of time), the method 700 includes providing one or more hints to the user associated with the first portion of the guided stretching session. For example, the one or more hints correspond to spatial audio feedback, haptic feedback, text feedback, illustrations, arrows and/or other symbols, audio commands, and/or the like to aid the user in reaching the first visual cue among the first plurality of visual cues.
While various aspects of implementations within the scope of the appended claims are described above, it should be apparent that the various features of implementations described above may be embodied in a wide variety of forms and that any specific structure and/or function described above is merely illustrative. Based on the present disclosure one skilled in the art should appreciate that an aspect described herein may be implemented independently of any other aspects and that two or more of these aspects may be combined in various ways. For example, an apparatus may be implemented and/or a method may be practiced using any number of the aspects set forth herein. In addition, such an apparatus may be implemented and/or such a method may be practiced using other structure and/or functionality in addition to or other than one or more of the aspects set forth herein.
It will also be understood that, although the terms “first”, “second”, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first media item could be termed a second media item, and, similarly, a second media item could be termed a first media item, which changing the meaning of the description, so long as the occurrences of the “first media item” are renamed consistently and the occurrences of the “second media item” are renamed consistently. The first media item and the second media item are both media items, but they are not the same media item.
The terminology used herein is for the purpose of describing particular implementations only and is not intended to be limiting of the claims. As used in the description of the implementations and the appended claims, the singular forms “a”, “an”, and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will also be understood that the term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
As used herein, the term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in accordance with a determination” or “in response to detecting,” that a stated condition precedent is true, depending on the context. Similarly, the phrase “if it is determined [that a stated condition precedent is true]” or “if [a stated condition precedent is true]” or “when [a stated condition precedent is true]” may be construed to mean “upon determining” or “in response to determining” or “in accordance with a determination” or “upon detecting” or “in response to detecting” that the stated condition precedent is true, depending on the context.
This application is claims priority to U.S. Provisional Patent App. No. 63/344,741, filed on May 23, 2022, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63344741 | May 2022 | US |