This application claims the priority of German Application No. 10 2007 032 987.3, filed Jun. 6, 2007, the disclosure of which is expressly incorporated by reference herein.
The invention relates to a method for printing solar cells by screen printing. The invention also relates to a device for printing solar cells by screen printing.
For printing solar cells by screen printing, specifically for the application of surface contacts or so-called finger contacts, use is made of thick film printers, which were originally developed for printing solder deposits in surface mounted devices (SMDs). Such thick film printers have very strong screen frames in order to ensure the necessary printing precision and operate with very high screen tensions or with fixed, glazed stencils. As the screen tensions are very high, a pressure doctor blade can only slightly press into the screen during printing, so that it is necessary to work with very limited spacings between the printing screen and the solar cell to be printed. The high screen tension also makes it necessary to have very rigid doctor blades. In the perfect state known thick film printers operate in a highly precise manner, but the necessary highly tensioned printing screens must be equipped with very expensive, strong frames and the known thick film printers are also comparatively sensitive to fluctuations in process parameters, e.g. relative to fluctuations of the contact pressure of the doctor blade or variations in the parallelism between the top and bottom of the solar cell. A prior art thick film printer and a printing screen for the same are shown in
The problem of the invention is to provide a device and a method for the screen printing of solar cells, which is suitable for quantity production and which reacts insensitively to process parameter changes.
For this purpose the invention provides a method for printing solar cells by screen printing, in which during a doctor blade pressure movement a printing screen is raised at the rear end of the screen when considered relative to a movement direction of the doctor blade during printing, in order to maintain a release angle of the screen between the latter and the solar cells behind the doctor blade above a critical value.
The invention is based on the surprising finding that the known thick film screen printing processes originally developed for printing solder deposits in the SMD sector, are admittedly suitable, but extensively overdimensioned for the printing of solar cells. The thick film printers are dimensioned for high forces in the printing screen and thick films and with respect to the attainable printing precision correspond to SMD technology requirements. However, when printing solar cells other marginal conditions are decisive. A disadvantage of the known thick film screen printing processes are that they are very sensitive to the smallest variations in the screen printing parameters and these e.g. include the thickness of the solar cell to be printed, the parallelism of the surface to be printed relative to the printing screen and surface unevennesses of the solar cell. However, the inventive method is tolerant to screen printing parameter changes and also in the case of uneven, varyingly high solar cells are solar cells with surfaces to be printed which are not precisely parallel to the printing screen, it is still possible to achieve a satisfactory and adequately precise print image. As one side of the printing screen is raised at the rear end during printing, the release angle of the screen between the latter and the just printed solar cell is kept above a critical value and it is possible to ensure that the printing screen can be rapidly released from the printing paste or ink just applied to the solar cell. This rapid release of the printing screen from the printing paste which has just been applied increases the printing quality with respect to the definition of contours to a significant extent and it is consequently possible to e.g. work with screens tensioned to a comparatively low extent and very soft doctor blades, which permits the compensation of unevennesses or the lack of parallelism between the solar cells. In addition, the loading of the just printed solar cell by the doctor blade can be kept very low, so that the fracture rate can be kept very low even with sensitive solar cells, e.g. so-called string-ribbon wafers. The rapid printing screen release behind the doctor blade, in that the release angle is kept above a critical value, makes the inventive method insensitive to variations in screen printing parameters and consequently allows a so-called multiple usage, in which several juxtaposed solar cells are simultaneously printed with one printing screen. Thus, the invention leads to low forces on the wafer, a very good printing quantity and a low fracture risk. The inventive method is suitable for printing surface contacts or flat coatings on solar cells.
In a further development of the invention the screen release angle during the doctor blade pressure movement is kept at a value of more than 0.8ø.
It has been found that during the printing of solar cells, e.g. with surface contacts, a release angle of more than 0.8ø favours a rapid printing screen release from the conductive printing paste and therefore a precise print image. The sought release angle of more than 0.8ø is achieved at the start of the doctor blade printing movement with the printing screen frame and solar cell still parallel. During the doctor blade movement over the just printed solar cell the release angle behind the doctor blade would otherwise necessarily become more shallow and this is compensated by an appropriate raising of the rear end of the printing screen frame.
