The invention relates to a method and an apparatus for producing a reinforced socket on an extruded plastic tube made of thermoplastic material, preferably a corrugated tube, in which the tube is provided with end sockets at predetermined segment lengths.
Plastic tubes in single-wall and multiple-wall embodiments, for instance double-wall corrugated tubes with a corrugated exterior wall and smooth interior wall, are produced from thermoplastic material by extrusion. The plastic tube extruded and shaped as a continuous strand is then separated from the continuously produced tube at predetermined segment lengths such that the result is tube segments of the desired length. At least one end of these tube segments must be provided with a socket with an expanded diameter or alternatively with a socket with the same exterior diameter with a smaller tip end of the tube in order to be able to connect the tube segments when they are placed. In order to produce such sockets, the sockets are formed in a manner known per se on the continuously extruded tube strand, whereby the sockets are exposed in that the tube strand is separated in the region of the shaped socket for producing the tube segments. In conventional extrusion processes, however, it is only possible to produce the sockets with a wall thickness that is approximately in the range of the wall thickness of the single- or multiple-wall tube. However, these wall thicknesses are frequently not adequate for producing sockets with the necessary strength.
The object of the invention is therefore to suggest a method and an apparatus of the type cited in the foregoing, whereby tube segments separated from extruded plastic tubes can be produced with reinforced sockets with greater wall thicknesses.
In accordance with the invention, this object is achieved using a method in accordance with patent claim 1 and an apparatus in accordance with patent claim 14.
In accordance with the invention, reinforced sockets can be produced in that at least one reinforcing layer of plastic is extruded onto the socket region, whereby the thermoplastic material extruded thereupon is the same as that of the plastic tube or is of a type that bonds well to the material of the plastic tube.
Usefully, the inventive method is embodied in that each tube segment is borne rotatable about its longitudinal axis and is displaced in rotation and a layer of plastic is extruded onto the socket region through a die head of an extruder. The at least one layer of plastic is so-to-say wound onto the socket region.
The layer of plastic can fundamentally be extruded by a flat sheet die, the extrusion slot of which can correspond to the length of the socket, while one or more rotations are extruded onto the tube segment. However, the layer of plastic reinforcing the socket is preferably applied through a profile extrusion die in the form of a strand, the width or thickness of which is a fraction of the socket length, in that the die head and/or the rotating tube segment is caused to move in the longitudinal direction of the tube segment in such a manner that the strand encompasses the socket region with turns, one on top of the other, in a helical shape. Profile extrusion dies with various cross-sections can be used for this. Circular cross-sections and rectangular cross-sections have proven to be advantageous. Profile extrusion dies with rhomboidal cross-sections can also be used.
The layer of plastic or turns can be applied in one layer or a plurality of layers.
In order to produce particularly strong sockets, in a further development of the invention a reinforcement such as glass fibers, polyamide wire, or metal wire can be included in the turns under and/or in the reinforcement profile. This can achieve reinforcement of the edge stress of the socket.
In order to provide a good bond between the extruded reinforcing layer and the socket region of the tube segment, the socket region can be heated prior to extruding the strand or the wide band thereupon. The heating can occur by blowing hot air, preferably by infrared radiation in front of the extrusion die. Preferably the tube segment is irradiated with one or a plurality of quartz radiators in the region of the socket to be formed in order to heat or soften the tube segment in the cited region.
Usefully the layer extruded thereupon is calibrated and smoothed by a profile roller.
Usefully a support mandrel provided with a rotating drive is introduced at least into the end of the tube segment that is provided with the socket. The support mandrel is usefully provided with a temperature control apparatus in order to be able to control the temperature of the support mandrel. In particular the support mandrel, through which a heating and/or cooling medium flows in bores via a rotating distributor, is heated or cooled by means of a temperature control device. The temperature of the support mandrel is thus controlled. In particular it can be heated prior to and during extrusion of the layer of plastic that forms the socket. The temperature can be selected depending on various edge conditions. A typical temperature range is approximately 150° C. After extrusion, the support mandrel is cooled in order to draw off the heat from the extruded plastic material and/or the tube material located thereunder.
