The invention pertains to a method for producing a rope, especially a wire rope, a rope made of fibers, or a rope comprising wire and fibers, in which the rope is provided with a marking as it is being stranded. The invention also pertains to a device for carrying out the method and to the rope provided with the marking.
It is known through prior use that a marker thread can be incorporated into the rope as it is being stranded; on the basis of this thread, the maker of the rope and the production lot to which the rope belongs can be determined.
Because rope is often produced in lots of considerable size, e.g., in lengths of more than 2,000 m, from which several sections are then cut to obtain individual ropes for delivery to various customers, there is the problem that it is no longer possible, at a later date, to determine the section of the associated lot from which the rope originated.
The invention is based on the goal of making it possible to assign individual sections of rope more accurately to their production conditions.
According to the invention, this goal is achieved in that the marking is changed during the course of stranding. On the basis of the markings, which change as they proceed along the length of the rope, individual locations on the rope produced by means of the method or individual sections of it are identified and can thus be differentiated from each other. A length of rope can thus be assigned to a specific section of the production lot. If the production conditions, e.g., the raw materials used, the stranding speed, the time/date of stranding, the length of rope already produced, or the like, as well as the associated marking provided on the rope, are logged during the stranding process, it is possible to assign the data on the production conditions to the locations or sections of the rope.
The marking advisably comprises codes, on the basis of which the marking can be linked with the associated information. The marking can be formed by a color code, an optically readable code, e.g., a sequence or letters or numbers, a barcode, or the like, or possibly by data which can be read from a chip.
Alternatively or supplementally, it would also be conceivable to provide the marking, as the rope is being stranded, h a succession of codes characterizing the course of the stranding process. A complete set of codes, which advisably also comprises one or more of the items of information about the production conditions, can then be read out from the marking.
The codes are advisably provided on the rope equal distances apart; for example, they can be provided once per meter of rope produced.
In one embodiment of the invention, the code is provided on a wire, a stranded wire, and/or a marking strand to be incorporated into the rope. Whereas it would be possible to apply the code by embossing it, it is preferable, in a preferred embodiment, to apply the code to the wire, to the stranded wire, or to the marking strand by means of ink-jet printing. In a further elaboration of the invention, the previously mentioned chips are arranged in the rope. Radio chips, preferably RFID chips, are advisably used. Whereas it would be possible to attach the chips directly, during stranding, to a part of the cable made of plastic or to incorporate them into such a plastic part, such as into the plastic sheath around the cable or into an intermediate rope layer of plastic as known from WO 2008 141 623, they are, in an especially preferred embodiment of the invention, arranged on the marking strand.
The wire, stranded wire, or marking strand provided with the code advisably passes in a straight line through the rope. In this case, the code can be correlated especially easily with the length of the rope. In the preferred embodiment of the invention, the marking strand is arranged directly adjacent to a core rope extending in a straight line through the rope. It is also possible, however, for the wire, the stranded wire, or the marking strand on which the code is provided to be wound around the rope together with the outer strands. Nevertheless, in that case, especially when the code pertains to the length of rope produced up to that point, it will be necessary to take into account the helical form of the wire, of the stranded wire, or of the marking strand in the rope.
In another embodiment of the invention, the marking strand is arranged on or inside a plastic layer of the rope. It is advantageous in this case that the marking strand is thus also protected from the damage which might be caused by mechanical loads on the rope.
In one embodiment of the invention, the wire, the stranded wire, or the marking strand is provided with the code before the stranding process even begins; in this case, it is coiled up first in preparation for the stranding process. During the stranding process, the wire, the stranded wire, or the marking strand is then unwound, guided to the stranding site, and incorporated into the rope. Alternatively, the wire, the stranded wire, or the marking strand can be provided with the marking during the stranding process and then guided directly to the stranding site. In this variant, it is possible to include in the code the manufacturing conditions such as the time/date of the stranding or the stranding speed on a continually updated basis.
A device comprising a unit for stranding the rope and a unit for applying the marking to the rope is provided to produce the rope. The unit for stranding the rope is advisably formed by a stranding machine known from the prior art. In the preferred embodiment, the marking unit comprises an embossing or printing device, by means of which the wire, the stranded wire, or the marking strand can be provided with the code, or a data transmission device, by means of which the data can be stored on the previously mentioned chips.
The marking unit is preferably provided to provide the rope with a succession of codes during the stranding process, which codes characterize the course of the stranding. For this purpose, the marking unit preferably comprises a device for compiling the codes to be applied. This device is connected to a logging device of the stranding machine, which receives and records the previously mentioned production parameters and the associated marking provided on the cable correlated with those parameters.
The invention is explained in greater detail below on the basis of exemplary embodiments and the attached drawings, which pertain to these exemplary embodiments:
The device illustrated schematically in
The marking strand 1 is guided through a stranding basket 13 to a stranding point in parallel with the core stranded wire 8. By way of the stranding basket 9, which rotates around its longitudinal axis, outer stranded wires 6 are wound around the core stranded wire 8 at the stranding point 9 to form the rope 10, which is pulled away from the stranding point 9 by drawing pulleys 11. The marking strand 1 is arranged to pass in a straight line through the rope 10 during the stranding process.
The marking unit 2 is connected to a device 14 for logging the production conditions during the stranding of the rope 10; the unit records the parameters of the stranding process and, in correlation with them, the associated marking applied to the rope. The parameters comprise the length of rope 10 already produced, the date/time of stranding, data on the outer stranded wires 6 and the core stranded wires 8 used to produce the rope 10, possibly data on the plastic used in the production of the rope 10, the temperatures during production, especially the temperatures for softening the plastic, and the stranding speed.
If, as shown in
Another rope 10b according to the invention as shown in
In the exemplary embodiment shown in
The additional device according to the invention as shown in
In the case of the additional device according to the invention shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2012 105 261.1 | Jun 2012 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2013/100213 | 6/12/2013 | WO | 00 |