In a further development of the invention the release angle during the entire doctor blade pressure movement is kept at a value between 0.8ø and 1.2ø.
It has been found that a release angle variation between 0.8 and 1.2ø can be tolerated and leads to good printing results.
In a further development of the invention throughout the doctor blade pressure movement the release angle is kept at a constant value.
By maintaining the release angle at a constant value, throughout the doctor blade pressure movement and therefore over the entire surface of the just printed solar cells identical conditions can be obtained behind the doctor blade, because in the case of a constant doctor blade speed the printing screen is always released at the same speed and under the same angle from the just applied printing paste. Consequently it is possible to ensure a uniformly precise print image over the entire solar cell surface and a maximum process window of the screen printing parameters, i.e. a range in which the screen parameters can be positioned, without compromising the faultless printing process sequence.
In a further development of the invention the printing screen is so raised that a screen angle between the printing screen and the just printed solar cell is raised from approximately 0ø to approximately 0.5ø, the printing screen being pivotably mounted at its front end with respect to the doctor blade movement direction during printing about a fulcrum. At a distance of approximately 650 to 710 mm from the fulcrum, the printing screen can e.g. be raised during the doctor blade pressure movement between 0 and 5 mm per 200 mm doctor blade path. With a printing screen format of 600 mm×700 mm, which is appropriate for printing standard solar cell sizes, precise print images can be obtained as a result of the indicated measures. This more particularly applies if with said printing screen size there is a simultaneous printing of two solar cells, i.e. a so-called double usage is achieved.
In a further development of the invention a screen spacing of the printing screen on all sides is set at a value of at least 150 mm.
The so-called screen spacing indicates the distance between a print image on the printing screen to the inner edge of the screen frame. Ultimately the screen spacing represents an unused area of the screen. Thus, a large screen spacing leads to a soft screen, because at a greater distance from the printing screen frame the screen can be more easily pressed towards the solar cell to be printed than in the immediate vicinity of the printing screen frame. A screen spacing increase conventionally leads to a reduction in the attainable precision during printing, because necessarily with a greater distance from the printing screen frame greater length tolerances can arise during the pressing down of the screen. This is e.g. the reason why conventional thick film printers during the printing of solar cells operate with very small screen spacings and highly tensioned screens. It has surprisingly been found that a screen spacing increase allows a lower doctor blade pressure, which in turn allows a lower loading of the just printed solar cell wafer, without the print precision arriving in ranges unsuitable for printing solar cells. This significantly reduces the fracture risk when printing solar cells, particularly those cells having divergences in the parallelism between the top and bottom sides and with unevennesses in the just printed top side.
In a further development of the invention a printing screen tension is set at a value equal to or lower than 25 N/cm.
Such a low screen tension compared with conventional thick film printers for solar cells makes it possible to work with soft pressure doctor blades and low doctor blade forces with which the doctor blade is pressed against the printing screen and the just printed solar cell. Due to the comparatively low screen tension, the printing screen, under the doctor blade contact pressure on the surface unevennesses, can adapt to the just printed solar cell, although only a comparatively low doctor blade force has to be applied. This also makes it possible to print uneven, highly sensitive solar cells, so-called string-ribbon wafers, in a precise manner and with a very limited fracture rate.
In a further development of the invention the doctor blade angularity is adapted to a surface slope of the solar cell during printing, the doctor blade being connected by at least two pressure cylinders to a doctor blade carrier and in which the angularity of the doctor blade is adjustable around the longitudinal direction of the blade movement during printing.
Through the angularity of the doctor blade being adapted to the surface slope of the solar cell during printing, precise printing can even be ensured for solar cells whose surface to be printed is not entirely parallel to the printing screen, in that the doctor blade and wafer surface are always kept parallel. By adapting the doctor blade angularity a uniform loading of such non-parallel solar cells is also ensured. If the doctor blade angularity was not adapted, in the area of the solar cell closer to the printing screen a very high loading would necessarily occur and there would be a very high probability of the solar cell fracturing or breaking during printing. These risks can be avoided with the inventive method.