In addition, a vacuum can be introduced via the rotating distributor in order to hold the heated socket with thickening to the support mandrel. The support mandrel can have vacuum slots on its exterior surface. In order to facilitate removal, the support mandrel can be embodied slightly conical overall. In addition, the vacuum system can be triggered with pressure in order to facilitate removal.
Usefully, the extruded socket can be cooled not solely from the interior, that is, by the support mandrel. A cooling device, in particular a cool air fan, can be provided at the exterior side of the tube in the region of the shaped socket in order to cool the extruded material.
Furthermore, there is a need to shape sockets and in particular reinforced sockets on tube segments made of extruded plastic tubes that have been extruded without a socket region. The invention also relates to a method for producing a reinforced socket on an extruded plastic tube made of thermoplastic material, preferably a corrugated tube, from which tube segments of a predetermined length are separated. In order to shape sockets on such tube segments that have been extruded without socket regions, each tube segment, at least at its end at which a socket is to be shaped, is placed on a rotatingly drivable mandrel, the exterior contour of which complements the interior socket region, and then the socket is extruded onto the mandrel adjacent to the tube segment. This extrusion occurs in that the extruded socket bonds to the end segment of the re-plasticized tube segment.
In accordance with this embodiment of the invention, the socket is extruded onto the mandrel in the same manner as was described in the foregoing in the extrusion method for producing at least one layer reinforcing the socket region.
The rotating drive for generating the rotational movement between the profile extrusion die of the extruder and the tube segment or the support mandrel can be embodied differently. It can be provided that the support mandrel, and thus the tube segment placed upon it, is driven directly. It can also be provided that the support mandrel is borne freely rotatable and the rotating drive at another site rotationally drives the tube segment and via it the support mandrel.
Exemplary embodiments of the invention are described in greater detail in the following, using the drawings.
The tube segment 2 is rotatively clamped or borne in the bearing frame 20, whereby inserted at least into the socket region of the tube segment 2 is a rotatably borne holding or support mandrel 6, the exterior contour of which corresponds to the interior contour of the socket region 1, the transition region 5, and the diameter of the interior tube 4.
A tube clamping apparatus 28 can be provided in order to be able to receive the axial forces acting on the tube when the support mandrel is inserted and withdrawn. As
At the socket region 6 and the transition region 5, a profile extrusion die 7 can be placed, to which an extruder 8 feeds a plastic melt that is then extruded onto the socket region 1 and the transition region 5 in the form of a strand 9 of plasticized plastic during at least one rotation A. The profile extrusion die 7 can be moved back and forth in the direction of the double arrow B in order to be able to extrude the layer of plastic onto the socket region at the optimum distance.
Arranged immediately in front of the profile extrusion die 7 are the quartz radiators 10 of a heating device 11 that is movable with the profile extrusion die 7 and that plasticizes or slightly fuses the socket region that is to be provided with an extruded reinforcing layer. The contactless-acting heating device 11 could also fundamentally have hot air nozzles or the like in order to heat the tube segment. But infrared radiation is preferred. Preferably the heating device 11 is affixed to the profile extrusion head 7 or the extruder 8 so that movements by the profile extrusion die 7 are associated with a corresponding movement of the heating device 11 and the tube wall segment in front of the extrusion die is always heated. In accordance with
Arranged behind the profile extrusion die 7 is a profile roller 12 with which the extruded layer is calibrated and smoothed. As
Furthermore, a cooling device 24 for cooling the extruded plastic radially from the exterior is provided on the bearing frame 20. A cool air fan 25 blows cooling air onto the exterior surface of the reinforced socket region in an advantageous manner immediately behind the profile roller 12.
The inventive method can also be embodied in such a manner that only the exterior segment 13 of the holding mandrel 6 corresponding to the diameter of the interior tube 4 is inserted into the tube segment produced without a socket region and then the socket is extruded onto the mandrel 6 with transition segment 14 and thus bonded to the tube segment 2.
Number | Date | Country | Kind |
---|---|---|---|
101 52 604.0 | Oct 2001 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP02/11848 | 10/23/2002 | WO |