In a further development of the invention, a doctor blade force with which the doctor blade is pressed during printing against the printing screen and the substrate, is set at a value between 2 and 10 N/cm doctor blade length, particularly 5 N/cm.
In conjunction with a low screen tension and a high screen spacing, doctor blade forces between 2 and 10 N/cm doctor blade length are sufficient for bringing about an adequate doctor blade contact pressure. However, the loading of the just printed solar cell by the doctor blade force can be kept very low and the fracture risk drops considerably.
The problem of the invention is solved by a solar cell printing device using screen printing, in which a printing screen is pivotably mounted at a front end of the doctor blade considered in the doctor blade movement direction during printing and in which a device for raising the rear end of the printing screen during the doctor blade pressure movement is provided, a doctor blade carrier and at least two pressure cylinders being provided for connecting the doctor blade to the doctor blade carrier, and in which the doctor blade is pivotably fixed to the pressure cylinders about a longitudinal direction of the doctor blade movement during printing and in which the pressure cylinders and/or a control of the action of the pressure cylinders is so dimensioned that a change in the pressure acting on the pressure cylinders of one bar leads to a change in the doctor blade force of max 2.5 N/cm, particularly 1.8 N/cm.
Consequently the inventive device is insensitive to fluctuations in the hydraulic or pneumatic pressure with which the pressure cylinders press the doctor blade against the printing screen and the printed solar cell. Fluctuations in the pressure acting on the pressure cylinders consequently only lead to a minor change to the doctor blade force per doctor blade length, so that even with pressure fluctuations there is no increased fracture risk of the just printed solar cell. Such a pressure cylinder design can e.g. be achieved by reducing the hydraulically active pressure cylinder cross-section. As a result the inventive device is tolerant to faults and allows the printing of solar cells with a low fracture rate even with large scale production. A control cam or servomotor can e.g. be used for raising the printing screen. The doctor blade force per doctor blade length, also referred to as the doctor blade pressure, and the pressure acting on the pressure cylinders consequently have a wide process window, which makes it possible to significantly increase the reliability of the printing process.
In a further development of the invention, the doctor blade is made from a flexible material strip of a rubbery material with a Shore hardness of less than 65 and which is inclined relative to the printing screen.
As a result of the high screen tensions, conventional thick film printers when printing solar cells operate with strong screen frames and consequently also with hard or rigid doctor blades, which are sufficiently stable to displace the highly tensioned printing screen and press the same against the solar cell to be printed. Thus, conventional thick film printers use a so-called diamond doctor blade, in which a cross-sectionally square profile has its tip directed against the printing screen. Thus, such a diamond doctor blade is only elastically resilient to a very limited extent and can therefore only compensate to a slight extent surface unevennesses of the just printed solar cell. According to the invention a flexible material strip is inclined relative to the printing screen, so that as a result of this geometrical arrangement there is a high doctor blade flexibility. In addition, a rubbery material with a low Shore hardness is chosen, so that the blade edge can adequately follow unevennesses of the just printed solar cell and can compensate the same. In conjunction with a comparatively low screen tension, said printing screen is able to adapt under the doctor blade pressure to the surface unevennesses of the just printed solar cell, so that a satisfactory print image can be obtained.
In a further development of the invention a screen spacing of the printing screen on all sides is at least 150 mm and a printing screen tension is made equal to or lower than 25 N/cm.
Further features and advantages of the invention can be gathered from the claims and the following description of preferred embodiments of the invention in conjunction with the drawings. Individual features of the embodiments described and shown can be combined in a random manner without passing beyond the scope of the invention. In the drawings show:
a is a diagrammatic representation of a thick film printer when printing solar cells according to the prior art;
b is a diagrammatic representation of a printing screen for the thick film printer of
a is a diagrammatic side view of an inventive device for printing solar cells by screen printing;
b is a printing screen for the device of
a shows a conventional thick film printer 10 for printing solar cells. The thick film printer 10 has a print rest 12 on which rests a solar cell 14 to be printed. Parallel to the print rest is held a printing screen frame 16, to which is fixed in the tensioned state a printing screen 18. A printing doctor blade 19 has a doctor blade holder 20 and a blade rubber 22. During printing, the doctor blade 19 is pressed against the printing screen 18 in the direction of solar cell 14 and moves in the direction of arrow 24 over the solar cell surface. For this purpose it is necessary to overcome a distance “a” between the printing screen in the planar state and the surface of the solar cell 14 to be printed (this is also referred to as the screen printing form distance or jump-off). The conventional thick film printer 10 operates with very high screen tensions, a very strong, stable screen frame 16, very rigid or hard doctor blades 19 and a very low form distance a. Due to the high screen tensions the force to be applied by the doctor blade to overcome the distance a is comparatively high. Thus, the doctor blade rubber 22 must be made from elastic material with a high Shore hardness to ensure that the edge of the doctor blade rubber 22 pressed against the screen does not stand up with such a large surface area on the screen that exact printing is rendered impossible. In addition, the cross-sectional shape of the blade rubber 22 is square, so that as a result of this shaping and the arrangement as a square stood on an edge the blade rubber 22 is relatively inflexible.
b shows in a diagrammatic view from above the screen frame 16 and printing screen 18. An area 26 of printing screen 18 is the area in which the print image is applied to solar cell 14. A distance between the outer edge of area 26 and the inner edge of screen frame 16 is called the screen spacing R. To ensure a high printing precision, during print screening with conventional thick film printers operation takes place with small screen spacings R. Reference numeral 16a indicates the very strong, large cross-section of screen frame 16.
The diagrammatic side view of
On comparing doctor blade 38 of
At its front end in the movement direction 40 of doctor blade 38 during printing, screen frame 34 is pivotably mounted on a fulcrum 42. Therefore the screen frame can be upwardly pivoted by its rear end along an arrow 44 and e.g. assume the broken line position shown in
Doctor blade 38 is shown in two different positions in
During the pressure movement of doctor blade 38 over the surface of solar cell 14 the rear end of frame 34 is raised along arrow 44. Thus, considered in the direction of arrow 40, behind the doctor blade the printing screen 36 is more rapidly released from the surface of solar cell 14. Specifically a release angle formed by the portion of the printing screen behind doctor blade 38 with the surface of solar cell 14 is higher for a given doctor blade position than when printing screen 34 was not pivoted upwards during the pressure movement of doctor blade 38. Without the lifting of the printing screen the release angle would become smaller with an increasing doctor blade path. This raising of the printing screen 34 in the vicinity of its rear end, in the case of the inventive device ensures that the printing screen 36 behind the doctor blade rapidly lifts from the surface of solar cell 14 and therefore also rapidly from the printing paste pressed through the printing screen 36 by doctor blade 38 and located on solar cell 14 behind blade 38. Thus, throughout the pressure movement of doctor blade 38 over the surface of solar cell 14 a precise print image can be obtained, because also at the end of the pressure movement of blade 38 the printing screen 36 is rapidly moved out of the printing paste applied in that the release angle is kept above a predetermined value or at a constant value.
Compared with the conventional thick film printer of
Compared with the thick film printer of
The state diagrammatically illustrated in
The diagrammatic representation of
Doctor blade 38 is held by a blade holder 48, which is fixed to a doctor blade carrier 54 by two pressure cylinders 50, 52. By means of not shown pressure lines, pressure cylinders 50, 52 are e.g. supplied with compressed air and lead to the doctor blade 38 being pressed against printing screen 36 and solar cell 14. The doctor blade carrier 54 is laterally movable along not shown rails, i.e. in
Thus, the pressure doctor blade 38 can change its angularity relative to the doctor blade carrier 54, so that the blade holder 48 is instead of being parallel now at an angle to the carrier 54. This change in the angularity of the doctor blade 38 takes place automatically on placing on solar cell 14. If the surface of solar cell 14 to be printed is inclined to the doctor blade carrier 54, the doctor blade 38 is automatically set parallel to the surface of solar cell 14 to be printed. As both pressure cylinders 50, 52 receive the same pressure, a constant contact force, the so-called doctor blade force is obtained over the length of blade edge 46.
To be able to easily bring about adaptation to different doctor blade lengths, the pressure cylinders 50, 52 are adjustable along doctor blade carrier 54 and are secured thereon solely by clamping screws. Not shown clamping screws or clamping levers are also provided, so that the doctor blade holder 48 can be rapidly fixed without tools to the pressure cylinders 50, 52.
The pressure cylinders 50, 52 are so dimensioned that a change to the pressure applied only leads to a slight change to the doctor blade force with which the doctor blade 38 is pressed against printing screen 36 and solar cell 14. The pressure cylinders are so designed that in the case of a one bar change to the pressure applied to the pressure cylinders 50, 52, there is a change to the doctor blade force of max 2.5 N/cm and specifically 1.8 N/cm. This is brought about by reducing the cylinder bores of the pressure cylinders, which e.g. only have a diameter of 20 or 12 mm.
A length S designates the so-called screen lift in mm, i.e. the length by which the printing screen frame 34 is raised at the end of an extension 60. The distance a, i.e. the screen printing form distance or jump-off, can in the represented, preferred embodiment be between 2 and 5 mm. The screen lift S is to be considered in conjunction with the path covered by doctor blade 38 during the printing process. In the embodiment shown the extension 60 of printing screen 34 is raised by 4.2 mm/200 mm of doctor blade path and the screen lift is set between 0 mm/200 mm and 5 mm/200 mm of doctor blade path.
Length L1 designates the spacing of the application point of a not shown device for lifting the screen frame 34 at extension 60. In the embodiment shown length L1 is 689 mm. Length L2 designates the spacing of the rear inner edge of screen frame 34 from the application point of the screen lift device. In the embodiment shown L2 is 85 mm. L3 is the screen length, i.e. the distance from the rear inner edge of screen frame 34 to the front inner edge of the screen frame. In the embodiment shown length L3 is 520 mm. X designates the position of doctor blade 38. At the start of the printing process the distance X of the doctor blade from the rear inner edge of screen frame 34 is 108 mm and at the end of the printing process it is 362 mm.
In the embodiment shown it is made possible by the raising of the printing screen frame 34 to keep the release angle constant at a value of approximately 1ø throughout the printing process.
The invention provides a solar cell screen printing method and device characterized by a high tolerance with respect to changes to the screen printing parameters. The screen printing parameters e.g. include the form distance or jump-off a, which as a result of unevennesses of the solar cells to be printed or thickness differences of the solar cells to be printed can diverge from a desired value. Another screen printing parameter is the evennesses or flatness of the surface to be printed. Specifically in the case of string-ribbon wafers, which are characterized by a highly uneven surface, the inventive method and device can bring about very good results. String-ribbon wafer solar cells are also extremely fracture-sensitive and once again the invention leads to very good results. The low screen tension, large screen spacing, the flexibly suspended, soft doctor blade rubber and in particular the one-sided raising of the rear end of the printing screen during the printing process make it possible to achieve a very good printing quality and at the same time a very low loading of the printed solar cells. The fracture rate when using the inventive method is consequently extremely low and the down times which necessarily arise when wafer fragments have to be removed from the printing screen or the print rest can be kept low. The doctor blade force with which the doctor blade is pressed against the printing screen and solar cell is very low and is only subject to very limited fluctuations and consequently the inventive method and device can be very readily used. The pivotable suspension of the doctor blade about a longitudinal direction of the doctor blade movement during printing also makes it possible to easily compensate divergences from the parallelism between the surface to be printed and the printing screen. The provision of at least two pressure cylinders for applying the doctor blade force simultaneously ensures that inclined surfaces are subject to a constant doctor blade force over the entire doctor blade width.
The foregoing disclosure has been set forth merely to illustrate one or more embodiments of the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 026 978.3 | Jun 2007 | DE | national |